Teoria reprezentacji grup i algebr Liego
Page of the subject in USOSweb
Bibliography: (* denotes that there exists an electonic copy)
*!!! Fulton, William; Harris, Joe -
Representation theory. A first course.
*Adams, J.F. - Lectures on Lie
groups.
Br?cker, Theodor; tom Dieck, Tammo
- Representations of compact Lie groups. Graduate Texts in
Mathematics, 98.
Carter, Roger; Segal, Graeme;
Macdonald, Ian - Lectures on Lie groups and Lie algebras. London
Mathematical Society Student Texts, 32.
Knapp, Anthony W. - Representation
theory of semisimple groups. An overview based on examples.
Wojty?ski, Wojciech - Grupy i
algebry Liego. Biblioteka Matematyczna 60. PWN, Warsaw, 1986
J. F. Adams - Lectures on exceptional Lie groups
Baez, John C. The octonions. Bull.
Amer. Math. Soc. (N.S.) 39 (2002), no. 2, 145-205, http://xxx.lanl.gov/ps/math/0105155
A. Baker, Matrix groups, an introduction to Lie groups
R. L. Bryant, Symplectic geometry and Lie groups
Humphreys, James E. - Linear
algebraic groups.
W.Fulton, Young tableau, representation theory and geometry
J. Gallier, Concrete introduction to classical Lie groups via the exponential map
Hall B.C. Lie groups, Lie algebras, and representations
Humphreys J. Introduction to Lie algebras and representation theory (GTM 9, Springer, 1972)
Mimura, Mamoru; Toda, Hirosi -
Topology of Lie groups I, II. Translated from the 1978
N.-P. Skoruppa, A Crash Course in Lie algebras
A. Vistoli, Notes on Clifford algebra, Spin Groups and Triality,
(Representation theory for Lie groups and algebras)
Problems from the June exam.
Zadania do rozwiazania pisemnego będą bliźniaczo podobne do:
Preparatory problems for the exam
Część ustna oparta na
Some problems
Notes:
Lecture 1: Quaternions. Basic examples of Lie groups.
Lecture 2: Exp, Lie algebra
Lecture 3: Lie algebras II, reductive algebras, polar decomposition
Lecture 4 - Dictionary: Lie groups - Lie algebras, Killing form, semisimple algebras
Lecture 5 - Linear algebra theorems as special cases
of theorems in Lie theory
Lecture 6 - Basics of representation theory
Lecture 7 - Representations of tori, SU(2) and SL_2(C)
Lecture 8 - Representations of SL_3(C) and SL_n(C)
Lecture 9 - Construction of representations of SL_n(C), highest weights, Verma modules
Lecture 10 - Young diagrams, characters, Schur functions, Weyl character formula
Lecture 11 - Pieri formula, generalities about roots
Lecture 12 - Dynkin diagrams. Representations of Sp(n)
Lecture 13 - Clifford algebras, spinors
Lecture 14 - Representations of Spin(n) and S0(n), triality
Lecture 15 - G_2
Problems
Stare zadania o grupach Lie (in Polish)
Notatki Adama Bzowskiego ABC grup Lie (in Polish)
* Other sources to be found in Internet
http://homepage.sns.it/vistoli/clifford.pdf