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1 Mainly examples and overview

1.1 Topological groups [Bredon: Introduction to compact transformation groups, chapter 0]

• multiplication and taking the inverse are continuous

• equivalently φ : G2 → G2, φ(g, h) = (g, gh) is a homeomorphism

• ,,group object” in the category of topological spaces

1.2 Examples

- discrete groups

- R+, Rn, K∗ for K = R,C or H

- compact torus (S1)r

- complex torus (C∗)r

- S3 as a subgroup of H∗

- U(n), SU(n) subgroups of GLn(C), SLn(C)

- O(n), SO(n) subgroups of GLn(R), SLn(R)

- Sp(n) the subgroup of GLn(H) preserving the norm |v|2 =
∑n

i=1 |vi|2

- Matrix groups defined by some identity e.g. preserving a given quadratic form (or trilinear form,

octonionic multiplication etc)

- O(m,n), the subgroup of GLm+n(R) preserving a nondegenerate symmetric form of the type (m,n).

- groups of isometries of a compact Riemannian manifold (can be realized as a matrix group)

- Heisenberg group N/Z where

N =

1 ∗ ∗
0 1 ∗
0 0 1

 , Z =

1 0 Z
0 1 0
0 0 1


cannot be realized as a matrix group

1.3 Exercise: U(n), SU(N), SO(n), Sp(n) are connected, O(n) has two components
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1.4 Exercise: π1(U(n)) = Z, π1(SU(n)) = 1, π1(SO(n)) = Z2 for n ≥ 3 (long exact sequence of

homotopy groups needed)

1.5 Exercise: Elements of Sp(n) preserve the form Hn × Hn → H given by (v, w) =
∑n

i=1 viwi.

1.6 Two approaches to Lie groups

- study of compact Lie groups

- study of complex algebraic reductive groups (definition later)

1.7 Noncompact or nonreductive groups are more difficult; theory of nilpotent or solvable groups is

a separate subject.

1.8 But any Lie group G contains a maximal compact subgroup K (which is unique up to a conju-

gation) and as a topological space G ' K × Rn. (Cartan-Iwasawa-Malcev Theorem)

1.9 For every connected linear and semisimple (to be defined later) group we have

G = K ×A×N

where K is maximal compact, A ' Rk, N is a nilpotent group, ' R` as a topological space. This is

Iwasawa decomposition. The special case is the Gram-Schmidt ortogonalization process

GLn(R) = O(n)× (R>0)n ×N

where N uppertriangular with 1’s at the diagonal.

1.10 Every compact Lie group can be embedded into U(n) as a closed subgroup.

1.11 Classification of compact connected groups [Cartan]: every such G is of the form G̃/A, where

A is a finite abelian group and G̃ =
∏k
i=1Hi and Hi is a torus (S1)r or a simple∗ simply-connected

group, which is of the form

• SU(n) (Type An−1)

• S̃O(n) = Spin(n) (Type Bm for n = 2m + 1 or Type Dn for n = 2m). Here S̃O(n) means the

two-fold cover.

• Sp(n) (Type Cn)

• Exceptional group of the type E6, E7, E8, G2 or F4

1.12 ∗ Simple Lie group means that the every proper normal subgroups is finite.

1.13 The definitions of the simple Lie groups have common pattern, except that the field over which

the definition is realized changes:

• C – Type An

• R – Type Bn and Dn
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• H – Type Cn

• octonions – exceptional groups, eg G2 = Aut(Octonions)

1.14 For each compact Lie group G there exists a complex Lie group GC, the complexification of G,

in which G is the maximal compact subgroup. The group GC is defined by a polynomial formula in

GLN (C) for some N

• SL(n,C) (Type An−1)

• ˜SOn(C) = Spinn(C) (Type Bm for n = 2m + 1 or Type Dn for n − 2m), where SOn(C) is a

subgroup of SLn(C) preserving a fixed nondegenerate symmetric form.

• Spn(C) (Type Cn), where Spn(C) is a subgroup of GL2n(C) preserving a fixed nondegenerate

antisymmetric form.

• Complex exceptional group of the type E6, E7, E8, G2 or F4, eg. (G2)C ⊂ GL7(C) is the group

preserving certain exterior 3-form.

1.15 Remark for future: Any complex reductive group is of the form
(

(C∗)r ×
∏k
i=1(Gi)C

)
/A, where

A is a finite abelian group.

1.16 Exercise: The real symplectic group Spn(R) ⊂ GL2n(R) (appears in real symplectic geometry

or in classical mechanics) is noncompact and its maximal compact subgroup is equal to U(n).

2 Basic notions: exp et al.

2.1 Recollection of quaternions: let

1 =

(
1 0
0 1

)
, i =

(
i 0
0 −i

)
, j =

(
0 1
−1 0

)
, k =

(
0 i
i 0

)
.

We have

i2 = j2 = k2 = −1, i j = −j i = k, j k = −k j = i, k i = −i k = j.

H = linR{1, i, j,k}

Each quaternion is of the form

x = a1 + b i + c j + dk =

(
a+ ib c+ id
−c+ id a− ib

)
with a, b, c, d ∈ R. Let x∗ denote xT . For x, y ∈ H we have

• (xy)∗ = x∗y∗ (it holds in M2×2(C)).

• x · x∗ ∈ R+, ||x|| :=
√
x · x∗.

• For x = a1 + b i + c j + dk, a, b, c, d ∈ R we have ||x|| =
√
a2 + b2 + c2 + d2.

• ||xy|| = ||x|| ||y||.
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2.2 We have

H = {A ∈M2×2(C) : jA = Aj}.

Indeed, for A =

(
s t
u v

)
we have

(
0 1
−1 0

)(
s t
u v

)
=

(
u v
−s −t

) (
s t
u v

)(
0 1
−1 0

)
=

(
−t s
−v u

)
Hence t = −u, s = v.

2.3 The quaternion matrices understood as complex matrices of double size

Mn×n(H) ⊂M2n×2n(C)

satisfy the equation JnA = AJn, where Jn is the block-diagonal matrix with j’s on the diagonal. After

reordering of coordinates Jn has a block form

(
0 In
−In 0

)
, where In is the identity n× n matrix.

2.4 Sp(n) defined as GLn(H) ∩ U(2n) consists of 2n× 2n complex matrices satisfying

JnA = AJn, AA
T

= I2n .

• From these condition follows JnA = (AT )−1Jn, hence ATJnA = Jn (i.e. A preserves the symplectic

form Jn).

• On the other hand ATJnA = Jn and A = (AT )−1 implies JnA = AJn. This shows that Sp(n) =

Sp(n,C) ∩ U(2n)

2.5 The basic tool to study Lie groups are Lie algebras. One considers the vector fields which are

invariant with respect to the left translation Lg : G→ G, Lg(h) = gh.

The Lie algebra of a Lie group G usually is denoted by the gothic letter g. It is a vector space equipped

with

• antisymmetric binary operation [−,−] : g× g→ g (the operation of commutator of vector fields)

• the commutator satisfies the Jacobi identity = Leibniz rule

2.6 Examples of abstract Lie algebras

• vector fields on differential manifold

• Mn×n(C) (a.k.a. gln(C)) - matrices with the standard matrix commutator operation

• associative k-algebra with commutator operation (there exists a forgetting functor Algebras →
Lie Algebras),

• the Lie algebra generated by differential operators ∂
∂x and x

• derivations of any k-algebra

2.7 Classification of Lie groups is based on two steps:

• Up to taking a cover the Lie group is characterized by its Lie algebra

• Classification of Lie algebras.
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2.8 Ado Theorem: every finite dimensional Lie algebra over a field K of characteristic 0 can be

embedded into Mn×n(K).

Elementary theory of Lie groups, details in [Adams, chapter 2]:

2.9 Def: One parameter subgroup is a homomorphism of Lie groups R→ G

2.10 1-1 correspondence between:

• left invariant vector fields

• tangent space TeG

• 1-parameter subgroups

2.11 Exponential map g = TeG → G. Exp is smooth, diffeo of a neighbourhood of 0 ∈ g to a

neighbourhood of e ∈ G, it is natural with respect to maps of Lie groups.

2.12 exp : Mn×n(K) = gln(K) → GLn(K) is the standard exp of matrices given by the well known

series. (K = R,C or H)

2.13 Exercise: Show that for X,Y ∈ Mn×n(C) the exp(tX)exp(tY )) = exp(
∑∞

n=0 i
nAn) , where An

is a Lie polynomial in X,Y , ie. can be expressed by X, Y , +, −, [ , ] and scalar multiplication.

2.14 Remark: Let U ⊂ g be a neighbourhood of 0 on which exp is a diffeomorphism. The multipli-

cation in exp(U) is determined by [−,−]. There is an explicit formula: the Baker-Campbell-Hausdorff

formula

exp(X)exp(Y ) = exp

(
X + Y +

1

2
[X,Y ] +

1

12
([X, [X,Y ]] + [Y, [Y,X])− 1

24
[Y, [X, [X,Y ]]]− 1

720
??? . . .

)
For G ⊂ GLn(C) the remark follows from the exercise.

2.15 If G is connected, then the homomorphism G→ H is determined by g→ h.

Pf: G in generated by image of exp (in fact by any neighbourhood of e).

2.16 Corollary: a homomorphism of Lie groups induces a map of Lie algebras (see (3.2)). The functor

connected Lie groups→ Lie algebras

is faithful. Moreover, [Lie Theorem, see Segal §5, not easy; also (3.10))] the functor

connected simpliconnected Lie groups→ Lie algebras

is an equivalence of categories.)

3 Elementary theory of Lie groups (cont.)

3.1 The commutator of vector fields can be computed as commutator of flows: let X and Y be vector

fields on U ⊂ Rn, p ∈ U and let φt, ψt for t ∈ (−ε, ε) be the flows satisfying φ0 = ψ0 = Id, φ̇ = X,

ψ̇ = Y . Then

φsψtφ−sψ−t(p) = p+ st[X,Y ] +O(||(s, t)||3).

5



3.2 Corollary: a map of Lie groups induces a map of Lie algebras.

Pf: Any map of Lie groups preserves 1-parameter subgroups.

3.3 The commutator of the Lie algebra gln(R) is the matrix commutator.

exp(sX)exp(tY )exp(−sX)exp(−tY ) =

= (1 + sX +
s2

2
X2)(1 + tY +

t2

2
Y 2)(1− sX +

s2

2
X2)(1− tY +

t2

2
Y 2) +O(||(s, t)||3)

= (1 + sX + tY +
s2

2
X2 +

t2

2
Y 2 + stXY ))(1− sX − tY +

s2

2
X2 +

t2

2
Y 2 + stXY ) +O(||(s, t)||3)

= (1− (sX + tY )2 + 2(
s2

2
X2 +

t2

2
Y 2 + stXY )) +O(||(s, t)||3) = 1 + st[X,Y ] +O(||(s, t)||3)

3.4 Abelian connected Lie groups are of the form (S1)n × Rm.

Pf: Exp is a homomorphism of Lie groups.

3.5 Theorem: closed subgroup H of a Lie group G is submanifold and a Lie group

Pf: Sketch: Let W = {v ∈ g|exp(tv) ∈ H}, this is a linear subspace, and exp(W ) is a neighbourhood

of e in H. See [Adams 2.27-2.30].

3.6 Lie algebras of the subgroups O(n), U(n), Sp(n) in GLn(K) (K = R,C or H) consists of matrices

satisfying A+A
T

= 0 in Mn×n(K), K = R,C or H.

3.7 Let H ⊂ G be a Lie subgroup, then X = G/H is Hausdorff [Bredon Prop. 1.4], it is a differential

manifold and T[e]X ' g/h.

3.8 If a Lie group acts on a set X in a transitive way, then X is of the form G/Gx, where Gx is a

stabilizer of a chosen point. If Gx is closed, then X admits a structure of a manifold.

Important homogeneous spaces

• Pn−1, Grassmanians U(n)/(U(k)× U(n− k)) = GLn(C)/
(∗∗
0∗

)
,

• lagrangian/ortogonal Grassmanians, isotropic Grassmanians,

• flag varieties,

• the space of scalar products GLn(R)/O(n),

• the space of complex structures GL2n(R)/GLn(C),

• the space of complex structures adapted to a given symplectic structure Spn(R)/U(n), etc.

3.9 Not every Lie subalgebra h ⊂ g corresponds to a closed subgroup, but rather to an immersed

subgroup.

3.10 Faragment of a proof of Lie Theorem 2.16. For any Lie algebra there exists a Lie groups with

the given Lie algebra.

Pf: Using Ado Theorem we embed g ⊂ gln(R). We obtain a distribution in V ⊂ T (GLn(R)). Since g is

a Lie algebra V is involutive, hence integrable (Frobenius theorem). This means there exists a foliation

of GLn(R) tangent to V . The leaf passing through the identity is the subgroup with Lie algebra g.

To see why a map of Lie algebras induce a map of Lie group [Segal, Theorem 5.4]
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4 Adjoint representation, reductive groups

4.1 A representation of a Lie group G is a homomorphism G→ Aut(V ), where V is a vector space.

Equivalently we can say that a linear action of G on V is given.

4.2 A representation of a Lie algebra g is a homomorphism of Lie algebras g→ End(V ), where V is

a vector space, or equivalently a linear action of g on V , that is for any X,Y ∈ g and any v ∈ V

X(Y (v))− Y (X(v)) = [X,Y ](v)

4.3 Any lie Group has the adjoint representation: the action by conjugation of G on G fixes e, hence

we get Ad : G→ Aut(g).

4.4 Example: The adjoint action of SU(2) = S3 ⊂ H on su(2) = im(H) preserves the norm. We

obtain an injective map SU(2)/Z2 → O(3). Since the dimensions are the same and SU(2) is connected

this map is an isomorphism.

4.5 If G is connected, then ker(Ad) = Z(G).

4.6 The differential of Ad, i.e. ad : g→ End(g) is the commutator adX(Y ) = [X,Y ].

Pf:

adX(Y ) =
d

dt

(
d

ds
exp(tX)exp(sY )exp(−tX)

)
s=t=0

adX(Y ) =
d

dt

(
d

ds
exp(sY )exp(−sY )exp(tX)exp(sY )exp(−tX)

)
s=t=0

=
d

dt
(Y (exp(−sY )exp(tX)exp(sY )exp(−tX)))s=t=0+

d

dt

(
d

ds
(exp(−sY )exp(tX)exp(sY )exp(−tX))

)
s=t=0

Y
d

dt
Lexp(sY )(st[−Y,X] + higher terms)s=t=0 +

d2

dtds
Lexp(sY )(st[−Y,X] + higher terms)s=t=0

d2

dtds
(Id+O(s))(st[−Y,X] + higher terms)s=t=0 = [−Y,X]

4.7 Note that ker(ad) = {X ∈ g | ∀Y ∈ g [X,Y ] = 0}. This is the center of a Lie algebra Z(g). If

Z(g) = 0, then Ado theorem 2.8 is for free; g embeds in End(g).

4.8 Complex groups = complex manifolds with holomorphic multiplication and inverse

4.9 Compact complex groups have to be of the form Cn/Latice.

Pf Ad : G→ Aut(g) is constant. Hence the conjugation by g induces the identity on g. Therefore G is

commutative.

4.10 Complex linear algebraic group = subgroup of GLn(C), given by some polynomial equations in

the entries of the matrix and det−1.

4.11 We can assume that G is a closed algebraic set in Mn×n(C).

4.12 Our definition of a reductive group: Complex groupG is reductive if there exists an embedding

into GLn(C), such that the image is invariant with respect to the Cartan involution: Θ : A 7→ (A
T

)−1.
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4.13 A reductive group for algebraic geometers is a linear algebraic group G (over an algebraically

closed field k) such that the largest connected solvable normal subgroup (the radical) is an algebraic

torus ' (k∗)r. This is an equivalent definition to ours for k = C, but we will not discuss it.

4.14 The groups GLn(C), SLn(C), SO(n,C), Sp(n,C) are reductive.

4.15 Properties of the Cartan involution Θ : G→ G and θ : g→ g θ(A) = −AT [Knapp §1]

• θ is a homomorphism of Lie algebras

• the fixed points is a compact subgroup K := Gθ = G ∩ U(n)

• the Lie algebra g decomposes into eigenspaces of θ: g = g1 ⊕ g−1

– k := g1 is the Lie algebra of K (this is the gothic k).

– p := g−1 satisfies [p, p] ⊂ k, [k, p] ⊂ p,

– p = ik and g ' k⊗ C as complex Lie algebras.

4.16 For G = GLn(C) the space p consists of the hermitian (or self-adjoint) matrices matrices

A = A
T

.

4.17 Corollary: let φ, ψ : G→ H homomorphism of complex Lie groups, G reductive, connected. If

φ|K = ψ|K then φ = ψ.

4.18 The map K × p→ G given by (g,X) 7→ g · exp(X) is a diffeomorphism.

4.19 Proof of 4.18 for G = GLn(C): by polar decomposition every invertible matrix A can be written

uniquely as A = QP , where Q ∈ U(n) and P = θ(P ) is positive definite (for P = (A∗A)
1
2 , Q = AP−1

we check QQ∗ = (AP−1)(P−1A∗) = A(A∗A)−1A∗ = I). Any positive definite matrix P has logarithm.

5 Invariant scalar product

5.1 Proof of 4.18 for arbitrary G (after [Knapp, I§2]). It show that if P = exp(X) ∈ G for

X hermitian, then X ∈ p. After a linear change of coordinates we can assume that X is diag-

onal X = diag(a1, a2, . . . , an) with ai ∈ R and P = diag(b1, b2, . . . , bn), bi = eai ∈ R+. Then

P k = (bk1, b
k
2, . . . , b

k
n) ∈ G for all k ∈ Z. We will use the fact: G is defined by polynomial equa-

tions, the polynomials fi defining G vanish on (bk1, b
k
2, . . . , b

k
n). We rewrite the equations for G and we

get expressions of the form φ(k) =
∑
αjc

k
j with ci equal to some products of bi’s. (cj can be 1 as well).

The function φ(k) vanishes for k ∈ Z. It follows that it vanishes for any k ∈ R.

The last step in the proof. If QP ∈ G then Θ(PQ) = Q−1P ∈ G. Hence P 2 ∈ G and P 2 = exp(X)

for X ∈ u(n). By the previous step we conclude that X ∈ p, so P = exp(1
2X) ∈ G.

5.2 Trace form defined for gln(C):

B0(X,Y ) = Tr(XY ).

• B0 is Ad-invariant

• We have

B0([X,Y ], Z) +B0(Y, [X,Z]) = 0
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• B0 is nondegenerate since B0(X, θ(X)) is real and < 0 for X 6= 0

• the form (X,Y ) = Re(−B0(X, θ(Y ))) is a scalar product on g.

• the form (X,Y ) for X,Y ∈ k is equal to Re(−Tr(X,Y )), hence it is ad-invariant. It follows that

for any ideal h ⊂ k the orthogonal complement is a Lie subalgebra and k = h⊕ h⊥ as Lie algebras.

5.3 If H ⊂ G is normal, then h ⊂ g is an ideal: X ∈ g, Y ∈ h implies [X,Y ] ∈ h. The quotient g/h

has a structure of a Lie algebra and is isomorphic to the Lie algebra of G/H.

5.4 Definition: g is simple if it is not abelian (i.e. has nontrivial commutator) and does not admit

any proper quotient Lie algebra. A semisimple Lie algebra is a Lie algebra which is the direct sum of

Lie algebras g =
⊕

gi and each gi is simple.

5.5 If G is a complex reductive group, then g = Z(g)⊕ [g, g] and [g, g] is semisimple.

Pf. Use invariant scalar product in k and complexify.

5.6 The same proof shows that the Lie algebra has the above form provided that we have an ad-

invariant scalar product in g. This is the case for Lie algebras of compact groups, which admit an

invariant integral as will be shown. Then to construct an invariant scalar product it is enough to take

any and average it.

5.7 Classification shows, that every compact connected Lie group admits a reductive Lie group in

which it is the fixed point set of Θ.

5.8 Construction of invariant integration [Bröcker-tom Dieck I§5]. There exists a measure dg on G

such that for any f ∈ C(G) and h ∈ G∫
G
f(hg)dg =

∫
G
f(g)dg.

The measure is given by a differential form of top degree∫
G
f(g)dg =

∫
G
f(g)ω.

The invariance means that ∫
G
f(hg)dg =

∫
G
L∗h−1(f)ω =

∫
G
f L∗h ω

for any f and h, which is equivalent to: L∗hω = ω. Construction: Take 0 6= ω0 ∈ Λdim(G)T ∗eG,

ω(h) = L∗hω0. If we assume that
∫
G ω = 1 then ω is unique.

5.9 The left-invariant integral is right-invariant:
∫
G f(gh)dg =

∫
G f(g)dg.

Pf: G acts by conjugation on Λdim(G)T ∗eG ' R. Since G is compact R∗h−1L
∗
hω = ±ω, sign depends

whether conjugation by h changes the orientation of G.

5.10 Corollary: for any real/complex representation of a compact Lie group there exists an invariant

scalar/hermitin product.

Pf: take any and average: (v, w)′ :=
∫
G(gv, gw).
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6 In future: torus representations

6.1 How to construct an ad-invariant scalar product in g

• for a complex reductive group G the form −Tr(XY ) is positive definite on gθ.

• if G is compact: take any scalar product in g and average it

• if G is compact and Z(g) = 0 there is a canonical choice: – Killing form, see below.

6.2 Killing form: ψ(X,Y ) = Tr(adX ◦ adY ). This form is symmetric and G-invariant (hence also

ad-invariant).

6.3 If G is compact, then ψ is nonpositive definite:

Pf. for X ∈ g let H be the closed group generated by Ad(exp(tX)) ⊂ Aut(g). The group H ' (S1)k

is a compact torus, choosing some coordinates in g we can assume that H acts diagonally (see 6.20).

Hence h ∈ H has a form diag(eit1 , eit1 , . . . , eitdim g), so adX = diag(it1, it1, . . . , itdim g). Therefore

ψ(X,X) = −
∑
t2j .

6.4 Killing form is nondegenerate on g/Z(g).

6.5 Exercise: Let G be a reductive group. Define a hermitian product in g ⊂Mn×n(C) by the formula

〈〈X,Y 〉〉 = Tr(X ◦Y T ). The hermitian product in g allows to define the Cartan involution Θ in Aut(g).

Show that Ad(G) ⊂ Aut(g) is Θ-invariant. (Hint: Show that (adX)∗ = adX∗ .)

6.6 Torus = compact abelian connected group = (S1)r. Every compact Lie group contains a maximal

torus.

6.7 Main idea of representation theory of reductive/compact connected Lie groups

• Complex holomorphic representations of a reductive group G

• = Complex representations of its maximal compact subgroup

• (can be understood by studying) Representation of the maximal torus

• (description via combinatorial data) Every representation is determined by its ,,set of weight”, a

choice of lattice points in t∗

6.8 Definition: Let G be a (topological) group.

• A representation V is irreducible (or simple) if it does not have any subrepresentation other than

0 and V .

• A representation V is indecomposable if V cannot be presented as V1 ⊕ V2, where Vi are subrep-

resentations (ie. G-subspaces), with Vi 6= 0

6.9 R→ GL2(R) given by t 7→
(
1t
01

)
is a representation which is indecomposable, but not simple.

6.10 Main advantage of compact groups: every representation admits an invariant scalar/hermitian

product.

6.11 Corollary. Representations of compact groups are direct sums of irreducible representations.

Pf: any subrepresentation has ortogonal complement
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6.12 Corollary: Holomorphic representations of reductive groups are direct sums of irreducible rep-

resentations.

6.13 The above is a characterization of reductive groups among complex linear groups.

Characters

6.14 Character of a representation (V, ρ : G→ Aut(V ))

χV (g) := Tr(ρ(g) : V → V )

6.15 General properties of characters:

• χV is a function on conjugacy classes of G (i.e. it is a class function)

• χV ∗(g) = χV (g−1)

• χV (g) = χV (g) = χV (g−1) for compact groups

• χV⊕W (g) = χV (g) + χW (g)

• χV⊗W (g) = χV (g)χW (g)

• Corollary: χHom(W,V )(g) = χV (g)χW (g) for compact groups

6.16 If G is compact, then
∫
G χV (g)dg = dim(V G)

Pf: Let p : V → V be given by v 7→
∫
G g · v dg. It is a projector onto V G:

dim(V G) = Tr(p) =

∫
G
Tr(v 7→ g · v)

6.17 Cor. Let V,W be irreducible representations, then (χV , χW ) :=
∫
G χV (g)χW (g)dg = 0 if W 6' V

or 1 for W ' V .

Pf. dimHom(W,V ) = 0 or 1.

6.18 Peter-Weyl for arbitrary compact group: characters of irreducible representations form an

ortonormal basis of the Hilbert space of class functions⊂ L2(G). They are also dense in C0(G/conjugation).

6.19 Corollary: Let G be a compact group. If V is a direct sum of irreducible representations

V '
∑

(Vα)⊕aα , then aα depend only on V . Two representations are isomorphic if and only if their

characters are equal. Proof. aα = (χV , χVα).

6.20 Complex irreducible representation of compact abelian groups are of dimension 1:

Pf: ρ : G→ GLn(C), can assume ρ : G→ U(n). Every element of U(n) is diagonalizable. Every family

of commuting operators have common eigenvector v ; lin(v) is a subrepresentation.

6.21 Let T be a torus, let Λ = ker(exp : t→ T ). The irreducible representations of T are in bijection

with Λ∗ = Hom(Λ,Z).
Λ = ker(exp) −→ 2πiZ ' Z

↓ ↓
t −→ s1 = iR

exp ↓ ↓exp
T −→ S1 ⊂ C∗

Pf. The image Hom(T, S1) ↪→ Hom(t, s1) consists of the linear maps preserving latices.
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6.22 An element of Λ∗ is a called weight. Consider the irreducible representation Cw of weight w.

For X ∈ t the action of exp(X) ∈ T is given by the multiplication by the number ei〈w,X〉 ∈ S1 ⊂ C∗.
After identification T = (S1)r we have Λ = Zr and (eit1 , eit2 , . . . , eitr) ∈ (S1)r acts as multiplication by

the scalar ei(w1t1+w2t2+···+wrtr) =
∏

(eitj )wj .

6.23 Representations of T are determined by formal combinations weights. The formal sum
∑
aw[Cw]

can be treated as an element of the group ring Z[Λ∗] with nonnegative coefficients. After identification

T = (S1)r we have Z[Λ∗] = Z[x1, x
−1
1 , x2, x

−1
2 , . . . , xr, x

−1
r ].

• V ⊕W corresponds to addition of Laurent polynomials,

• V ⊗W corresponds to multiplication of Laurent polynomials.

6.24 For a torus T = (S1)r and the representation V '
⊕

(Cw)⊕aw , in coordinates ξj = eitj

χV (ξ1, ξ2, . . . , ξr) =
∑
w∈Λ∗

awξ
w1
1 ξw2

2 . . . ξwrr

6.25 Peter-Weyl theorem for torus T = S1 is equivalent to the Fourier theorem: the functions ξ 7→ ξn

form an ortonormal basis of L2(S1).

6.26 For T = S1 the multiplicity of the representation of weight n in V is the coefficient an in the

Fourier expansion of the character χV (ξ) =
∑

n∈Z anξ
n.

7 Maximal tori

7.1 Remark about 6.19, without compactness assumption for G: if V '
∑

(Vα)⊕aα happens to be a

sum of irreducible representations, then aα = dim(Hom(Vα, V )G) does not depend on the presentation.

7.2 Isomorphism classes of representations form a semiring. The associated ring (Grothendieck con-

struction) is called representation ring, R(G). ForG = T we haveR(T ) = Z[Λ∗] ' Z[x1, x
−1
1 , x2, x

−1
2 , . . . , xr, x

−1
r ]

7.3 General remark: For a category C with exact sequences and (with monoidal structure ⊗) define

K(C) as an abelian group generated by isomorphism classes of objects and relations being a consequence

of [x] + [z] = [y] whenever we have an exact sequence 0 → x → y → z → 0. (Ring structure is given

by ⊗.) For compact G we have K(C[G] −mod) = R(G), where C[G] −mod denotes the category of

complex vector spaces with G-action.

7.4 Maximal tori (examples in SU(n), SO(n)).

7.5 T decomposes gC = g⊗ C into weight spaces

gC = tC ⊕
⊕

α∈Λ∗\0

gα.

(α’s are called roots.) If α is a root, then −α is a root (eiα(t) is an eigenvalue, then e−iα(t) is).

7.6 For U(n) let Li : Λ ' Zn → Z be the i-th component. The roots of U(n) are Li − Lj , i 6= j.

7.7 For SU(n) the same roots, but there is a relation
∑
Li = 0

12



7.8 For SO(2n) we complexify R2n and consider an equivalent quadratic form
∑n

i=1 xix2n−i+1. The

roots are Li ± Lj , i 6= j

7.9 For SO(2n+1) we complexify R2n+1 and consider an equivalent quadratic form
∑n+1

i=1 xix2n−i+2.

The roots are ±Li ± Lj , i 6= j, ±Li.

7.10 Weyl group: for a maximal torus T ∈ G, G compact, W = NT/T is finite. Pf. NT acts on T ,

Aut(T ) discrete.

7.11 Let f : M → M selfmap of orientable manifold. Lefschetz number Λ(f): intersection of cycles

[graph(f)] and [∆] = [graph(id)] in M ×M
• if no fixed points then Λ(f) = 0

• Λ(f) = Λ(g) if f and g homotopic

• If the fixed point set is finite and the intersection is transverse, then Λ(f) is the sum of fixed points

with signs. The sign at the point p is equal to sgn det

(
I I

Df(p) I

)
= sgn det(I −Df(p))

• Λ(f) =
∑dimM

i=0 (−1)iTr(f∗ : Hi(M ;R)→ Hi(M ;R))

7.12 Any g ∈ G is contained in a conjugate of T .

Pf [Adams, p 90-92]. Equivalently Lg : G/T → G/T has a fixed point. Enough to compute Lefshetz

number of Lg; can replace g by t, a generator of T . Fixed points of Lt are NT/T . Local contributions

to the Lefschetz number coming from the points of NT/T are equal. It is enough to compute for

eT ∈ NT/T . Local computation: action of ξ = exp(t) ∈ T on T (G/T ) has eigenvalues eiα(t), hence

det(I−DLξ(eT )) =
∏
roots(1−eiα(t)) =

∏
±roots |1−eiα(t)|2 > 0. Hence Λ(Lg) = Λ(Lξ) = |N(T )/T | 6= 0,

hence there is a fixed point.

7.13 Special cases (for U(n) and SO(n)) are the classical theorems from linear algebra.

8 Representations of sl2(C)

8.1 Cor. Any two maximal tori are conjugate.

8.2 Cor. Euler characteristic χ(G/T ) = |W |.

8.3 Let V a representation. (χV )|T : T → C is W -invariant.

8.4 The character χV is determined by its restriction to the maximal torus.

8.5 Cor. R(G)→ R(T )W is mono.

8.6 Generalities about Lie algebra representations: dual, ⊗. (Exercise: Hom, Symk and Λk.)

8.7 Groups SU(2), SL2(C), SL2(R) and relations between their representations. Representations of

Lie algebras su(2), sl2(C) and sl2(R).

8.8 sl2(C) is spanned by H =

(
1 0
0 −1

)
, X =

(
0 1
0 0

)
and Y =

(
0 0
1 0

)
. We have [H,X] = 2X,

[H,Y ] = 2Y , [X,Y ] = H.
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8.9 H decomposes any representation V into weight spaces V =
⊕

k∈Z Vk. For v ∈ Vk:
• Hv = kv

• Xv ∈ Vk+2

• Y v ∈ Vk−2

In general: if Z ∈ gα, v ∈ Vβ then Zv ∈ Vα+β.

8.10 Examples of representations of sl2(C): symmetric powers of the natural representations Symk(C2)

8.11 The algebra sl2(C) is isomorphic to the subalgebra of differential operators in 2 variables gen-

erated by X = x ∂
∂y and Y = y ∂

∂x , H = [X,Y ] = x ∂
∂x − y

∂
∂y . The natural representation: linear forms,

Symk(C2) ' {k − linear forma}.

8.12 Highest weight vectors in the irreducible representations of sl2(C).

8.13 [Fulton-Harris, §11] Theorem: irreducible representations of sl2(C) (or sl2(R) or sl2(Z)) are

isomorphic to Symk(C2). They are characterized by the weight of the vector v ∈ ker(X) (highest

weight vector).

8.14 Lemma: if v ∈ Vn, Xv = 0 then XY mv = m(n−m+ 1)Y m−1.

8.15 Corollary: if dimV <∞ then n ∈ N.

9 Examples of SL3-representations, rank one groups

9.1 Every complex representation of sl2(C) extends to a representation of SL2(C). (since π1(SL2(C) =

1)

9.2 Corollary: Every complex/real representation of sl2(R) extends to a representation of SL2(R).

(via complexification)

9.3 If V =
⊕

n∈N Sym
n(C2)⊕an as a sl2(C)-representation, then an = dimVn − dimVn+2.

9.4 Some examples of representations of sl3(C).In paricular Sym2(C3) ⊗ (C3)∗, see Fulton-Harris

§12-13. Claim: every irreducible representation of sl3(C) is isomorphic to the subrepresentation of

Syma(C3)⊗ Symb((C3)∗) generated by v = (e1)a ⊗ (e∗3)b. The vector v is ,,the highest weight vector”.

The remaining vectors are obtained by application of the operators E21, E31, E32 given by the action

of elementary matrices

9.5 Rank of the Lie group r(G) := dim(T ), where T is a maximal torus.

9.6 Theorem: Compact connected Lie group of rank 1 is isomorphic to SU(2) or SO(3) or S1.

Pf: Let n = dim(G). G acts on Sn−1 ⊂ g via Ad. The tangent action has the kernel = t. Therefore

G/T → Sn−1 is a covering, so it has to be a homeomorphism. We get a fibration S1 = T → G →
G/T = Sn−1. If n > 3 the π1(T ) → π1(G) is a monomorphism. The group G contains a subgroup H

isomorphic to SU(2) or SO(3) with the Lie algebra t⊕gα0 ⊕g−α0 , where α0 the shortest root. There is

an element g ∈ N(T ) ⊂ H such that Ad(g)|t = −Id : t→ t, so gtg−1 = t−1. But in G the conjugation

by g is homotopic to Id. Contradiction. † Hence n ≤ 3.
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10 Systems of roots

10.1 System of roots of rank 2 SU(3), SO(4), SO(5), Sp(2)) see [FH.§21]

10.2 Theorem. Ler R be the set of roots of a semisimple compact/complex reductive Lie group.

1. the roots R span t∗

2. the action of W = NT/T on t∗ preserves R

3. dim gα = 1 for α ∈ R

4. α ∈ Σ =⇒ −α ∈ Σ and no other multiplicity of α belongs to R.

10.3 In general 10.2.1 holds, if Z(G)0 = 1. More general we have
⋂
α∈R ker(α) = T (Z(G)).

10.4 For any compact group 10.2.2 holds, because if n ∈ NT , then the action by Ad(n) shuffles gα’s.

10.5 Lemma 1: for any root α there exists a subgroup Hα ⊂ G with Lie algebra

hα = t⊕
⊕

β proportional to α

gβ

Pf. H generated by exp(hα); the roots of the closure have the same kernel as α, hence H closed.

10.6 Cor. 10.2.3-4.

Pf. Z(Hα)0 = exp(ker(α)), Hα/Z(Hα)0 is a rank 1 group, see 9.6.

10.7 Lemma 2. There exist a subgroup Kα ⊂ Hα with the Lie algebra ker(α)⊥ ⊕ gα ⊕ g−α where ⊥
taken with respect to an invariant scalar product in g.

Pf. X ∈ gα, Y ∈ g−α, then for Z ∈ ker(α) we have Z ⊥ [X,Y ]. (since 0 = X(Y,Z) = ([X,Y ], Z) +

(Y, [X,Z]) = ([X,Y ], Z) + (Y,−α(Z)X).)

10.8 Fix a G-invariant metric. For any root α the subspace α⊥ ⊕ gα ⊕ g−α is a subalgebra of gC.

10.9 Cor: for any root α there exists a map fα : SU(2) → G, such that the image of su(2)C =

α⊥ ⊕ gα ⊕ g−α.

10.10 The action of the element of Weyl group of

[
fα

(
0 1
−1 0

)]
is the reflection in ker(α) denoted

by sα.

10.11 Abstract system of roots: V a finite dimensional real vector space with a scalar product,

R ⊂ V a finite subset, called roots:

1. the roots R spans V

2. α ∈ Σ =⇒ −α ∈ Σ and no other multiplicity of α belongs to R.

3. sα preserves R
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4. For a pair of roots the Cartan number nαβ = 2 (α,β)
(α,α) is an integer (the number nαβ satisfies

sα(β) = β − nαβα)

10.12 Pf.A0of (4) for roots of a compact Lie group (see ([B-tD,§V.2.7]) α∗ ∈ V ∗ = t coroots: defined

by the property sα(β) = β − β(α)α (under the identification t = t∗ we have α∗ = 2
(α,α)α).

• We show that α∗ ∈ Λ: let x = 1
2α
∗,

– α(x) = 1 so exp(x) ∈ ker(ᾱ : T → S1)

– exp(x) ∈ T is invariant with s̄α : T → T and on the other hand s̄α(exp(x)) = exp(sα(x)) = exp(−x).

So exp(x)2 = 1,hence 2x ∈ Λ. Therefore β(α∗) = β(2x) ∈ Z.

10.13 Definition of Weyl chambers for a Lie group

10.14 Theorem:

1. W acts transitively and freely on the set of chambers

2. W is generated by sα’s

Pf see [B-tD, Th 2.12]: Let W0 be generated by sα’s. Claim 1: W0 acts transitively. Claim 2: W acts

freely. Claims 1 and 2 imply Theorem.

Pf of Claim 1. geometric proof,

Pf of Claim 2 follows from the following Lemma:

10.15 Lemma. Suppose X lies in the interior of some chamber in t ' t∗, then exp(tX) is contained

only in one maximal torus.

Pf: X acts nontrivially on each gα, so Z(exp(tX))0 = T .

10.16 Pf of Claim 2 cont: if g ∈ NT acts trivially on a chamber K, one may assume g(X) = X

for some X ∈ K. The group topologically generated by exp(tX) and g abelian, ' torus × Zn can be

topologically generated by one element, so it is contained in a maximal torus. This torus has to be T .

Hence [g] = 1 ∈ NT/T .

10.17 Let V be a representation of G. Then the multiset in t∗ representing the weights of V is

preserved by the action of Weyl group.

Pf:
G× V −→ V

(g•g−1)×g ↓ ↓ g

G× V −→ V

Therefore for g ∈ NT we have gVα = V[g]α.

11 Classification of irreducible representation by highest weight vec-
tors

11.1 The Cartan numbers nαβ = 2 (α,β)
(α,α) satisfy

• nαβnβα = 4 cos2(∠(α, β))

• nαβnβα ∈ Z
Therefore nαβnβα ∈ {0, 1, 2, 3} for α 6= ±β.
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11.2 Positive roots: we chose a linear function φ : t∗ → R, such that no root belongs to ker(φ). Get

division of roots into R = R+ tR−. • Positive roots for sl(n): Li − Lj , i < j

e.g. φ(α) = (β0, α) where β0 = 1
2

∑
i<j(Li − Lj)

for n = 3: 1
2((L1 − L2) + (L1 − L3) + (L2 − L3)) = L1 − L3 = (3L1 + 2L2 + L3);

in general
∑n

i=1(n− i+ 1)Li

• for so(2n+ 1): Li − Lj , Li for 1 ≤ i < j ≤ n
• for sp(n): Li − Lj , 2Li for 1 ≤ i < j ≤ n
• for so(2n+ 1): Li − Lj , Li + Lj for 1 ≤ i < j ≤ n

11.3 A positive root is simple if it cannot be written as a sum of positive roots.

• for sl(n): Lk − Lk+1 for 1 ≤ k < n

• for so(2n+ 1): Lk − Lk+1 for 1 ≤ k < n and Ln

• for sp(n): Lk − Lk+1 for 1 ≤ k < n and 2Ln

• for so(2n+ 1): Lk − Lk+1 for 1 ≤ k < n and Ln−1 + Ln

11.4 Exercise: every positive root can be written as a sum of simple roots. Simple roots are linearly

independent.

11.5 Having chosen positive roots there is a canonical choice for a new φ: φ(−) = (β0,−), where

β0 = 1
2

∑
α α is the 1

2sum of positive roots. (Exercise: Then for a positive root α: (β0, α) > 0. )

11.6 We chose a distinguished Weyl chamber K0 =
⋂
{β ∈ t∗ : (β, α) > 0}. (Nonempty because

β0 ∈ K0.)

11.7 Theorem: W is generated be reflections in the walls of K0.

11.8 Let S be the set of walls of the distinguished Weyl chamber. Dynkin diagram: vertices = S,

number of edges is equal to nαβnβα (encode the angles ∠(αβ)). Hence the relations for the corresponding

relations s, t ∈ S
• s2 = 1

• no edge: s and t commute ⇐⇒ (st)2 = 1

• one edge (st)3 = 1

• double edge (st)4 = 1

• triple edge (st)6 = 1

11.9 Exercise: (Theorem) These are the relations defining W . (This is an example of a Coxeter

group)

11.10 Additionally we draw ,,<” to denote which root is longer. This does not effect the Weyl group.

11.11 In what follows we fix a distinguished Weyl chamber K0, β0 ∈ K0 and we say that

α > 0 if (α, β0) > 0. We have K0 = {w ∈ t∗ | ∀ α ∈ R+ (w,α) ≥ 0}.
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11.12 Enveloping algebra of a Lie algebra U(g): it the quotient of the tensor algebra T (g) by the

two-sided ideal generated by XY − Y X − [X,Y ]. Let g be a reductive Lie algebra (a complexification

of a Lie algebra of a compact group). A representation of g is the same as U(g)-module.

• Let b+ = t⊕
⊕

α>0 gα. Similarly b−. (It is a solvable Lie algebra.)

• Let n+ =
⊕

α>0 gα. Similarly n−. (It is a nilpotent Lie algebra.)

11.13 Let V be a representation, suppose that v ∈ Vw for w ∈ K0, and suppose that Xv = 0 for

X ∈ gα with α > 0 (we say that v is a highest weight vector). Then:

• the representation generated by v that is U(g)v is equal to U(n−)v.

• dim((U(g))w) = 1.

Pf: one can replace each monomial in U(g) be a combination of monomials with increasing φ(α).

• U(g)v is simple.

Pf. If U(g)v =
⊕
Wi then for some i0 the projection of v onto Wi0 does not vanish. The projection

preserves weights, thus v ∈Wi0 . Hence Ug = Wi0 .

11.14 Cor. Any two irreducible representations with v satisfying the assumptions above are isomor-

phic.

Pf. Consider the product representation an the subrepresentatation generated by (v, v′) and the pro-

jections to V and V ′.

11.15 Let w ∈ K0. There is a map U(b+)→ U(t) which allows to treat Cw as a U(b+)-module. The

induced representation M(w) = U(g)⊗U(b+) Cw is called the Verma module. It is of infinite dimension,

but irreducible representation of the weight w is a quotient of M(w). [R. Carter, Lie Algebras of Finite

and Affine Type, §10 (2005)]

11.16 Theorem: Let Λ∗coroots = {w ∈ t∗ | ∀α ∈ R w(α∗) ∈ Z}. There is a bijection between

irreducible representations of g (reductive/compact) and the lattice points Λ∗coroots ∩K0

• Uniqueness is given by 11.14

• existence:

– quotients of Verma modules

(one needs to prove that in M(w) there is a largest proper submodule and it is of finite codimension).

– effective method case by case.

11.17 Example. Sp(2).

• Roots ±Li ± Lj , 2Li

• Coroots ±Li ± Lj , Li
• Λ∗coroots = 〈L1, L2〉
• Simple roots −2L2, L1 − L2,

• K0 = {(x, y) ∈ R2 | x > 0, x > y} = Conv(t(0, 1), s(1, 1)).

• β0 = 1
2(2L1 + 2L2 + (L1 + L2) + (L1 − L2)) = 2L1 + 1L2

• Λ∗coroots ∩K0 = {mL1 + nL2 | m,n ∈ Z, m ≥ 0, n ∈ [0,m]}
• The natural representation has the highest weight L1
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• In the second exterior power Λ2C4 there are weights: ±L1 ± L2, twice 0. This representation is

not irreducible, since Λ2C4 = Λ2(C4)∗ contains the invariant symplectic form ω. The kernel of

ω : Λ2C4 → C

is irreducible (all weights without multiplicities).

• The irreducible representation of sp(2) with highest weight mL1 +nL2 is the subrepresentation of

Symm−nC4 ⊗ SymnΛ2C4 generated by the vector en−m1 ⊗ (e1 ∧ e2)m

12 π1, center, rank 2 examples

12.1 • Roots and coroots: Λ∗roots := 〈R〉 ⊂ Λ∗,

• We have shown in 10.12 that α∗ ∈ ker(exp : t→ T ) = Λ i.e. Λcoroots := 〈R∗〉 ⊂ Λ

• Thus (α∗, w) ∈ Z for w ∈ Λ∗, hence Λ∗ ⊂ Λ∗coroots.

Λ∗roots ⊂ Λ∗ ⊂ Λ∗coroots

• Dually

Λcoroots ⊂ Λ ⊂ Λroots,

where Λroots = {X ∈ t : ∀α ∈ R α(X) ∈ Z }.
• Fact:

Λroots/Λ = Z(G) , Λ/Λcoroots = π1(G).

12.2 The proof is long and based on the exact sequence of homotopy groups of the fibration T ↪→
G→→ G/T , which gives the surjection π1(T )→→ π1(G):

• one shows that π2(G) = 0 and π1(G/T ) = (this e.g. follows from the fact, that G/T = (GC)/B+

can be decomposed into even-dimensional cells.)

• There is an exact sequence

0→ H2(G/T ) = π2(G/T )→ π1(T )→ π1(G)→ 0

• We have π1(T ) = Λ = Hom(T, S1). To see that each coroot is in the kernel check it for SU(2)

and SO(3) and use the diagram for each root:

exp(tα∗) = S1 ⊂ T
∩ ∩
Gα ⊂ G

(Here Gα ' SU(2) or SO(3).)

• for the proof that ker(π1(T )→ π1(G)) = Λcoroots see [B-tD,§7].

12.3 If for all roots α(X) ∈ Z, then exp(X) acts trivially on gα. This give a map exp : Λroots → Z(G)

with the kernel Λ. The map is surjective: if g ∈ Z(G), then g ∈ T , hence g = exp(X). For any root α

the value α(X) has to be integral.

12.4 Exercise: Compute the lattices of roots an coroots for GL(n) (roots will be of smaller rank and

Λroots will not be discrete). Check that the formulas for Z(G) and for π1(G) work.
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12.5 Example. SO(5).

• Roots ±Li ± Lj , Li
• Coroots ±Li ± Lj , 2Li

• Λ∗coroots = {xL1 + yL2 | 2x ∈ Z, 2y ∈ Z, x+ y ∈ Z〉}
• Simple roots −2L2, L1 − L2,

• K0 = {(x, y) ∈ R2 | x > 0, x > y} = Conv(t(0, 1), s(1, 1)).

• β0 = 1
2(L1 + L2 + (L1 + L2) + (L1 − L2)) = 3

2L1 + 1
2L2 (Note: β0 ∈ Λ∗coroots)

• Λ∗coroots ∩K0 = {mL1 + nL2 | m,n ∈ 1
2Z, m ≥ 0, n ∈ [0,m], same fractional part}

• The natural representation has the highest weight L1

• In the second exterior power Λ2C5 the vector e1 ∧ e2 has weight: L1 +L2 but no way to get a half

weight

• Missing the representation with the highest weight 1
2(L1 + L2). TBA Spinor representation.

But here one can use the isomorphism so(5) ' sp(2). Then ker(Λ2C4 → C) is switched to the natural

representation of SO(5) and the spinor representation corresponds to the natural representation of

Sp(2).

12.6 Exercise: SO(4)

• Roots ±Li ± Lj ,
• Coroots ±Li ± Lj ,
• Λ∗coroots = {xL1 + yL2 | x− y ∈ Z, x+ y ∈ Z〉}
• Simple roots L1 + L2, L1 − L2,

• K0 = {(x, y) ∈ R2 | x > |y|} = Conv(t(1,−1), s(1, 1)).

• β0 = 1
2((L1 + L2) + (L1 − L2)) = L1

• Λ∗coroots ∩K0 = {mL1 ± nL2 | m,n ∈ 1
2Z, m ≥ n ≥ 0, same fractional part}

• The natural representation has the highest weight L1

• In the second exterior power Λ2C4 the vector e1 ∧ e2 has weight: L1 + L2

• Missing half weight representations 1
2(L1 ± L2), the spinor representations S+ and S−. They do

not come from representations of SO(4) since 1
2(L1±L2) 6∈ Λ∗. But they come form the representation

of the universal cover S̃O(4) = SU(2)× SU(2) a.k.a. Spin(4).

13 Representations of SL(n)

This lecture contains no proof, but only an algorithm how to compute the irreducible representations of

SL(n) and GL(n). The universal example is the representation of SL(3) of the highest weight 3L1 +L2.

We summarize four important theorems

1) Every irreducible representation of SL(n) is given by the value of the Schur functor

Sλ(Cn)

2) Characters of irreducible representations are the Schur functions Sλ

3) One can compute Schur function by determinant of a matrix with symmetric functions

4) Combinatorial methods of computing coefficients of Schur functions, i.e. Kostka num-

bers

5) How to multiply irreducible representations (or Schur functions) : Sλ(Cn)⊗ Sµ(Cn) =?
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– Pieri rule

– Littlewood-Richardson rule.

13.1 SL(n)

• Roots Li − Lj ,
• Coroots Li − Lj ,
• Λ∗coroots spanned by Li

• Simple roots L1 − L2, L2 − L3,... , Ln−1 − Ln
• K0 is given by

∑
aiLi ∈ K0 if and only if ai ≥ ai+1 for all i = 1, 2, . . . , n− 1. It is spanned by

L1, L1 + L2, ... , L1 + L2 + · · ·+ Ln

• (exercise) β0 = 1
2(nL1 + (n− 1)L2 + . . . Ln

• Λ∗coroots ∩K0 = integral points of K0

• The natural representation has the highest weight L1

• the k-th exterior power ΛkCn has the highest weight vector e1 ∧ e2 ∧ · · · ∧ ek of weight: L1 + L2

• ΛkCn is irreducible, since all the weight spaces are of codimension one.

• To construct a representation of the weight
∑
aiLi with ai ≥ ai+1 for all i = 1, 2, . . . , n− 1 write

bi = ai − ai+1, bn = an (can assume bn = an = 0). Then the representation

n−1⊗
i=1

SymbiΛiCn

has the highest weight vector of the weight

n−1∑
i=1

bi(L1 + L2 + · · ·+ Li) =

n−1∑
i=1

aiLi .

The subrepresentation generated by

eb11 ⊗ (e1 ∧ e2)b2 ⊗ · · · ⊗ (e1 ∧ e2 ∧ · · · ∧ en−1)bn−1

has the desired weight.

13.2 For representation of gl(n) the exterior power ΛnCn is nontrivial,
∑n

i=1 Li 6= 0 ∈ t∗gl(n) and we

cannot assume bn = 0.

13.3 For gl(n) the representations are indexed by ,,partitions”, i.e. the sequences λ = (λ1 ≥ λ2 ≥
· · · ≥ λn). The highest weight of Vλ is

∑
λiLi. (We omit zeros in the notation or write kb if k repeats

b times.)

S1k = ΛkCn , Vk = Symk(Cn)

Remark: this way w do not obtain all representations of GLn, since we never get (ΛnCn)∗.

13.4 Explicite construction of Vλ via Schur functors, see [Fulton-Haris §6].

• Let λ∨ be the transpose partition: eg (3, 1)∨ = (2, 1, 1). Then

V ⊗|λ| = V ⊗λ1 ⊗ V ⊗λ2 ⊗ · · · ⊗ V ⊗λn = V ⊗λ
∨
1 ⊗ V ⊗λ∨2 ⊗ · · · ⊗ V ⊗λ∨m

where m=number of rows in the Young diagram.
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• Symmetrization w/r to rows, a : V ⊗|λ| → Symλ1V ⊗ Symλ2V ⊗ · · · ⊗ SymλnV

• Antisymmetrization w/r to columns b : V ⊗|λ| → Λλ
∨
1 V ⊗ Λλ

∨
2 V ⊗ · · · ⊗ Λλ

∨
nV

• Vλ = Sλ(Cn) = im(a ◦ b)

Sλ(V ) = im
(⊗

Λλ
∨
i V ↪→ V ⊗|λ| →→

⊗
SymλiV

)
• basis is numerated by filling of the Young tableau: non decreasing in rows, increasing in columns.

• Dimension of Sλ(Cn)ν for λ ∈ K0, ν ∈ Λ is called the Kostka number Kλµ. This number is equal

to the number of fillings of the shape λ with numbers: ν1 of 1’s, ν2 of 2’s etc. The filling has to be

nondecreasing in rows and increasing in columns: eg k(3,1),(2,1,1) = 2 because there are two fillings:

1 1 2
3

and
1 1 3
2

By symmetry it is enough to consider µ ∈ K0.

13.5 (Weyl character formula [F-H,§24]) What is the character of the representation Vλ?

χ(Vλ)T = Sλ

where Sλ is the Schur function: Let ρ = (n − 1, n − 2, . . . , 0). Define Sλ(x1, x2, . . . , xn) = Wλ+ρ/Wρ,

where

W(a1,a2,...,an) = det


xa11 xa21 xa31 . . . xan1

xa12 xa22 xa32 . . . xan2

xa13 xa23 xa33 . . . xan3
...

...
xa1n xa2n xa3n . . . xann


In particular Wρ = ±V andermonde.

13.6 In short

χSλ(Cn)(x1, x2, . . . , xn) = Sλ(x1, x2, . . . , xn)
∑
µ

Kλµ x
µ1
1 xµ22 . . . xµnn .

13.7 There are more efficient methods of computation of Schur functions: let λ∨ be the transpose

partition: eg (3, 1)∨ = (2, 1, 1). Then Sλ = det({eλi+j−i}i,j=1,...length(λ∨), eg S3,1 = det

e2 e3 e4

1 e1 e2

0 1 e1

.

Here ei is the elementary symmetric function, e0 = 1, e?negative = 0. See [Ian MacDonald-Symmetric

Functions and Hall Polynomials,§I].

13.8 Exercise Sλ is a polynomial, and ,,does not depend” on the number of variables, provided that

this number is sufficiently large.

13.9 Exercise: Show that dimVλ =
∏

1≤i≤j≤n
λi−λj+j−i

j−i

13.10 Exercise: Check the Weyl character formula for λ = 1k and λ = k

13.11 For n = 2, λ = (a, b), the highest weight is aL1 + bL2.

Wρ = x1 − x2, Wλ+ρ = xa+1
1 xb2 − x

a+1
2 xb1 = (x1x2)b(xa−b+1

1 − xa−b+1
2 )

Sa,b = (x1x2)b
∑

k+`=a−b x
k
1x

`
2

This specializes to the character of SL(2) (substitution x1 = x, x2 = x−1):

Sa,b =
∑

k+`=a−b t
k−`
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13.12 For n = 3, λ = (2, 1, 0) the highest weight is 3L1 + L2 and Vλ ⊂ C3 ⊗ Λ2C3 (This is the

representation considered before for SL3, where we have Λ2C3 = (C3)∗.)

Wρ = det[((x2
1, x1, 1), (x2

2, x2, 1), (x2
3, x3, 1))]

Wλ+ρ = det[((x4
1, x

2
1, 1), (x4

2, x
2
2, 1), (x4

3, x
2
3, 1))]

Sλ =
(x2

1 − x2
2)(x2

1 − x2
3)(x2

2 − x2
3)

(x1 − x2)(x1 − x3)(x2 − x3)
= (x1 + x2)(x1 + x3)(x2 + x3)

Corrolary dim(V2,1) = 8. It is a proper subrepresentation of C3 ⊗ Λ2C3. It is the kernel of the map to

Λ3(C3).

13.13 It is also irreducible as representations of SL(n): it is isomorphic to the adjoint representation.

13.14 Exercise: Irreducible representations of GL(n) are irreducible as representations of SL(n).

13.15 For n = 3, λ = (3, 1, 0) the highest weight is 3L1 + L2 and Vλ ⊂ Sym2C3 ⊗ Λ2C3 (This is the

representation considered before for SL3, where we have Λ2C3 = (C3)∗.)

Wρ = det[((x2
1, x1, 1), (x2

2, x2, 1), (x2
3, x3, 1))]

Wλ+ρ = det[((x5
1, x

2
1, 1), (x5

2, x
2
2, 1), (x5

3, x
2
3, 1))]

Sλ =
???

(x1 − x2)(x1 − x3)(x2 − x3)
=

x3
1x2 + x3

1x3 + x2
1x

2
2 + 2x2

1x2x3 + x2
1x

2
3 + x1x

3
2 + 2x1x

2
2x3 + 2x1x2x

2
3 + x1x

3
3 + x3

2x3 + x2
2x

2
3 + x2x

3
3

13.16 Main problem: how to multiply the representations?

Vλ ⊗ Vµ =
∑

cνλµVν

How to compute ν?

13.17 Pieri formula [Fulton-Harris, p.455]. Multiplication by Vk or by V1k

13.18 Littlewood-Richardson formula

13.19 All the representations Vλ lift to ,,polynomial representations of” GLn(C). Irreducible repre-

sentations of GLn(C) are of the form Sλ(Cn)⊗ (ΛnCn)⊗k with λ partition, λn = 0 and k ∈ Z

14 Weil character formula (cont.), representations of SO(n), Clifford
algebras

14.1 Let G any semisimple Lie group with fixed maximal torus. We fix a Weyl chamber K0, in that

way choosing positive roots, ρ = β0=half-sum of positive roots. Let w ∈ K0, then the character of the

irreducible representation restricted to the maximal torus is equal to W (w + ρ)/W (ρ), where

W (w) =
∑

σ∈Weyl group

xw =
∑
σ∈Σ2

∑
ε∈{−1,1}2

(−1)εtε1w1
1 tε2w2

2

Here xw = exp(w(t)) denotes the map T → C∗ given by the exponential of w.
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14.2 Example for Sp(2): ρ = 2L1 + L2, W = Z2
2 o Z2 (permutations with signs)

W (aL1+bL2) = (xa1x
b
2−x−a1 xb2−xa1x−b2 +x−a1 x−b2 )−(xb1x

a
2 +. . . ) =

∑
σ∈Σ2

(−1)σ(xaσ(1)−x
−a
σ(1))(x

b
σ(2)−x

−b
σ(2))

(in general det
(
{xwij − x

−wi
j }1≤i,j≤n

)
)

W (ρ) = (x1 − x2)(x1x2 − 1)(x2
1 − 1)(x2

2 − 1)/(x1x2)2

The natural representation has weight L1

W (3L1 + L2) = (x2
1 − x2

2)((x1x2)2 − 1)(x2
1 − 1)(x2

2 − 1)/(x3
1x

3
2)

The character is equal to

(x1 + x2)(x1
−1x2

−1 + 1)

14.3 Exercise: Show that for Sp(n) we have

W (ρ) =
(∏
i<j

(xi − xj)(xixj − 1) ·
∏
i

(x2
i − 1)

)
/
∏
i

xni

14.4 Exercise: Compute the character for w = L1 + L2

14.5 [B-tD §I.6] Clifford algebra of V ' Kn with a quadratic form Q : V → K: C(Q) = T (V )/(v ⊗
v −Q(v)).

• ι : V ↪→ C(V ) as generators

• ι(v)ι(w) + ι(w)ι(v) = 2φ(v, w), where φ(v, w) = W (v+w)−Q(v)−Q(w) is the associated bilinear

form.

• Z2 gradation C(Q) = C(Q)ev ⊕ C(Q)odd

• antihomomorphism x 7→ t(x) = xt, ι(v)t = ι(v) for v ∈ V
• canonical homomorphism x 7→ α(x), α(ι(v)) = −ι(v) for v ∈ V
• x := tα(x) = αt(x)

14.6 Γ(Q) = {x ∈ C(Q)∗ |α(x)vx−1 ∈ V } acts on V

14.7 Norm map N : C(Q)→ C(Q), N(x) = xx, for v ∈ V we have N(ι(v)) = −Q(v) · 1

14.8 H ' C(Q)ev for V = R3, Q(v) = −|v|

14.9 Construction of Pin and Spin groups: V = Rn, Q(v) := −|v|2, N(v) = |v|2.

15 Spinors

15.1 ker(Γn → Aut(Rn)) = R∗)

15.2 For x ∈ Γn we have N(x) ∈ R∗.
Pf We check that for any v ∈ Rn the element N(x) = xx = tα(x)x acts trivially on Rn.

By the definition of Γn we have

α(x)vx−1 ∈ V.
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t is constant on V , hence

t(x)−1vtα(x) = α(x)vx−1

hence

v = t(x)α(x)v(tα(x)x)−1,

hence

xx ∈ ker = R∗.

Remark: this implies 1
N(x)x = x−1, so N(x) = N(x).

15.3 N is homomorphism on Γn

15.4 The action of Γn is via isometries ker : (ρ : Γn → O(n)) = R∗.

Pf: We know that v ∈ Γn (it defines the reflection in v⊥) and check that N(xv) = N(xv) (= N(x)N(v) )

15.5 Pin(n) := ker(N : Γn → R∗), there is an exact sequence

0→ Z2 → Pin(n)→ O(n)→ 0

Pf. ker(N) ∩ ker(ρ) = Z2

15.6 Spin(n) := Pin(n) ∩ C(Q)ev = ρ−1(SO(n)),

15.7 ρ is a nontrivial double covering.

Pf: the path s 7→ γ(s) = cos(s) + sin(s)e1e2, s ∈ [0, π] joins 1 with −1, ρ(γ(s)) =rotation in the plane

lin(e1e2) by the angle 2s.

15.8 Spin representations: for so(2n) there are highest vectors α = 1
2(L1 + L2 + · · · + Ln−1 ± Ln).

The spinor representation S2n ⊂ Λ∗V .

Taking the convex hull ofW ·α ⊂ Λ∗coroot we obtain the polytope spanned by 1
2(±L1±L2±· · ·±Ln−1±Ln)

with even or odd number of − depending whether it is S+
2n or S−2n. 0 lies in the interior but cannot be

a weight of S±2n. Hence dimS±2n = 2n−1.

15.9 Similarly: S2n+1 has the highest weight 1
2(L1 + L2 + · · ·+ Ln), dimS2n = 2n.

15.10 Construction via complexification: V ⊗ C = W ⊕W ∗. Then S+
2n = ΛevW , S−2n = ΛoddW with

the action of C(Qn) given on the generators w · ξ = w ∧ ξ for w ∈ W , ξ ∈ Λ∗W and the derivation

f · ξ = D2fξ for f ∈W ∗.
[Fu-Ha §Lemma 20.9]. Weight of eI is equal to 1

2(
∑

i∈I Li −
∑

i 6∈I Li)

15.11 For so(2n+ 1) the highest vectors is equal to 1
2(L1 +L2 + · · ·+Ln). The spinor representation

is constrcted via complexification: V ⊗ C = W ⊕W ∗ ⊕ C. The additional unit vector acts as α on

S2n+1 = Λ∗W . This action cannot be split into even and odd parts.

15.12 Special cases: by π we mean the natural action of SO(n) on Rn
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Group π S±

Spin(3) = SU(2) imH C2

±2L1, 0 ±L1

Spin(4)C = SL2(C)2 M(2× 2) two copies of C2

±L1 ± L′1 ±L1 and ±L′1
Spin(5)C = Sp(2) ker(ω) ⊂ Λ2(C4) C4

±L1 ± L2, 0 ±L1, ±L2

Spin(6)C = SL4(C) Λ2(C4) C4 and (C4)∗

Li + Lj Li and −Li

15.13 Representation ring:[B-tD, §VI.6]

15.14 Special properties of SO(8): triality. Note: dim(S±8 ) = 8.

The basis of S+
8

vector weight
1 1

2(−L1 − L2 − L3 − L4) −L′1
e1 ∧ e2

1
2(+L1 + L2 − L3 − L4) L′2

e1 ∧ e3
1
2(+L1 − L2 + L3 − L4) L′3

e1 ∧ e4
1
2(+L1 + L2 − L3 − L4) L′4

e2 ∧ e3
1
2(−L1 + L2 + L3 − L4) −L′4

e2 ∧ e4
1
2(−L1 + L2 − L3 + L4) −L′3

e3 ∧ e4
1
2(−L1 − L2 + L3 + L4) −L′2

e1 ∧ e2 ∧ e3 ∧ e4
1
2(+L1 + L2 + L3 + L4) L′1

The boxed vectors span an isotropic subspace of S+
2n (with isotropic to the quadratic form given by ∧.)

There exists an action of Spin(8) such that S+
8 becomes the representation π. Precisely, let us denote

by ρ+ the spinor representation.

15.15 Claim: There exist an automorphism φ : Spin(8)→ Spin(8) such that π = ρ+ ◦ φ. Moreover

ρ− = ρ+ ◦ φ2 and φ3 = id. That is φ permutes cyclically C8, S+
8 and S8

−.

15.16 Triality map: given three vector spaces of equal dimensions with quadratic nondegenerate

forms: (Vi, Qi). Triality is a trilinear map

V1 × V2 × V3 → K

such that the associated maps

fk : Vi × Vj → V ∗k ' Vk

satisfy

Qk(fk(v, w)) = Qi(v)Qj(w).

Examples:

- Clifford multiplication S+
8 × R8 → S−8

- V1 = V2 = V3 = R or C or H or octonions

- there are no more trialities.

15.17 Construction of triality automorphism via permutation of weights, see Appendix.

15.18 Remark S±8 admits a real structure, i.e. S±8 ' S±R,8 ⊗ C and triality can be realized as an

automorphism of the real group Spin(8)
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15.19 More about spinors and triality: A. Vistoli, Notes on Clifford algebra, Spin Groups and Triality,

http://homepage.sns.it/vistoli/clifford.pdf

Exceptional group G2

15.20 so(8)φ = g2

15.21 g2 acting on R8 fixes one direction, say e1, hence g2 acts on e⊥1 ' R7

15.22 g2 acting on Λ3R7 fixes one 3-form. This form defines octonionic multiplication.

15.23 g2 is precisely the algebra of derivation of octonions and Aut(O) = G2.

15.24 For the computations see http://www.mimuw.edu.pl/%7Eaweber/triality/

15.25 The group with Lie algebra g2 is simplyconnected and has the trivial center.

15.26 A another constuction of G2 can be found in [J. F. Adams: Lectures on Exceptional Lie

Groups]

16 Appendix: Triality and G2

For real Lie algebra so(8) the triality was constructed by E. Cartan, Le principe de dualité et la théorie

des groupes simples et semi–simples, Bulletin sc. Math. (2) 49, 361–374 (1925). The approach presented

here is equivalent, to the Cartan’s work in the complex case. The triality automorphism given below has

an advantage, that the root spaces coincide with the coordinates of the matrix and these coordinates

are permuted by Z3.

Working with the complex coefficients we choose a basis in C8 (as in [Fu-Ha, §19]) in which the quadratic

form is equal to

x1x8 + x2x7 + x3x6 + x4x5 .

For real coefficients this means that we deal with SO(4, 4). The maximal torus of SO(4, 4) consists of

the diagonal matrices

diag(et1 , et2 , et3 , et4 , e−t4 , e−t2 , e−t3 , e−t1) .

The following weights form the root system of so(4, 4):

±Li ± Lj for i 6= j ,

where Li(t1, t2, t3, t4) = ti. Choosing the Borel subgroup as the upper triangular matrices we obtain

the Dynkin diagram of simple roots:

C = L3 + L4

�
A = L1 − L2 −− Y = L2 − L3

�
B = L3 − L4
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The triality automorphism rotates the diagram anti-clockwise:

(L1 − L2) 7→ (L3 + L4) 7→ (L3 − L4) 7→ (L1 − L2)

and fixes the root L2 −L3. In the basis consisting of the weights Li the triality automorphism is given

by the remarkable matrix: 

1
2

1
2

1
2 −1

2

1
2

1
2 −1

2
1
2

1
2 −1

2
1
2

1
2

1
2 −1

2 −1
2 −1

2


(1)

16.1 Triality in so(4, 4)

We have given a formula for triality automorphism acting on the dual t∗ of the Cartan subalgebra of

so(4, 4). It does not preserve the lattice corresponding to the group SO(4, 4) but it preserves the lattice

spanned by Li’s and 1
2(L1 +L2 +L3 +L4), which corresponds to Spin(4, 4), the cover of SO(4, 4). We

list below the set of positive roots:

L1 − L2 L1 − L3 L1 − L4 L1 + L4 L1 + L3 L1 + L2

L2 − L3 L2 − L4 L2 + L4 L2 + L3

L3 − L4 L3 + L4

The boxed roots are fixed by triality. It can be easily seen when we express the roots in the basis of

simple roots:

A AY ABY ACY ABCY ABC2Y

Y BY CY BCY
B C

Here for example ABC2Y denotes the root A+B + C + 2Y . Dividing roots into orbits of the triality

automorphism we see that we have the fixed roots Y , ABCY and ABC2Y . Three free orbits are

generated by A, AY and ABY .

From general theory it follows that the triality automorphism of weights lifts to a self-map of the Lie

algebra so(4, 4). But a priori it is not clear that one can find such a lift of order three. Not every lift

satisfies φ ◦ φ ◦ φ = Id. The choice of signs is not obvious and demands a careful check. The elements

of so(4, 4) for our quadratic form defined by the matrix with 1’s on the antidiagonal are the matrices

(mij)1≤i,j≤8 which are antisymmetric with respect to the reflection in the antidiagonal. Such a matrix

is transformed by the triality automorphism to the following one

• m34 −m24 m26 m14 m16 m17 0

m43 • m23 m25 −m13 m15 0 −m17

−m42 m32 • m35 m12 0 −m15 −m16

m62 m52 m53 • 0 −m12 m13 −m14

m41 −m31 m21 0 • −m35 −m25 −m26

m61 m51 0 −m21 −m53 • −m23 m24

m71 0 −m51 m31 −m52 −m32 • −m34

0 −m71 −m61 −m41 −m62 m42 −m43 •



28



The upper half of the diagonal (t1, t2, t3, t4) = (m11,m22,m33,m44) is transformed by the matrix (1) to

1

2
(m11 +m22 +m33−m44)

1

2
(m11 +m22−m33 +m44)

1

2
(m11−m22 +m33 +m44)

1

2
(m11 −m22 −m33 −m44)

We remark that this is an unique automorphism with real coefficients extending the self-map of the

maximal torus. We would like to stress, that both: the Cartan construction of triality for so(8) and

the triality for so(4, 4) presented here works for any ring in which 2 is invertible. On the other hand

we note that the remaining real forms of the orthogonal algebra so(k, k − 8) for k = 1, 2, 3, 5, 6, 7 do

not admit any triality automorphism with real coefficients. Already on the level of t∗ we obtain the

rotation matrices with imaginary coefficients.

16.2 Noncompact version of G2

The algebra fixed by φ consist of matrices of the form

t2 + t3 a1 −a2 a3 a3 a4 a5 0
a6 t2 a7 a2 a2 a3 0 −a5

−a8 a9 t3 a1 a1 0 −a3 −a4

a10 a8 a6 0 0 −a1 −a2 −a3

a10 a8 a6 0 0 −a1 −a2 −a3

a11 a10 0 −a6 −a6 −t3 −a7 a2

a12 0 −a10 −a8 −a8 −a9 −t2 −a1

0 −a12 −a11 −a10 −a10 a8 −a6 −t2 − t3


16.1 Theorem. The fixed points of the triality automorphism is a Lie algebra of the type g2.

Indeed, the fixed elements of t∗ is spanned by the simple roots Y = L2 − L3 (the longer root) and

1
3(A+B + C) = 1

3(L1 − L2 + 2L3) (the shorter root)

1
3

(A+B+C) © ≡≡≡
〈
≡≡ © Y .

The shorter root as the functional on tφ is equal to A or B or C, but we represent it as an invariant

element 1
3(A+B + C) ∈ (t∗)φ. The positive root spaces of so(4, 4)φ are the following:

• the eigenspaces associated to the longer roots

so(4, 4)Y , so(4, 4)ABCY , so(4, 4)ABC2Y

• the diagonal subspaces associated to the shorter roots 1
3(A+B+C), 1

3(AY +BY +CY ), 1
3(ABY +

ACY +BCY ) (
so(4, 4)A ⊕ so(4, 4)B ⊕ so(4, 4)C

)φ
(
so(4, 4)AY ⊕ so(4, 4)BY ⊕ so(4, 4)CY

)φ
,(

so(4, 4)ABY ⊕ so(4, 4)ACY ⊕ so(4, 4)BCY
)φ
.
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16.3 The twin-brother of octonion algebra

The Lie group corresponding to so(4, 4)φ is the noncompact form of G2 since its maximal torus is (R∗)2.

The Lie algebra so(4, 4)φ annihilates the vector v0 = e4 − e5 and its action restricted to v⊥0 preserves

the form

ω̃ = 2e∗167 + 2e∗238 + e∗2(4+5)7 − e
∗
1(4+5)8 + e∗3(4+5)6 ,

where e∗i(4+5)j means e∗i ∧(e∗4 +e∗5)∧e∗j . The associated algebra is the algebra of pseudo-Cayley numbers

(also called split octonions).
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