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1 Mainly examples and overview

1.1 Topological groups [Bredon: Introduction to compact transformation groups, chapter 0]
e multiplication and taking the inverse are continuous
e cquivalently ¢ : G2 — G2, ¢(g,h) = (g, gh) is a homeomorphism

e group object” in the category of topological spaces

1.2 Examples
- discrete groups
-Ry, R", K* for K=R,C or H
- compact torus (S1)"
- complex torus (C*)"
- 83 as a subgroup of H*
- U(n), SU(n) subgroups of GL,(C), SL,(C)
- O(n), SO(n) subgroups of GL,(R), SL,(R)
- Sp(n) the subgroup of GL, (H) preserving the norm |v|* = "% | |v;[?
- Matrix groups defined by some identity e.g. preserving a given quadratic form (or trilinear form,
octonionic multiplication etc)
- O(m,n), the subgroup of GL,,,(R) preserving a nondegenerate symmetric form of the type (m,n).
- groups of isometries of a compact Riemannian manifold (can be realized as a matrix group)

- Heisenberg group N/Z where

1 x 10 z
N=[(o 1 x|, 2z=[0o1 0
001 00 1

cannot be realized as a matrix group

1.3 Exercise: U(n), SU(N), SO(n), Sp(n) are connected, O(n) has two components



1.4 Exercise: m1(U(n)) = Z, m(SU(n)) = 1, m1(SO(n)) = Z for n > 3 (long exact sequence of
homotopy groups needed)

1.5 Exercise: Elements of Sp(n) preserve the form H" x H" — H given by (v, w) = > | v;W;.

1.6 Two approaches to Lie groups
- study of compact Lie groups

- study of complex algebraic reductive groups (definition later)

1.7 Noncompact or nonreductive groups are more difficult; theory of nilpotent or solvable groups is

a separate subject.

1.8 But any Lie group G contains a maximal compact subgroup K (which is unique up to a conju-

gation) and as a topological space G ~ K x R". (Cartan-Iwasawa-Malcev Theorem)
1.9 For every connected linear and semisimple (to be defined later) group we have
G=KxAxN

where K is maximal compact, A ~ R, N is a nilpotent group, ~ R’ as a topological space. This is

Iwasawa decomposition. The special case is the Gram-Schmidt ortogonalization process
GL,(R) =0(n) x (Rsp)" x N
where N uppertriangular with 1’s at the diagonal.
1.10 Every compact Lie group can be embedded into U(n) as a closed subgroup.

1.11 Classification of compact connected groups [Cartan]: every such G is of the form G/A, where
A is a finite abelian group and G = Hle H; and H; is a torus (S1)" or a simple* simply-connected

group, which is of the form

e SU(n) (Type An-1)

e SO(n) = Spin(n) (Type By, for n = 2m + 1 or Type D,, for n = 2m). Here SO(n) means the

two-fold cover.

e Sp(n) (Type Cy)

e Exceptional group of the type Eg, 7, Eg, Go or Fy
1.12 * Simple Lie group means that the every proper normal subgroups is finite.

1.13 The definitions of the simple Lie groups have common pattern, except that the field over which

the definition is realized changes:

e C—Type A,

e R — Type B, and D,



e H — Type C),

e octonions — exceptional groups, eg G = Aut(Octonions)

1.14 For each compact Lie group G there exists a complex Lie group G, the complexification of G,
in which G is the maximal compact subgroup. The group G is defined by a polynomial formula in
GLy(C) for some N

e SL(n,C) (Type A,_1)

e SO,(C) = Spin,(C) (Type B, for n = 2m + 1 or Type D,, for n — 2m), where SO, (C) is a

subgroup of SL,(C) preserving a fixed nondegenerate symmetric form.

e Sp,(C) (Type Cy), where Sp,(C) is a subgroup of GLa,(C) preserving a fixed nondegenerate

antisymmetric form.

e Complex exceptional group of the type Eg, E7, Eg, G or Fy, eg. (G2)c C GL7(C) is the group

preserving certain exterior 3-form.

1.15 Remark for future: Any complex reductive group is of the form (((C*)’" X Hle(Gi)(C) /A, where

A is a finite abelian group.

1.16 Exercise: The real symplectic group Sp,(R) C GL2,(R) (appears in real symplectic geometry

or in classical mechanics) is noncompact and its maximal compact subgroup is equal to U(n).

2 Basic notions: exp et al.

2.1 Recollection of quaternions: let

1:(3) ‘j), iz(g’ 3)7 J':(i’ 3), k=<? é>'

We have

H = ling{1,i,j,k}

Each quaternion is of the form

_ . . _[a+ib c+ud
xa1+b1+03+dk<_c+id a—ib)

with a,b,c,d € R. Let 2* denote Z!. For z,y € H we have

o (zy)* =z*y* (it holds in May2(C)).

r-x* €Ry, ||z]| := VT 2+

e Forx =al+bi+cj+dk,a,b,c,d€R we have ||z|| = Va2 + b2 + ¢ + d>2.
lzyll = [l=[l [yl




2.2 We have
H = {A € MQXQ(C) : JA = Zj}

Indeed, for A = <S t> we have
u v
0 1 s t\ _ [(u v
-1 0)\u v) \—-s —t

2.3 The quaternion matrices understood as complex matrices of double size
Mnxn(H) - MZnXZn(C)

satisfy the equation J, A = A.J,, where J, is the block-diagonal matrix with j’s on the diagonal. After
I

reordering of coordinates J,, has a block form ( I 0
—in

>, where I, is the identity n x n matrix.

2.4 Sp(n) defined as GL,,(H) N U(2n) consists of 2n x 2n complex matrices satisfying
JA=AJ, AA =1I,.

e From these condition follows .J, A = (AT)~1J,, hence ATJ,A = J, (i.e. A preserves the symplectic
form Jy,).

e On the other hand AT J,A = J, and A = (AT)~! implies J,A = AJ,. This shows that Sp(n) =
Sp(n,C)NU(2n)

2.5 The basic tool to study Lie groups are Lie algebras. One considers the vector fields which are
invariant with respect to the left translation Ly : G — G, Ly(h) = gh.
The Lie algebra of a Lie group G usually is denoted by the gothic letter g. It is a vector space equipped
with
e antisymmetric binary operation [—, —] : g X g — g (the operation of commutator of vector fields)

e the commutator satisfies the Jacobi identity = Leibniz rule

2.6 Examples of abstract Lie algebras
e vector fields on differential manifold
o Mpxn(C) (ak.a. gl,(C)) - matrices with the standard matrix commutator operation
e associative k-algebra with commutator operation (there exists a forgetting functor Algebras —
Lie Algebras),
e the Lie algebra generated by differential operators E% and z

e derivations of any k-algebra

2.7 Classification of Lie groups is based on two steps:
e Up to taking a cover the Lie group is characterized by its Lie algebra

e (lassification of Lie algebras.



2.8 Ado Theorem: every finite dimensional Lie algebra over a field K of characteristic 0 can be
embedded into M,y (K).

Elementary theory of Lie groups, details in [Adams, chapter 2]:
2.9 Def: One parameter subgroup is a homomorphism of Lie groups R — G

2.10 1-1 correspondence between:
e left invariant vector fields
e tangent space T.G

e l-parameter subgroups

2.11 Exponential map g = T.G — G. Exp is smooth, diffeo of a neighbourhood of 0 € g to a

neighbourhood of e € G, it is natural with respect to maps of Lie groups.

2.12 exp : Myxn(K) = gl,,(K) — GL,(K) is the standard exp of matrices given by the well known
series. (K =R,C or H)

2.13 Exercise: Show that for X, Y € M, x,(C) the exp(tX)exp(tY)) = exp(d> .- ,i"Ayn), where A,

is a Lie polynomial in X, Y, ie. can be expressed by X, Y, +, — [, | and scalar multiplication.

2.14 Remark: Let U C g be a neighbourhood of 0 on which exp is a diffeomorphism. The multipli-

cation in exp(U) is determined by [—, —]. There is an explicit formula: the Baker-Campbell-Hausdorff
formula

1 1 1 1
e:):p(X)exp(Y) =exp| X +Y + §[X7 Y] + E([Xv [X7 Y]] + [Yv [Yv X]) - 274[1/7 [Xa [Xa Y]H - %??? T

For G € GL,(C) the remark follows from the exercise.

2.15 If G is connected, then the homomorphism G — H is determined by g — b.
Pf: G in generated by image of exp (in fact by any neighbourhood of e).

2.16 Corollary: a homomorphism of Lie groups induces a map of Lie algebras (see (3.2)). The functor
connected Lie groups — Lie algebras
is faithful. Moreover, [Lie Theorem, see Segal §5, not easy; also (3.10))] the functor
connected simpliconnected Lie groups — Lie algebras

is an equivalence of categories.)

3 Elementary theory of Lie groups (cont.)

3.1 The commutator of vector fields can be computed as commutator of flows: let X and Y be vector
fields on U C R™, p € U and let ¢, 9y for t € (—¢,¢) be the flows satisfying ¢g = 1o = Id, b= X,
¢ =Y. Then

d)swtﬁbfﬂbft(p) =p+ St[X’ Y] + O(H(57 t)”s)



3.2 Corollary: a map of Lie groups induces a map of Lie algebras.

Pf: Any map of Lie groups preserves l-parameter subgroups.

3.3 The commutator of the Lie algebra gl,(R) is the matrix commutator.
exp(sX)exp(tY)exp(—sX)exp(—tY) =

2 t2 2 t2
= (1+sX + %XQ)(l 1Y + YY1 - X + %XQ)(l — 1Y + SV 4+ O(||(s. )] )

52 52

t2 t2
=(1+sX +tY + ?XQ + §Y2 + stXY))(1 — sX —tY + EXQ + §Y2 +stXY) +O(||(s,1)|?)

= (1—(sX +tY)? + 2(822X2 + th? +stXY)) + O(|(s,0)|) = 1 + st[X, Y] + O(|(s,1)|*)

3.4 Abelian connected Lie groups are of the form (S!)” x R™.

Pf: Exp is a homomorphism of Lie groups.

3.5 Theorem: closed subgroup H of a Lie group G is submanifold and a Lie group
Pf: Sketch: Let W = {v € glexp(tv) € H}, this is a linear subspace, and exp(W) is a neighbourhood
of e in H. See [Adams 2.27-2.30].

3.6 Lie algebras of the subgroups O(n), U(n), Sp(n) in GL,(K) (K = R, C or H) consists of matrices
satisfying A —|—ZT =0in Myxn(K), K=R,C or H.

3.7 Let H C G be a Lie subgroup, then X = G/H is Hausdorff [Bredon Prop. 1.4], it is a differential
manifold and T}, X ~ g/b.

3.8 If a Lie group acts on a set X in a transitive way, then X is of the form G/G,, where G, is a

stabilizer of a chosen point. If G is closed, then X admits a structure of a manifold.
Important homogeneous spaces

e P! Grassmanians U(n)/(U(k) x U(n — k)) = GLn(C)/(;3),

e lagrangian/ortogonal Grassmanians, isotropic Grassmanians,

e flag varieties,

e the space of scalar products GL,,(R)/O(n),

e the space of complex structures G Loy, (R)/GLy,(C),

e the space of complex structures adapted to a given symplectic structure Sp,(R)/U(n), etc.

3.9 Not every Lie subalgebra h C g corresponds to a closed subgroup, but rather to an immersed

subgroup.

3.10 Faragment of a proof of Lie Theorem 2.16. For any Lie algebra there exists a Lie groups with
the given Lie algebra.
Pf: Using Ado Theorem we embed g C gl,,(R). We obtain a distribution in V' C T'(GL,(R)). Since g is
a Lie algebra V is involutive, hence integrable (Frobenius theorem). This means there exists a foliation
of GL,(R) tangent to V. The leaf passing through the identity is the subgroup with Lie algebra g.

To see why a map of Lie algebras induce a map of Lie group [Segal, Theorem 5.4]



4 Adjoint representation, reductive groups

4.1 A representation of a Lie group G is a homomorphism G — Aut(V'), where V' is a vector space.

Equivalently we can say that a linear action of G on V is given.

4.2 A representation of a Lie algebra g is a homomorphism of Lie algebras g — End(V'), where V is

a vector space, or equivalently a linear action of g on V, that is for any X,Y € gand any v € V
XY (v)) =Y (X(v)) = [X,Y](v)

4.3 Any lie Group has the adjoint representation: the action by conjugation of G on G fixes e, hence

we get Ad : G — Aut(g).

4.4 Example: The adjoint action of SU(2) = S% C H on su(2) = im(H) preserves the norm. We
obtain an injective map SU(2)/Z2 — O(3). Since the dimensions are the same and SU(2) is connected

this map is an isomorphism.
4.5 If G is connected, then ker(Ad) = Z(G).

4.6 The differential of Ad, i.e. ad: g — End(g) is the commutator adx(Y) = [X,Y].
Pf:

adx(Y) = % <(Zsexp(tX)emp(sY)exp(—tX))

s=t=0

adx(Y) = % <ie:cp(sY)exp(—sY)exp(tX)exp(sY)ea:p(—tX)> e

d d (d
=0 (Y(exp(—sY)e:np(tX)e:vp(sY)exp(—tX)))S:tzo—i—% <ds(exp(—sY)ea:p(tX)ea:p(sY)exp(—tX)))
d , d? :
Y%Lexp(sy)(st[—Y, X] + higher terms)s—i—o + MLexp(sy)(st[—Y, X|] + higher terms)s—i—o

2

ﬁ([d + O(s))(st[=Y, X]| + higher terms)s—i—o = [-Y, X]

4.7 Note that ker(ad) = {X € g | VY € g [X,Y] = 0}. This is the center of a Lie algebra Z(g). If
Z(g) =0, then Ado theorem 2.8 is for free; g embeds in End(g).

4.8 Complex groups = complex manifolds with holomorphic multiplication and inverse

4.9 Compact complex groups have to be of the form C"/Latice.
Pf Ad : G — Aut(g) is constant. Hence the conjugation by ¢ induces the identity on g. Therefore G is

commutative.

4.10 Complex linear algebraic group = subgroup of GL,(C), given by some polynomial equations in

the entries of the matrix and det 1.
4.11 We can assume that G is a closed algebraic set in M, x,(C).

4.12 Our definition of a reductive group: Complex group G is reductive if there exists an embedding

into GL,(C), such that the image is invariant with respect to the Cartan involution: © : A — (ZT)_l.

s=t=0



4.13 A reductive group for algebraic geometers is a linear algebraic group G (over an algebraically
closed field k) such that the largest connected solvable normal subgroup (the radical) is an algebraic

torus ~ (k*)". This is an equivalent definition to ours for k = C, but we will not discuss it.
4.14 The groups GL,(C), SL,(C), SO(n,C), Sp(n,C) are reductive.

4.15 Properties of the Cartan involution © : G — G and 0 : g — g 0(A) = A" [Knapp §1]
e  is a homomorphism of Lie algebras
e the fixed points is a compact subgroup K := GY = GNU(n)
e the Lie algebra g decomposes into eigenspaces of 8: g = g1 B g1
— £ := g; is the Lie algebra of K (this is the gothic k).
— p = g_1 satisfies [p,p] C & [¢,p] C p,
—p =it and g ~ £ ® C as complex Lie algebras.

4.16 For G = GL,(C) the space p consists of the hermitian (or self-adjoint) matrices matrices
—T
A=A".

4.17 Corollary: let ¢, : G — H homomorphism of complex Lie groups, G reductive, connected. If
Pk = Yk then ¢ = .

4.18 The map K x p — G given by (g, X) — ¢ - exp(X) is a diffeomorphism.

4.19 Proof of 4.18 for G = GL,(C): by polar decomposition every invertible matrix A can be written
uniquely as A = @ P, where Q € U(n) and P = 0(P) is positive definite (for P = (A*A)%, Q=Ap!
we check QQ* = (AP~1)(P~'A*) = A(A*A)~1A* = I). Any positive definite matrix P has logarithm.

5 Invariant scalar product

5.1 Proof of 4.18 for arbitrary G (after [Knapp, 1§2]). It show that if P = exp(X) € G for
X hermitian, then X € p. After a linear change of coordinates we can assume that X is diag-
onal X = diag(ay,as,...,a,) with a; € R and P = diag(by,ba,...,by), b = e* € Ry. Then
Pk = (b 0k, ... bF) € G for all k € Z. We will use the fact: G is defined by polynomial equa-
tions, the polynomials f; defining G vanish on (b’f b5 .. bF). We rewrite the equations for G' and we
get expressions of the form ¢(k) = > ozjc;? with ¢; equal to some products of b;’s. (c¢; can be 1 as well).
The function ¢(k) vanishes for k € Z. It follows that it vanishes for any k € R.

The last step in the proof. If QP € G then O(PQ) = Q@ !P € G. Hence P2 € G and P? = exp(X)
for X € u(n). By the previous step we conclude that X € p, so P = exp(%X) €q.

5.2 Trace form defined for gl,(C):
Bo(X,Y) = Tr(XY).

e By is Ad-invariant
e We have



e By is nondegenerate since By(X,0(X)) is real and < 0 for X # 0

o the form (X,Y) = Re(—By(X,0(Y))) is a scalar product on g.

e the form (X,Y) for X,Y € ¢ is equal to Re(—Tr(X,Y)), hence it is ad-invariant. It follows that
for any ideal h C € the orthogonal complement is a Lie subalgebra and ¢ = h @ h* as Lie algebras.

5.3 If H C G is normal, then h C g is an ideal: X € g, Y € b implies [X,Y] € h. The quotient g/bh

has a structure of a Lie algebra and is isomorphic to the Lie algebra of G/H.

5.4 Definition: g is simple if it is not abelian (i.e. has nontrivial commutator) and does not admit
any proper quotient Lie algebra. A semisimple Lie algebra is a Lie algebra which is the direct sum of

Lie algebras g = @ g; and each g; is simple.

5.5 If G is a complex reductive group, then g = Z(g) @ [g, g] and [g, g] is semisimple.

Pf. Use invariant scalar product in £ and complexify.

5.6 The same proof shows that the Lie algebra has the above form provided that we have an ad-
invariant scalar product in g. This is the case for Lie algebras of compact groups, which admit an
invariant integral as will be shown. Then to construct an invariant scalar product it is enough to take

any and average it.

5.7 Classification shows, that every compact connected Lie group admits a reductive Lie group in

which it is the fixed point set of ©.

5.8 Construction of invariant integration [Brocker-tom Dieck I§5]. There exists a measure dg on G
such that for any f € C(G) and h € G

/Gf(hg)dQZ/Gf(g)dg-

The measure is given by a differential form of top degree

/G f(g)dg = /G f(g).

| rayds= [ Listpw= [ riie

for any f and h, which is equivalent to: Ljw = w. Construction: Take 0 # wy € Adm(&) JyEN

The invariance means that

w(h) = Ljwo. If we assume that [,w =1 then w is unique.

5.9 The left-invariant integral is right-invariant: [, f(gh)dg = [ f(g)dg.
Pf: G acts by conjugation on Adim(G)Te*G ~ R. Since G is compact R;_;Ljw = Fw, sign depends

whether conjugation by h changes the orientation of G.

5.10 Corollary: for any real/complex representation of a compact Lie group there exists an invariant
scalar /hermitin product.

Pf: take any and average: (v,w) := [,(gv, gw).



6 In future: torus representations

6.1 How to construct an ad-invariant scalar product in g
e for a complex reductive group G the form —7Tr(XY) is positive definite on g°.
e if (G is compact: take any scalar product in g and average it

e if G is compact and Z(g) = 0 there is a canonical choice: — Killing form, see below.

6.2 Killing form: ¢(X,Y) = Tr(adx o ady). This form is symmetric and G-invariant (hence also

ad-invariant).

6.3 If G is compact, then v is nonpositive definite:
Pf. for X € g let H be the closed group generated by Ad(exp(tX)) C Aut(g). The group H ~ (S1)*
is a compact torus, choosing some coordinates in g we can assume that H acts diagonally (see 6.20).
Hence h € H has a form diag(e't, et ... eama) so ady = diag(it1,ity, ..., itqimg). Therefore

6.4 Killing form is nondegenerate on g/Z(g).

6.5 Exercise: Let G be a reductive group. Define a hermitian product in g C M,,x,(C) by the formula
((X,Y)) =Tr(XoY"). The hermitian product in g allows to define the Cartan involution © in Aut(g).
Show that Ad(G) C Aut(g) is O-invariant. (Hint: Show that (adx)* = adx~.)

6.6 Torus = compact abelian connected group = (S!)". Every compact Lie group contains a maximal

torus.

6.7 Main idea of representation theory of reductive/compact connected Lie groups
e Complex holomorphic representations of a reductive group G
e = Complex representations of its maximal compact subgroup
e (can be understood by studying) Representation of the maximal torus
e (description via combinatorial data) Every representation is determined by its ,,set of weight”, a

choice of lattice points in t*

6.8 Definition: Let G be a (topological) group.
e A representation V is irreducible (or simple) if it does not have any subrepresentation other than
0 and V.
e A representation V is indecomposable if V' cannot be presented as Vi @ Vs, where V; are subrep-

resentations (ie. G-subspaces), with V; # 0
6.9 R — GLy(R) given by t — (éf) is a representation which is indecomposable, but not simple.

6.10 Main advantage of compact groups: every representation admits an invariant scalar/hermitian

product.

6.11 Corollary. Representations of compact groups are direct sums of irreducible representations.

Pf: any subrepresentation has ortogonal complement

10



6.12 Corollary: Holomorphic representations of reductive groups are direct sums of irreducible rep-

resentations.

6.13 The above is a characterization of reductive groups among complex linear groups.

Characters
6.14 Character of a representation (V,p: G — Aut(V))

xv(g) :=Tr(p(g): V —=V)

6.15 General properties of characters:

e v is a function on conjugacy classes of G (i.e. it is a class function)

o xv-(9) =xv(g™)

o xy7(9) = XT(Q) = xv(g~?1) for compact groups
o xvew(9) = xv(g) +xw(g)

e xvew(9) = xv(9)xw(g)

e Corollary: X gomw,v)(9) = xv(9)xw (g) for compact groups

6.16 If G is compact, then [, xv(g)dg = dim(V%)
Pf: Let p: V — V be given by v — ng -vdg. Tt is a projector onto V&:
dim(VE) = Tr(p) = / Tr(ve— g-v)
G
6.17 Cor. Let V,W be irreducible representations, then (xv, xw) := [5 xv(9)xw(g)dg = 0if W 2 V

or1for W~V.
Pf. dim Hom(W,V) =0 or 1.

6.18 Peter-Weyl for arbitrary compact group: characters of irreducible representations form an

ortonormal basis of the Hilbert space of class functions C L?(G). They are also dense in C°(G /conjugation).

6.19 Corollary: Let G be a compact group. If V is a direct sum of irreducible representations
V >~ Y (V,)®% then a, depend only on V. Two representations are isomorphic if and only if their

characters are equal. Proof. ao = (xv, XV, )-

6.20 Complex irreducible representation of compact abelian groups are of dimension 1:
Pf: p: G — GL,(C), can assume p : G — U(n). Every element of U(n) is diagonalizable. Every family

of commuting operators have common eigenvector v ; lin(v) is a subrepresentation.

6.21 Let T be a torus, let A = ker(exp: t — T'). The irreducible representations of T" are in bijection

with A* = Hom(A,Z).
A = ker(exp) — 2mZ =~ Z

{ {

t — I = 4R
exp \L \Lexp

T — Sl Cc C*

Pf. The image Hom(T, S') < Hom(t,s') consists of the linear maps preserving latices.

11



6.22 An element of A* is a called weight. Consider the irreducible representation C,, of weight w.
For X € t the action of exp(X) € T is given by the multiplication by the number e!(*-X) ¢ §1 c C*.
After identification T = (S')” we have A = Z" and (e, e%2 ... e'r) € (S1)" acts as multiplication by

the scalar el(wititwatattwrtr) — TT(eitiyws,

6.23 Representations of T" are determined by formal combinations weights. The formal sum ) a,,[Cy]
can be treated as an element of the group ring Z[A*] with nonnegative coefficients. After identification
T = (S)" we have Z[A*] = Z[x1, 27 29, 05, .2y, 2 .

o V ® W corresponds to addition of Laurent polynomials,

e V ® W corresponds to multiplication of Laurent polynomials.
6.24 For a torus T = (S)" and the representation V ~ @)(C,,)®*, in coordinates &; = e''s

Xv(€ & &) = D antiEy? &

wEA*

6.25 Peter-Weyl theorem for torus 7' = S' is equivalent to the Fourier theorem: the functions & — &7

form an ortonormal basis of L?(S%).

6.26 For T = S' the multiplicity of the representation of weight n in V is the coefficient a,, in the

Fourier expansion of the character xv () = > <7 an".

7 Maximal tori

7.1 Remark about 6.19, without compactness assumption for G: if V ~ > (V,,)®% happens to be a

sum of irreducible representations, then a, = dim(Hom(V,, V)%) does not depend on the presentation.

7.2 Isomorphism classes of representations form a semiring. The associated ring (Grothendieck con-

struction) is called representation ring, R(G). For G = T we have R(T) = Z[A*] ~ Z[z1, 27 20, 25 L, o oo o 2 Y]

7.3 General remark: For a category C with exact sequences and (with monoidal structure ®) define
K (C) as an abelian group generated by isomorphism classes of objects and relations being a consequence
of [z] + [z] = [y] whenever we have an exact sequence 0 — =z — y — z — 0. (Ring structure is given
by ®.) For compact G we have K(C[G] — mod) = R(G), where C[G]| — mod denotes the category of

complex vector spaces with G-action.
7.4 Maximal tori (examples in SU(n), SO(n)).

7.5 T decomposes gc = g ® C into weight spaces

gc = t(c ©® @ Jo-
aeA*\0

(o’s are called roots.) If a is a root, then —a is a root (¢’*®) is an eigenvalue, then e~**(®) is).
7.6 For U(n) let L; : A ~Z" — 7Z be the i-th component. The roots of U(n) are L; — L;, i # j.

7.7 For SU(n) the same roots, but there is a relation > L; =0

12



7.8 For SO(2n) we complexify R?"” and consider an equivalent quadratic form > Tion—ir1. The

roots are L; £ Lj, i # j

7.9 For SO(2n+1) we complexify R?"*! and consider an equivalent quadratic form E?;Lll TiTop_iio.
The roots are +=L; £ Lj, i # j, £L;.

7.10 Weyl group: for a maximal torus 7' € G, G compact, W = NT'/T is finite. Pf. NT acts on T,
Aut(T) discrete.

7.11 Let f: M — M selfmap of orientable manifold. Lefschetz number A(f): intersection of cycles
[graph(f)] and [A] = [graph(id)] in M x M
e if no fixed points then A(f) =0
e A(f) =A(g) if f and g homotopic

e If the fixed point set is finite and the intersection is transverse, then A(f) is the sum of fixed points
1 I

| Dl 1) =St - Df)

o« A(f) = S (F1)Tr(fi s Hi(M;R) — Hi(M;R))

with signs. The sign at the point p is equal to sgn det (

7.12 Any g € GG is contained in a conjugate of T
Pf [Adams, p 90-92]. Equivalently L, : G/T — G/T has a fixed point. Enough to compute Lefshetz
number of Lg; can replace g by ¢, a generator of T'. Fixed points of L; are NT/T. Local contributions
to the Lefschetz number coming from the points of NT/T" are equal. It is enough to compute for
el € NT/T. Local computation: action of & = exp(t) € T on T(G/T) has eigenvalues ¢’*®), hence
det(I=DLe(eT)) = [T pors(1=€®) = [T, pops [1=€@ O > 0. Hence A(Ly) = A(Le) = |N(T)/T| #0,

hence there is a fixed point.

roots

7.13 Special cases (for U(n) and SO(n)) are the classical theorems from linear algebra.

8 Representations of sly(c)
8.1 Cor. Any two maximal tori are conjugate.
8.2 Cor. Euler characteristic x(G/T) = |W/|.
8.3 Let V a representation. (xv)ip: 7T — C is W-invariant.
8.4 The character yy is determined by its restriction to the maximal torus.
8.5 Cor. R(G) — R(T)" is mono.
8.6 Generalities about Lie algebra representations: dual, ®. (Exercise: Hom, Sym* and A*.)

8.7 Groups SU(2), SL2(C), SL2(R) and relations between their representations. Representations of
Lie algebras su(2), sla(C) and sla(R).

8.8 s5l3(C) is spanned by H = ((1) _01>, X = <8 [1)) and Y = <(1) 8> We have [H, X| = 2X,
[H,Y] =2V, [X,Y] = H.
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8.9 H decomposes any representation V' into weight spaces V = P, 7 Vi. For v € Vj:
e Hu = kv
e Xve Vi
eYve Vi o
In general: if Z € g4, v € V3 then Zv € V3.

8.10 Examples of representations of 5l5(C): symmetric powers of the natural representations Sym*(C?)

8.11 The algebra sly(C) is isomorphic to the subalgebra of differential operators in 2 variables gen-
erated by X = :178% and Y = ya%, H=[XY]= l’% - ya%. The natural representation: linear forms,
Sym*(C?) ~ {k — linear forma}.

8.12 Highest weight vectors in the irreducible representations of sly(C).

8.13 [Fulton-Harris, §11] Theorem: irreducible representations of sla(C) (or sla(R) or sla(Z)) are
isomorphic to SymF(C?). They are characterized by the weight of the vector v € ker(X) (highest

weight vector).
8.14 Lemma: if v € V,,, Xv =0 then XY™v =m(n —m+1)Y™ L

8.15 Corollary: if dimV < oo then n € N.

9 Examples of SLs;-representations, rank one groups

9.1 Every complex representation of s/5(C) extends to a representation of SLo(C). (since 71 (SL2(C) =

)

9.2 Corollary: Every complex/real representation of sla(R) extends to a representation of SLa(R).

(via complexification)
9.3 If V =D,y Sym™(C?)®™ as a sly(C)-representation, then a, = dim V,, — dim V;,4».

9.4 Some examples of representations of sl3(C).In paricular Sym?(C3) ® (C3)*, see Fulton-Harris
§12-13. Claim: every irreducible representation of sl3(C) is isomorphic to the subrepresentation of
Sym®(C?) @ Sym®((C?)*) generated by v = (e1)? ® (e})?. The vector v is ,,the highest weight vector”.
The remaining vectors are obtained by application of the operators Es;, F31, E32 given by the action

of elementary matrices
9.5 Rank of the Lie group 7(G) := dim(7'), where T' is a maximal torus.

9.6 Theorem: Compact connected Lie group of rank 1 is isomorphic to SU(2) or SO(3) or S.
Pf: Let n = dim(G). G acts on S"~! C g via Ad. The tangent action has the kernel = t. Therefore
G/T — S™ 1 is a covering, so it has to be a homeomorphism. We get a fibration S = T — G —
G/T = 8" 1. If n > 3 the m(T) — 71 (G) is a monomorphism. The group G contains a subgroup H
isomorphic to SU(2) or SO(3) with the Lie algebra t® go, ® §—a,, Where ag the shortest root. There is
an element g € N(T') C H such that Ad(g)x = —Id:t—t, so gtg~! =t~1. But in G the conjugation
by g is homotopic to Id. Contradiction. 1 Hence n < 3.
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10 Systems of roots
10.1 System of roots of rank 2 SU(3), SO(4), SO(5), Sp(2)) see [FH.§21]

10.2 Theorem. Ler R be the set of roots of a semisimple compact/complex reductive Lie group.
1. the roots R span t*

2. the action of W = NT/T on t* preserves R

3. dimg, =1fora € R

4. o € ¥ = —q € ¥ and no other multiplicity of a belongs to R.

10.3 In general 10.2.1 holds, if Z(G)o = 1. More general we have (. ker(a) = T(Z(G)).

aER

10.4 For any compact group 10.2.2 holds, because if n € NT', then the action by Ad(n) shuffles g, ’s.

10.5 Lemma 1: for any root « there exists a subgroup H, C G with Lie algebra

boa =t® @ ap

B proportional to «

Pf. H generated by exp(h,); the roots of the closure have the same kernel as «, hence H closed.

10.6 Cor. 10.2.3-4.
Pf. Z(Hy)o = exp(ker(a)), Ho/Z(Hy)o is a rank 1 group, see 9.6.

10.7 Lemma 2. There exist a subgroup K, C H, with the Lie algebra ker(a)* @ g, ® g_o where L
taken with respect to an invariant scalar product in g.
Pf. X € g4, Y € g_q, then for Z € ker(a) we have Z L [X,Y]. (since 0 = X(Y,Z) = ([X,Y],Z) +
(Y, (X, 2]) = ([X, Y], Z) + (¥, —a(Z)X).

10.8 Fix a G-invariant metric. For any root o the subspace a™ @ g, ® g_o is a subalgebra of gC-

10.9 Cor: for any root a there exists a map f, : SU(2) — G, such that the image of su(2)¢c =
at ® ga  g-a-

0 1

10.10 The action of the element of Weyl group of [ fa <_1 0

>] is the reflection in ker(a) denoted
by sq.

10.11 Abstract system of roots: V a finite dimensional real vector space with a scalar product,

R C V a finite subset, called roots:
1. the roots R spans V
2. a € ¥ = —a € ¥ and no other multiplicity of a belongs to R.

3. 8o preserves R
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4. For a pair of roots the Cartan number n,g = 2&3’23 is an integer (the number n,g satisfies

5a(B) = B — napa)

10.12 Pf.AQof (4) for roots of a compact Lie group (see ([B-tD,§V.2.7]) o* € V* = t coroots: defined
by the property s, (5) = 8 — S(a)a (under the identification t = t* we have o* = ﬁa).
e We show that ax € A: let x = %a*,
—a(z) = 1so exp(x) € ker(a: T — SY)
— exp(x) € T is invariant with 5, : T — T and on the other hand 5, (exp(x)) = exp(sq(z)) = exp(—x).

So exp(z)? = 1,hence 2x € A. Therefore 3(a*) = 8(27) € Z.
10.13 Definition of Weyl chambers for a Lie group

10.14 Theorem:
1. W acts transitively and freely on the set of chambers
2. W is generated by s,’s
Pf see [B-tD, Th 2.12]: Let Wy be generated by s,’s. Claim 1: Wy acts transitively. Claim 2: W acts
freely. Claims 1 and 2 imply Theorem.
Pf of Claim 1. geometric proof,

Pf of Claim 2 follows from the following Lemma:

10.15 Lemma. Suppose X lies in the interior of some chamber in t ~ t*, then exp(tX) is contained
only in one maximal torus.

Pf: X acts nontrivially on each g4, so Z(exp(tX))o =T.

10.16 Pf of Claim 2 cont: if g € NT acts trivially on a chamber K, one may assume g(X) = X
for some X € K. The group topologically generated by exp(tX) and g abelian, ~ torus X Z, can be
topologically generated by one element, so it is contained in a maximal torus. This torus has to be T'.
Hence [g] =1 € NT/T.

10.17 Let V be a representation of G. Then the multiset in t* representing the weights of V is
preserved by the action of Weyl group.

Pf:
GxV — V
(9997 ") xg l 19
GxV — V

Therefore for g € NT' we have gV, = Vg4
11 Classification of irreducible representation by highest weight vec-
tors

11.1 The Cartan numbers n,g = 2%2’3 satisfy

® NosNga = 4cos?(£L(a, B))
® NgNga € Z
Therefore nogngs € {0,1,2,3} for a # £4.
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11.2 Positive roots: we chose a linear function ¢ : t* — R, such that no root belongs to ker(¢). Get

division of roots into R = Ry UR_. e Positive roots for sl(n): L; — L;, 1 < j
e.g. ¢(a) = (Bo, ) where Gy = %ZKJ.(Li —Lj)
for n =3: 1((L1 — L2) + (L1 — L3) 4+ (L2 — L3)) = L1 — Ly = (3L1 + 2L2 + L3);
in general > " ;(n —i+1)L;

o for so(2n+1): Ly — L;j, Lifor 1 <i<j<mn

o for sp(n): Ly —Lj, 2L; for 1 <i<j<mn

o forso(2n+1): Ly —L;, Li+ Ljfor1<i<j<n

11.3 A positive root is simple if it cannot be written as a sum of positive roots.
o for sl(n): Ly — Lg4q for 1 <k <n
o for s0(2n+1): Ly — Ly for 1 <k <n and L,
o for sp(n): Ly — Liyq for 1 <k <n and 2L,
o for so(2n+1): Ly — Lgyy for 1 <k <nand L,_1 + L,

11.4 Exercise: every positive root can be written as a sum of simple roots. Simple roots are linearly

independent.

11.5 Having chosen positive roots there is a canonical choice for a new ¢: ¢(—) = (B, —), where

Bo =13, ais the Zsum of positive roots. (Exercise: Then for a positive root a: (8y, ) > 0. )

11.6 We chose a distinguished Weyl chamber Ky = ({5 € t* : (8,a) > 0}. (Nonempty because
Bo € Ko.)

11.7 Theorem: W is generated be reflections in the walls of Kj.

11.8 Let S be the set of walls of the distinguished Weyl chamber. Dynkin diagram: vertices = .5,
number of edges is equal to ngng, (encode the angles Z(c3)). Hence the relations for the corresponding
relations s,t € S

es2=1

e 1o edge: s and t commute <= (st)? =1
e one edge (st)3 =1

e double edge (st)* =1

e triple edge (st)% =1

11.9 Exercise: (Theorem) These are the relations defining W. (This is an example of a Coxeter

group)
11.10 Additionally we draw ,,<” to denote which root is longer. This does not effect the Weyl group.

11.11 In what follows we fix a distinguished Weyl chamber Kj, 5, € Ky and we say that
a >0 if (a,By) > 0. We have Ko = {w € t* |V a € R, (w,a) > 0}.
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11.12 Enveloping algebra of a Lie algebra U(g): it the quotient of the tensor algebra T'(g) by the
two-sided ideal generated by XY — Y X — [X,Y]. Let g be a reductive Lie algebra (a complexification
of a Lie algebra of a compact group). A representation of g is the same as U(g)-module.

o Let by =t® P, (0a Similarly b_. (It is a solvable Lie algebra.)
o Let ny =, (0o Similarly n_. (It is a nilpotent Lie algebra.)

11.13 Let V be a representation, suppose that v € V,, for w € Ky, and suppose that Xv = 0 for

X € g, with a > 0 (we say that v is a highest weight vector). Then:

e the representation generated by v that is U(g)v is equal to U(n_)v.

o dim((U(g)).) = 1.
Pf: one can replace each monomial in U(g) be a combination of monomials with increasing ¢(«).

e U(g)v is simple.
Pf. If U(g)v = €@ W; then for some iy the projection of v onto W;, does not vanish. The projection
preserves weights, thus v € W;,. Hence Ug = W,.

11.14 Cor. Any two irreducible representations with v satisfying the assumptions above are isomor-
phic.
Pf. Consider the product representation an the subrepresentatation generated by (v,v’) and the pro-

jections to V and V.

11.15 Let w € K. There is a map U(b;) — U(t) which allows to treat C,, as a U(b.)-module. The
induced representation M (w) = U(g) ®y (s, ) Cw is called the Verma module. It is of infinite dimension,
but irreducible representation of the weight w is a quotient of M (w). [R. Carter, Lie Algebras of Finite
and Affine Type, §10 (2005)]

11.16 Theorem: Let A*

coroots

={w € t* | Vo € R w(a*) € Z}. There is a bijection between
irreducible representations of g (reductive/compact) and the lattice points A%, N Ko
e Uniqueness is given by 11.14
e existence:
— quotients of Verma modules
(one needs to prove that in M (w) there is a largest proper submodule and it is of finite codimension).

— effective method case by case.

11.17 Example. Sp(2).

e Roots =L; = L;, 2L;

e Coroots £L; + L;, L;

® Aloroots = (L1, L2)

e Simple roots —2Ls, L1 — Lo,

e Ko={(z,y) €ER? |2 >0, x >y} = Conv(t(0,1),s(1,1)).

e B0 =5(2L1 + 2Ly + (L1 + Lo) + (L1 — L2)) = 2Ly + 1L,
o Al oors VKo ={mLi +nLy | m,n€Z, m>0,ncl[0,m]}

e The natural representation has the highest weight L

18



e In the second exterior power A2C?* there are weights: +L; & Lo, twice 0. This representation is

not irreducible, since A2C* = A?(C*)* contains the invariant symplectic form w. The kernel of
w:A*Ct = C

is irreducible (all weights without multiplicities).
e The irreducible representation of sp(2) with highest weight mL; 4+ nLs is the subrepresentation of
Sym™~"C* @ Sym™A%C* generated by the vector €™ @ (e1 A e2)™

12 7, center, rank 2 examples

12.1 e Roots and coroots: Af, ., = (R) C A¥,

e We have shown in 10.12 that a* € ker(exp:t — T) = A i.e. Acoroots := (R*) C A
e Thus (a*,w) € Z for w € A*, hence A* C A},

coroots*

N pors C AT C AL

coroots

e Dually
Acoroots C A - Aroots,

where Apoors = {X €t:Vae Ra(X) € Z}.
e Fact:
Aroots/A = Z(G) 5 A/Acoroots =T (G)

12.2 The proof is long and based on the exact sequence of homotopy groups of the fibration T —
G — G/T, which gives the surjection m1(T") = m1(G):
e one shows that m3(G) = 0 and 71 (G/T) = (this e.g. follows from the fact, that G/T = (G¢)/B+
can be decomposed into even-dimensional cells.)

e There is an exact sequence
0— HQ(G/T) = WQ(G/T) — 7T1(T) — 7['1(G) — 0

e We have m1(T) = A = Hom(T, S'). To see that each coroot is in the kernel check it for SU(2)
and SO(3) and use the diagram for each root:

exp(ta*) = S' C

QDX

N
G, C
(Here G, ~ SU(2) or SO(3).)
e for the proof that ker(mi(T) — m1(G)) = Acoroots see [B-tD,§7].

12.3 If for all roots a(X) € Z, then exp(X) acts trivially on g,. This give a map exp : Ayoors — Z(G)
with the kernel A. The map is surjective: if g € Z(G), then g € T, hence g = exp(X). For any root «
the value a(X) has to be integral.

12.4 Exercise: Compute the lattices of roots an coroots for GL(n) (roots will be of smaller rank and

Ayoots Will not be discrete). Check that the formulas for Z(G) and for w1 (G) work.
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12.5 Example. SO(5).
e Roots £L; + L;, L;
e Coroots £L; + L;, 2L;
® Noroots = {2l +yLlo |22 €Z, 2y €Z, x +y € Z)}
e Simple roots —2La, L1 — Lo,
e Ko={(z,y) €ER? |2 >0, x >y} = Conv(t(0,1),s(1,1)).
e Bo=4(L1+ Lo+ (L1 + Lo) 4+ (L1 — L2)) = 3Ly + S Ly (Note: By € Alproors)
o A

toroots 1Ko ={mLy +nLy | m,n € 3Z, m >0, n € [0,m], same fractional part}

e The natural representation has the highest weight L,

e In the second exterior power A2C® the vector e; A ey has weight: L1 + Lo but no way to get a half
weight

e Missing the representation with the highest weight %(Ll + Ly). TBA Spinor representation.
But here one can use the isomorphism s0(5) ~ sp(2). Then ker(A2C* — C) is switched to the natural

representation of SO(5) and the spinor representation corresponds to the natural representation of

Sp(2).

12.6 Exercise: SO(4)

e Roots £L; & L;,

e Coroots £L; & Lj,

® Nooroots = {al1 +yla |2 —y €Z, z+y € Z)}

e Simple roots Ly + Lo, L1 — Lo,

o Kg={(x,y) €R?| x> |y|} = Conv(t(1,—1),s(1,1)).

e Bo=3((L1+ Lo) + (L1 — Lo)) = Ly

© Aproors N Ko ={mLy £nLy | m,n € 3Z, m >n > 0, same fractional part}

e The natural representation has the highest weight L,

e In the second exterior power A2C* the vector e A e has weight: L1 + Lo

e Missing half weight representations %(Ll + Ls), the spinor representations Sy and S_. They do
not come from representations of SO(4) since (L1 + Ly) ¢ A*. But they come form the representation

of the universal cover SO(4) = SU(2) x SU(2) a.k.a. Spin(4).

13 Representations of SL(n)

This lecture contains no proof, but only an algorithm how to compute the irreducible representations of
SL(n) and GL(n). The universal example is the representation of SL(3) of the highest weight 3L; 4 Lo.
We summarize four important theorems

1) Every irreducible representation of SL(n) is given by the value of the Schur functor
Sa(C)

2) Characters of irreducible representations are the Schur functions S)

3) One can compute Schur function by determinant of a matrix with symmetric functions
4) Combinatorial methods of computing coefficients of Schur functions, i.e. Kostka num-
bers

5) How to multiply irreducible representations (or Schur functions) : S,(C") ® S,(C") =?
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— Pieri rule

— Littlewood-Richardson rule.

13.1 SL(n)
e Roots L; — Lj,
e Coroots L; — Lj,
® Aloroots

e Simple roots Ly — Lo, Ly — Ls,... , L1 — Ly,

spanned by L;

e Ky is given by > a;L; € Ky if and only if a; > a;41 for all i = 1,2,...,n — 1. It is spanned by
Ly, Ly + Loy .. ; Ln+Lo+---+ Ly

e (exercise) By = 3 (nL1+ (n—1)La+... Ly

o AX, .ots N Ko = integral points of K

e The natural representation has the highest weight L

e the k-th exterior power A*C™ has the highest weight vector e; A ea A - -+ A e, of weight: Ly + Lo

e AFC™ is irreducible, since all the weight spaces are of codimension one.

e To construct a representation of the weight > a;L; with a; > a;41 for all i =1,2,...,n — 1 write

b; = a; — a;y1, by, = ay, (can assume b, = a,, = 0). Then the representation

n—1 '
® SymPiAiCn
i=1
has the highest weight vector of the weight
n—1 n—1
Zbi(Ll + Lo+ -+ L;) = ZaiLi-
i=1 i=1

The subrepresentation generated by
6?1 ® (e1 A 62)b2 ®--@(eg Aeg A--+ A e,hl)b’””*1
has the desired weight.

13.2 For representation of gl(n) the exterior power A”C" is nontrivial, > " ; L; # 0 € t;[(n) and we

cannot assume b,, = 0.

13.3 For gl(n) the representations are indexed by ,,partitions”, i.e. the sequences A = (A\; > Ay >
.-+ > A,). The highest weight of Vy is 3_ A\;L;. (We omit zeros in the notation or write k¥ if k repeats

b times.)
S = AFC™, Vi = SymF(c)

Remark: this way w do not obtain all representations of GL,, since we never get (A"C")*.

13.4 Explicite construction of V) via Schur functors, see [Fulton-Haris §6].

e Let AV be the transpose partition: eg (3,1)Y = (2,1,1). Then
VO — oA @ 78Xz g . g O — ON o O o ... g VOn
where m=number of rows in the Young diagram.

21



e Symmetrization w/r to rows, a : Ve & SymMV @ SymMV @ -+ @ Sym MV
e Antisymmetrization w/r to columns b: VEN 5 ANV @ ANV @ - @ AMV
e V) =S)\(C") =im(aob)

S\(V) = im( @AMV < VEN s Q) Sym* V)

e basis is numerated by filling of the Young tableau: non decreasing in rows, increasing in columns.
e Dimension of S,(C"), for A € Ko, v € A is called the Kostka number K,. This number is equal
to the number of fillings of the shape A with numbers: 14 of 1’s, vy of 2’s etc. The filling has to be

nondecreasing in rows and increasing in columns: eg k(3 1) (2,1,1) = 2 because there are two fillings:

1 1 2 1 1 3
3 and2

By symmetry it is enough to consider u € K.
13.5 (Weyl character formula [F-H,§24]) What is the character of the representation V7

X(Vx)r = S

where Sy is the Schur function: Let p = (n —1,n —2,...,0). Define Sx(x1,x2,...,2n) = Wixi,/Wp,

where

al ag as an

Ty T7 Iy L
al as a3 an

Lo Lo~ Ty Lo
al a as Qn

Wiar as,...an) = det | T3~ L3723 L3

al az as a

In particular W, = £V andermonde.

13.6 In short

I M1, 12 n
XSA(C")(CCl,:UQ,...,xn) = Sx(z1,x2,...,2p) E Ky, oitah? o oahm
I

13.7 There are more efficient methods of computation of Schur functions: let AV be the transpose

€y €3 €4
partition: eg (3, 1)\/ = (2, 1, 1). Then S)\ = det({e)\i+j7i},L'J:]_’mlength()\\/), eg 3371 = det 1 e es
0 1 e

Here e; is the elementary symmetric function, ey = 1, €7pegative = 0. See [lan MacDonald-Symmetric

Functions and Hall Polynomials,§I].

13.8 Exercise Sy is a polynomial, and ,,does not depend” on the number of variables, provided that

this number is sufficiently large.

)\if/\j%»jfi

13.9 Exercise: Show that dim Vi = [, <;<;<,, =5

13.10 Exercise: Check the Weyl character formula for A = 1% and A = k

13.11 For n =2, A = (a,b), the highest weight is aLi + bLs.
W, =1 — 22, Way, = a2l — 25T a2l = (zy29) (2970 — 2870
Sabp = ($1$2)b Zk+e:a—b x’f:vg
This specializes to the character of SL(2) (substitution x; = x, 2o = 271):

_ h—t
Sab =D pat—apt
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13.12 For n = 3, A = (2,1,0) the highest weight is 3L; + Ly and V), C €3> ® A%2C? (This is the
representation considered before for SLz, where we have A2C3 = (C3)*.)
W, = det[((:c%, L1, 1>7 (1%7 L2, 1)7 (1’%, 3, 1))]
W)\—i-p = det[((l’%, ZL‘%, 1)7 ($37 ZL’%, 1)7 (;U%a $§7 1))]
(27 — 23) (2] — 23) (23 — 25)

e e e R

Corrolary dim(Vz,1) = 8. It is a proper subrepresentation of C* @ A2C3. It is the kernel of the map to
A3(C3).

13.13 It is also irreducible as representations of SL(n): it is isomorphic to the adjoint representation.
13.14 Exercise: Irreducible representations of GL(n) are irreducible as representations of SL(n).

13.15 For n = 3, A = (3,1,0) the highest weight is 3L; + Lo and V) C Sym?C3 ® A2C? (This is the
representation considered before for SLz, where we have A2C3 = (C3)*.)
W, = det]((@3, 21, 1), (a3, 72, 1), (a3, 3, 1))
Wisp = det[((2],21,1), (23, 23, 1), (a5, 23, 1))]
777

= (w1 — w2) (w1 — x3) (22 — 73)

3w + 23w3 + 2303 + 203 00m3 + 2323 + 1123 + 2012375 + 2212003 + w123 + 2dw3 + 23203 + 202

13.16 Main problem: how to multiply the representations?
BeVe=> &V
How to compute v?
13.17 Pieri formula [Fulton-Harris, p.455]. Multiplication by Vi or by Vi«
13.18 Littlewood-Richardson formula

13.19 All the representations V) lift to ,,polynomial representations of” GL,(C). Irreducible repre-
sentations of GL,(C) are of the form Sy(C") ® (A"C™)®* with \ partition, A\, = 0 and k € Z

14 Weil character formula (cont.), representations of SO(n), Clifford
algebras

14.1 Let G any semisimple Lie group with fixed maximal torus. We fix a Weyl chamber Kj, in that
way choosing positive roots, p = Sp=half-sum of positive roots. Let w € Ky, then the character of the

irreducible representation restricted to the maximal torus is equal to W(w + p)/W(p), where

W(w) = Z V¥ = Z Z (—1)€tilwlt;2w2

oc€Weyl group o€z ee{—-1,1}2

Here % = exp(w(t)) denotes the map T'— C* given by the exponential of w.
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14.2 Example for Sp(2): p = 2L; + Ly, W = Z3 x Z? (permutations with signs)

W (aLi+bLy) = (afah—ay “ah—afuy +ay ey ") —(efag ... ) = Y (-1)7(@hy =2, () (200~ 2, (%)
o€

(in general det({a;}”i - x;w"}lgi’jgn))
W(p) = (z1 — @) (z122 — 1)(af — 1)(23 — 1)/ (z122)°
The natural representation has weight L;
W(3Ly + Lo) = (¢f — 23)((z122)* — 1)(a] — 1) (a3 — 1)/ (}x3)

The character is equal to

-1

(IL‘1 + 1‘2)(1’1 1‘2_1 + 1)

14.3 Exercise: Show that for Sp(n) we have
w(p) = (TG —2)(@iz; = 1) - TJ@? = 1))/ T o
1<J 7 A

14.4 Exercise: Compute the character for w = L1 4+ Lo

14.5 [B-tD §1.6] Clifford algebra of V' ~ K" with a quadratic form @ : V - K: C(Q) =T(V)/(v®

v - Q).

e . :V < C(V) as generators

o L(V)t(w) + t(w)i(v) = 2¢(v,w), where ¢p(v,w) = W (v+w) — Q(v) — Q(w) is the associated bilinear
form.

e 75 gradation C(Q) = C(Q)®" & C(Q)*%

e antihomomorphism z + t(z) = z¢, 1(v)! = 1(v) forv €V

e canonical homomorphism z — «a(z), a(v(v)) = —u(v) forv e V

o 7 :=ta(z) = at(z)

14.6 T(Q) = {x € C(Q)* |a(z)vz~! € V} actson V

14.7 Norm map N : C(Q) — C(Q), N(z) = a7, for v € V we have N(¢(v)) = —Q(v) - 1
14.8 H~ C(Q)® for V =R3, Q(v) = —|v|

14.9 Construction of Pin and Spin groups: V =R", Q(v) := —|v|?, N(v) = |v|2.

15 Spinors
15.1 ker(I'), — Aut(R™)) = R¥)

15.2 For z € I',, we have N(z) € R*.
Pf We check that for any v € R" the element N(Z) = Zx = ta(x)x acts trivially on R™.
By the definition of I';, we have
alzvz~t e V.
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t is constant on V, hence

t(z) ota(z) = a(z)ve!

hence

v = t(x)a(z)v(ta(z)z) L,

hence

Tx € ker = R*.

Remark: this implies N%E)E =271 so N(x) = N(%).

15.3 N is homomorphism on I,

15.4 The action of I'j, is via isometries ker : (p: I';, = O(n)) = R*.
Pf: We know that v € T, (it defines the reflection in v1) and check that N (Zv) = N(zv) (= N(Z)N(v) )

15.5 Pin(n) := ker(N : I';, = R*), there is an exact sequence
0 — Zs — Pin(n) - O(n) — 0
Pf. ker(N)Nker(p) = Zs
15.6 Spin(n) := Pin(n) N C(Q)* = p~1(SO(n)),

15.7 p is a nontrivial double covering.
Pf: the path s — ~(s) = cos(s) + sin(s)ereq, s € [0, 7] joins 1 with —1, p(v(s)) =rotation in the plane
lin(ejez) by the angle 2s.

15.8 Spin representations: for so(2n) there are highest vectors o = %(Ll + Lo+ -+ Ly_1 £ Ly).
The spinor representation Sy, C A*V.
Taking the convex hull of W-a C A}, We obtain the polytope spanned by §(+£Li£Lo+- - -+L,_1£Ly)

with even or odd number of — depending whether it is S;% or S,, . 0 lies in the interior but cannot be

a weight of ngr Hence dim S;En =on-1
15.9 Similarly: Ss,+1 has the highest weight %(Ll + Lo+ ---+ Ly), dim Sy, = 2.

15.10 Construction via complexification: V@ C = W @ W*. Then S;;l =AW, S, = A%V with
the action of C(Q),) given on the generators w-& = w A for w € W, £ € A*W and the derivation
&= Doy for fe W,

[Fu-Ha §Lemma 20.9]. Weight of e; is equal to 5(3;c; Li — >igr Li)

15.11 For so(2n+ 1) the highest vectors is equal to %(Ll + Lo+---+ Ly). The spinor representation
is constrcted via complexification: V@ C = W @ W* @ C. The additional unit vector acts as a on

Son+1 = A*W. This action cannot be split into even and odd parts.

15.12 Special cases: by m we mean the natural action of SO(n) on R”
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Group T S*
Spin(3) = SU(2) imH C?
+211, 0 +1,
Spin(4)c = SLa(C)? M(2 x 2) two copies of C?
:|:L1 + Lll :|:L1 and iLll
Spin(5)c = Sp(2) | ker(w) C A%(C?) c?
11+ Lo, 0 1, +Lo
Spin(6)c = SL4(C) A?(Ch) c* and (C*)*
L; + Lj L; and —L;

15.13 Representation ring:[B-tD, §VI.6]

15.14 Special properties of SO(8): triality. Note: dim(Sgt) =
The basis of S;

vector weight
1 YLy —Ly—Ls— L) —L}
er ey 5(+L1 + Ly — Ly — Ly) L
e1 N es %(+L1 Ly + L3 — Ly) Ly
e1 A ey $(+L1+Ly—Ly—Ly) L)
ez N e3 $(=L1+ Ly+ Ly — Ly) —L)
e2 A ey 5(— L1+L2—L3+L4) /A
es3 N\ ey l( Lo+ L3+ L4) —L/2
’61/\62/\63/\64‘ §(+L1+L2+L3+L4) Ly

The boxed vectors span an isotropic subspace of Sﬁ; (with isotropic to the quadratic form given by A.)
There exists an action of Spin(8) such that Sgr becomes the representation 7. Precisely, let us denote

by pT the spinor representation.

15.15 Claim: There exist an automorphism ¢ : Spin(8) — Spin(8) such that 7 = p* o ¢. Moreover
p~ = pto¢? and ¢3 = id. That is ¢ permutes cyclically C3, Sé'r and S8.

15.16 Triality map: given three vector spaces of equal dimensions with quadratic nondegenerate

forms: (V;, Q;). Triality is a trilinear map
VixVox Vs —K

such that the associated maps
[ VixV; = Vi~V
satisfy
Qr(fr(v,w)) = Qi(v)Qj(w).
Examples:
- Clifford multiplication S; x RS — S

-Vi=Vo=V3 =R or C or H or octonions

- there are no more trialities.
15.17 Construction of triality automorphism via permutation of weights, see Appendix.

15.18 Remark Sgt admits a real structure, i.e. Sét ~ Sﬂjis ® C and triality can be realized as an

automorphism of the real group Spin(8)
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15.19 More about spinors and triality: A. Vistoli, Notes on Clifford algebra, Spin Groups and Triality,
http://homepage.sns.it/vistoli/clifford.pdf

Exceptional group G-
15.20 s0(8) = go
15.21 go acting on R® fixes one direction, say ey, hence g acts on e; ~ R”
15.22 gy acting on A3R” fixes one 3-form. This form defines octonionic multiplication.
15.23 gy is precisely the algebra of derivation of octonions and Aut(Q) = Gs.
15.24 For the computations see http://www.mimuw.edu.pl/%7Eaweber /triality /
15.25 The group with Lie algebra go is simplyconnected and has the trivial center.

15.26 A another constuction of G2 can be found in [J. F. Adams: Lectures on Exceptional Lie

Groups|

16 Appendix: Triality and G5

For real Lie algebra so0(8) the triality was constructed by E. Cartan, Le principe de dualité et la théorie
des groupes simples et semi-simples, Bulletin sc. Math. (2) 49, 361-374 (1925). The approach presented
here is equivalent, to the Cartan’s work in the complex case. The triality automorphism given below has
an advantage, that the root spaces coincide with the coordinates of the matrix and these coordinates
are permuted by Zs.

Working with the complex coefficients we choose a basis in C® (as in [Fu-Ha, §19]) in which the quadratic
form is equal to

T1x8 + X2T7 + T3x6 + T4T5 .

For real coefficients this means that we deal with SO(4,4). The maximal torus of SO(4,4) consists of
the diagonal matrices

diag(e',e'?, e’ el et 72 e o7l

The following weights form the root system of so(4,4):
:f:Llﬂ:Lj fori;éj,

where L;(t1,t2,t3,t4) = t;. Choosing the Borel subgroup as the upper triangular matrices we obtain

the Dynkin diagram of simple roots:

C=Ls+ ILy4

/

— VR

N
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The triality automorphism rotates the diagram anti-clockwise:
(Ll — LQ) — (L3 =+ L4) — (L3 — L4) — (L1 — LQ)

and fixes the root Lo — L3. In the basis consisting of the weights L; the triality automorphism is given

by the remarkable matrix:

111 1
2 2 2 2
11 11
2 2 2 2
(1)
1111
2 2 2 2
11 1 1
2 2 2 2

16.1 Triality in so(4,4)

We have given a formula for triality automorphism acting on the dual t* of the Cartan subalgebra of
50(4,4). It does not preserve the lattice corresponding to the group SO(4,4) but it preserves the lattice
spanned by L;’s and %(Ll + Lo + L3 + Ly4), which corresponds to Spin(4,4), the cover of SO(4,4). We

list below the set of positive roots:

Li—Ly Ly—L3 Ly—Ly Li+ Ly ’L1+L3‘ ’L1+L2‘

Ly—Ly Ly+Lsy Lo+ L3

L3 —Ly L3+ 1Ly

The boxed roots are fixed by triality. It can be easily seen when we express the roots in the basis of

simple roots:

A Ay ABY  ACY [ABCY| |ABC2Y |
BY cy BCY
B C

Here for example ABC2Y denotes the root A + B + C' + 2Y. Dividing roots into orbits of the triality
automorphism we see that we have the fixed roots Y, ABCY and ABC2Y. Three free orbits are
generated by A, AY and ABY.

From general theory it follows that the triality automorphism of weights lifts to a self-map of the Lie
algebra so0(4,4). But a priori it is not clear that one can find such a lift of order three. Not every lift
satisfies ¢ o ¢ o ¢ = Id. The choice of signs is not obvious and demands a careful check. The elements
of s0(4,4) for our quadratic form defined by the matrix with 1’s on the antidiagonal are the matrices
(m4j), <ij<s which are antisymmetric with respect to the reflection in the antidiagonal. Such a matrix

is transformed by the triality automorphism to the following one

o ma3q —Mo4 Mo  Mi4 mie miy 0
my3 . mas  —Mmiz  Mis 0 —mi7
—My2 o m3s M2 0 —mi5 | —Mi6

me2 M52 ms3 J 0 —mi2 M1z —Mig
m41 —m3z1 M2 0 . —ma3s  —Ms  —M2e
ms1 0 —ma1  —Ms3 . —Mag3| My
[mr] 0 —ms1 Mg —Msy | —M32 . —mg4
0 |—mn| [-me| —ma —mex  maz  —mgy .
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The upper half of the diagonal (1, t2,t3,t4) = (m11, M2, M33, Myyq) is transformed by the matrix (1) to

—(m11 + ma2 + m33—myyq)

2
1
§(m11 + Mmaog—maz + May)
1
§(m11—m22 + maz + May)

§(m11 — M22 — M33 — m44)

We remark that this is an unique automorphism with real coefficients extending the self-map of the
maximal torus. We would like to stress, that both: the Cartan construction of triality for so(8) and
the triality for so(4,4) presented here works for any ring in which 2 is invertible. On the other hand
we note that the remaining real forms of the orthogonal algebra so(k,k — 8) for £k = 1,2,3,5,6,7 do
not admit any triality automorphism with real coefficients. Already on the level of t* we obtain the

rotation matrices with imaginary coefficients.

16.2 Noncompact version of G,

The algebra fixed by ¢ consist of matrices of the form

to +ts3 ap —ao as as aq as 0
Qg t2 ay a9 ag as 0 —as
—asg ag ts ai al 0 —as —ay
aio as Qg 0 0 —a1 —ag —as
aio as ag 0 0 —a1 —ag —as
a aio 0 —as —ag —tz3 —ar az
a2 0 —ain —as —ag —ag —t2 —ay

0 —aj2 —aix —aijp —aipp ag —ag —ta—13

16.1 Theorem. The fixed points of the triality automorphism is a Lie algebra of the type go.
Indeed, the fixed elements of t* is spanned by the simple roots Y = Ly — L3 (the longer root) and
1(A+ B+ C) = 3(L1 — Ly + 2L3) (the shorter root)

a+B+c) O==Ov .

The shorter root as the functional on t? is equal to A or B or C, but we represent it as an invariant

1
3

element %(A + B+ C) € (). The positive root spaces of s0(4,4)? are the following:

e the eigenspaces associated to the longer roots
50(474)Y7 50(45 4)ABCY7 50(474)ABCQY

e the diagonal subspaces associated to the shorter roots 3(A+B+C), 3(AY +BY +CY), :(ABY +
ACY + BCY)
(50(4,4)4 ® 50(4,4) p B s0(4,4)¢)”

(50(4,4) ay @ 50(4,4) gy @ s0(4,4)cy)?,

(s0(4,4) aBy @ 50(4,4) acy P s0(4, 4)BCY)¢-
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16.3 The twin-brother of octonion algebra

The Lie group corresponding to s0(4,4)? is the noncompact form of G since its maximal torus is (R*)?.
The Lie algebra so(4, 4)¢ annihilates the vector vg = e4 — e5 and its action restricted to voL preserves
the form

W = 2e167 + 2€538 + €3445)7 — €1(4+5)8 T €3(445)6 -
where e;.k( 445); neans erN(ej+et)A e;. The associated algebra is the algebra of pseudo-Cayley numbers

(also called split octonions).

30



