
Some problems
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1.1 Exercises from Fulton-Harris §7

1.2 Let G be a topological group. Show that if a subgroup of G is open, then it is closed. Show that
component of 1 is a subgroup.

1.3 Show that π1(G) is abelian.

1.4 Let G be a connected topological group. Let p : G̃ → G be a connected covering. Choose an inverse
image of 1. Show that G̃ has a natural group structure, such that p is a homomorphism. Interpret the
kernel as the group of deck transformation.

1.5 Check basic properties of quaternions (octonions) e.g.: aā = |a|2 ∈ R, |ab| = |a||b| for a, b ∈ H (or
∈ O).

1.6 Check that the set of the maps of algebras map(C,H) is the 2-dimensional sphere.

1.7 Prove that Aut(H) = H∗/R∗.

1.8 Show that the only R-division (associative) algebra are C and H.

1.9 Show that Sp(n) ⊂ SU(2n).

1.10 Show, that Sp(n) is the maximal compact subgroup of Sp(n, C).
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2.1 Exercises from Fulton-Harris §8

2.2 Show that R3 with the vector product × is a Lie algebra isomorphic to so(3).

2.3 Compare the Lie algebra of upper-triangular 3 × 3 matrices with 0’s on the diagonal with the Lie
algebra generated by x and d

dx acting on the polynomial ring C[x].

2.4 Compute explicitly exp for the algebras above.

2.5 Check that the commutator of two derivations of an algebra (not necessarily associative) is a deriva-
tion.

2.6 For any R-algebra compare Lie(Aut(A)) and Der(A).
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3.1 Compute Hom(S3, S3).

3.2 Check that the complexifications of U(n), SU(n), O(n), SO(n), Sp(n) are the groups GLn(C),
SLn(C), O(n, C), SO(n, C), Sp(n, C).

3.3 Compute Lie algebras of the classical compact groups, and find their complexifications.

3.4 Compute the differential of the map GLn(R) → GLn(R), A 7→ A2 in the direction X. Show that it
does not vanish if A and X are symmetric, A positive definite.

3.5 Compute few terms of Baker-Campbell-Hausdorff formula. (At least the third term.)

3.6 Check the formula

d

dt
eA+tB = eA

(
B − [A,B]

2!
+

[A, [A,B]]
3!

− [A, [A, [A,B]]]
4!

+ . . .

)
.

3.7 Show that exp for SU(2) is surjective. At which points it is a submersion?

3.8 Let G ⊂ GLn(C) be a reductive group. Define a hermitian product in g by the formula 〈〈X, Y 〉〉 =
tr(XY ∗). The hermitian product in g allows to define the Cartan involution in GL(g). Show that
Ad(G) ⊂ GL(g) is a reductive subgroup. (Show that (adX)∗ = adX∗ .)

4

4.1 For which groups: GL+
n (R), SLn(R), GLn(C), SLn(C), Bn (upper triangular), Nn (upper triangular

with 1’s on the diagonal) exp is surjective?

4.2 Compute the Killing form for the classical algebras (in particular for sln(C), gln(C)) and for bn.
Show, that for sln(C) the Killing form is equal up to a constant to B0(X, Y ) = Tr(XY ).

4.3 Let g ⊂ End(C[z]) be the Lie subgroup generated by the multiplication by z and ∂
∂z . Show that g

has a finite dimension. Find a group G which has Lie algebra g. Does G act on C[z]?

4.4 Exercises from Fulton-Harris §9.
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5.1 Compute what are the maximal tori in U(n), SU(n), SO(n) and Sp(n). What are the normalizers
N(T ) and the Weyl groups.

5.2 Show that in U(n) every commutative subgroup is included in a maximal torus.

5.3 Show that the same statement is not true for SO(3).

5.4 Let T be a torus (compact connected commutative Lie group). Show that there exists g ∈ T such
that 〈g〉 is dense in T .

5.5 Show that for any element g of a topological group G closure〈g〉 is abelian. For G = U(n) charac-
terize those elements for which closure〈g〉 is a maximal torus.

5.6 Jordan decomposition. Let a semisimple Lie algebra acts on a vector space ρ : g → End(V ), and
let a ∈ g. Decompose ρ(a) = d + n where d is diagonal in a certain basis, and n is upper-triangular with
1’s at the diagonal. Show that there exist elements ad and an in g such that ρ(ad) = d, ρ(an) = n and
ad + an = a.
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6.1 Decompose Hom(V, V ) into irreducible representations of G = GL(V ), where G acts on Hom(V, V )
– left multiplication
– conjugation.

6.2 Show that the natural representation of SL2(C) is isomorphic to its dual. (This is not true for
GL2(C).)

6.3 Decompose bilinear forms on V into irreducible representations of GL(V ).

6.4 Show that irreducible representations of G × H are of the form V ⊗ W , where V is a irreducible
representation of G and W is a irreducible representation of H.

6.5 Let V be irreducible real representation of odd dimension. Show that VC is irreducible. If the
dimension is even it can happen that VC ' W ⊕W .

6.6 Show that two real representation are isomorphic if and only if their complexification are isomorphic.

6.7 Give the precise formula for the action of the Lie algebra g on HomG(V,W ).
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7.1 Decompose into a direct sum of irreducible subrepresentations Sym3(C2)⊗ Sym2(C2).

7.2 Show that Symn(Sym2(C2)) '
⊕[n/2]

s=0 Sym2n−4s(C2).

7.3 Decompose Sym2Sym3(C2).

7.4 What are the irreducible representations of GL2(C)?

8

Fulton-Harris: exercises §13-§14.

8.1 Decompose Sym2(C3)⊗ (C3)∗ into irreducible representations of SL2(C).

8.2 Show Λn−1Cn = (Cn)∗ as representations of SLn(C) .
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Except from Fulton-Harris:

9.1 Show that for any simple Lie group G the quotient Λ/ΛR is isomorphic to the center of G. Here Λ
is the lattice of weights, and ΛR is the sublattice generated by roots. First check the claim for SLn(C)
and SO(n).

9.2 Show that for a compact simple Lie group there exists only one up to a constant invariant scalar
product, which is the –Killing form.

9.3 Check by examples (C3, (C3)∗, Sym2(C3), etc.) what is the kernel of the map M(ω) → V (ω) from
the Verma module the to irreducible representation associated to a weight ω. Then find a formula in a
book.
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10.1 Find the maximal weight of the dual representation of the irreducible representation of SLn(C)
corresponding to the diagram λ.

10.2 Find Kostka numbers of the irreducible representation of SLn(C) corresponding to the diagram
λ = (n− 1, n− 2, n− 3, . . . , 1, 0).
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11.1 Suppose that H ⊂ G and rank H = rank G. Show that every root of H is a root of G. Give
interesting examples (GLn(C)×GLm(C) ⊂ GLm+n(C) is a trivial example). Compute Weyl groups.

11.2 For SLn(C): can one split the homomorphism NT → NT/T = W?

11.3 Construct a 2-fold coverings SU(2)× SU(2) → SO(4), Sp(2) → SO(5), SU(4) → SO(6).
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Exercises and examples from Fu-Ha SS16-17

12.1 Check how Weyl character formula works for sp(n).

12.2 Assume that in the category C the isomorphism classes of objects forms a set X. Assume that the
direct sum exist. Define an relation X2:

([V ], [W ]) ∼ ([V ′], [W ′]) if ∃Z ∈ Ob(C) V ⊕W ′ ⊕ Z ' V ′ ⊕W ⊕ Z .

Check that it is an equivalence relation and that the in the set of equivalence classes one there is a natural
stucture of an abelian group.
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13.1 ,,Bott periodicity” for complex Clifford algebras: Check that Cn+2 ⊗R C is isomorphic to the
algebra of 2× 2 matrices with coefficients in Cn ⊗R C.

13.2 Compute the group of invertible elements C∗
2 of the real Clifford algebra and the Clifford group

Γ2. Which two circles in Γ2 form Pin(2)?

13.3 Find explicite isomorphisms or show that it does not exist between representations of Spin(n):
– spinors S and S∗ for n odd
– spinors S± and (S±)∗ for n even
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14.1 Which spinors are complexifications of real representations of Spin(n)? The answer depends on
the deisibility of n by 8.

14.2 Check the isomprphism of Spin(2n) representations

Sym2(S+) = (λn)+ + λn−4 + λn−8 + . . .

Λ2(S+) = λn−2 + λn−6 + λn−10 + . . .

Sym2(S−) = (λn)− + λn−4 + λn−8 + . . .

Λ2(S−) = λn−2 + λn−6 + λn−10 + . . .

Here λk is the k-th exterior power of the natural representation of the ortogonal group.
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14.3 Check the isomprphism of Spin(2n + 1) representations

Sym2(S) = λn + (λn−3 + λn−4) + . . . + (λn−4i−3 + λn−4i−4) + . . .

Λ2(S) = (λ(n− 1) + λn−2) + (λn−5 + λn−6) + . . . + (λn−4i−1 + λn−4i−2) + . . .

15

15.1 Show that the stabilizer in GL7(R) of the 3-form Φ ∈
∧3 Rn defining multiplication of octonions

is equal G2.
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