

Some problems

- 1 Show, that $Sp(n)$ is the maximal compact subgroup of $Sp(n, \mathbb{C})$.
- 2 Show that \mathbb{R}^3 with the vector product \times is a Lie algebra isomorphic to $so(3)$.
- 3 Compare the Lie algebra of upper-triangular 3×3 matrices with 0's on the diagonal with the Lie algebra generated by x and $\frac{d}{dx}$ acting on the polynomial ring $\mathbb{C}[x]$.
- 4 Compute explicitly \exp for the algebras above.
- 5 Check that the commutator of two derivations of an algebra (not necessarily associative) is a derivation.
- 6 For any \mathbb{R} -algebra compare $Lie(Aut(A))$ and $Der(A)$.
- 7 Compute $Hom(S^3, S^3)$.
- 8 Compute the differential of the map $GL_n(\mathbb{R}) \rightarrow GL_n(\mathbb{R})$, $A \mapsto A^2$ in the direction X . Show that it does not vanish if A and X are symmetric, A positive definite.
- 9 Compute few terms of Baker-Campbell-Hausdorff formula. (At least the third term.)
- 10 Check the formula
$$\frac{d}{dt} e^{A+tB} = e^A \left(B - \frac{[A, B]}{2!} + \frac{[A, [A, B]]}{3!} - \frac{[A, [A, [A, B]]]}{4!} + \dots \right).$$
- 11 Show that \exp for $SU(2)$ is surjective. At which points it is a submersion?
- 12 Let $G \subset GL_n(\mathbb{C})$ be a reductive group. Define a hermitian product in \mathbf{g} by the formula $\langle\langle X, Y \rangle\rangle = \text{tr}(XY^*)$. The hermitian product in \mathbf{g} allows to define the Cartan involution in $GL(\mathbf{g})$. Show that $Ad(G) \subset GL(\mathbf{g})$ is a reductive subgroup. (Show that $(ad_X)^* = ad_{X^*}$.)
- 13 For which groups: $GL_n^+(\mathbb{R})$, $SL_n(\mathbb{R})$, $GL_n(\mathbb{C})$, $SL_n(\mathbb{C})$, B_n (upper triangular), N_n (upper triangular with 1's on the diagonal) \exp is surjective?
- 14 Compute the Killing form for the classical algebras (in particular for $sl_n(\mathbb{C})$, $gl_n(\mathbb{C})$) and for b_n . Show, that for $sl_n(\mathbb{C})$ the Killing form is equal up to a constant to $B_0(X, Y) = \text{Tr}(XY)$.
- 15 Let $\mathbf{g} \subset End(\mathbb{C}[z])$ be the Lie subgroup generated by the multiplication by z and $\frac{\partial}{\partial z}$. Show that \mathbf{g} has a finite dimension. Find a group G which has Lie algebra \mathbf{g} . Does G act on $\mathbb{C}[z]$?
- 16 Show that in $U(n)$ every commutative subgroup is included in a maximal torus.
- 17 Show that the same statement is not true for $SO(3)$.
- 18 Let T be a torus (compact connected commutative Lie group). Show that there exists $g \in T$ such that $\langle g \rangle$ is dense in T .
- 19 Show that for any element g of a topological group G $\text{closure}\langle g \rangle$ is abelian. For $G = U(n)$ characterize those elements for which $\text{closure}\langle g \rangle$ is a maximal torus.

20 Decompose $\text{Hom}(V, V)$ into irreducible representations of $G = GL(V)$, where G acts on $\text{Hom}(V, V)$

- left multiplication
- conjugation.

21 Show that the natural representation of $SL_2(\mathbb{C})$ is isomorphic to its dual. (This is not true for $GL_2(\mathbb{C})$.)

22 Decompose bilinear forms on V into irreducible representations of $GL(V)$.

23 Let V be an irreducible real representation of odd dimension. Show that $V_{\mathbb{C}}$ is irreducible. If the dimension is even it can happen that $V_{\mathbb{C}} \simeq W \oplus \overline{W}$.

24 Show that two real representation are isomorphic if and only if their complexification are isomorphic.

25 Give the precise formula for the action of the Lie algebra \mathbf{g} on $\text{Hom}_G(V, W)$.

26 What are the irreducible representations of $GL_2(\mathbb{C})$?

27 Show that for a compact simple Lie group there exists only one up to a constant invariant scalar product, which is the –Killing form.

28 Check by examples $(\mathbb{C}^3, (\mathbb{C}^3)^*, \text{Sym}^2(\mathbb{C}^3)$, etc.) what is the kernel of the map $M(\omega) \rightarrow V(\omega)$ from the Verma module the to irreducible representation associated to a weight ω . Then find a formula in a book.

29 Find Kostka numbers of the irreducible representation of $SL_n(\mathbb{C})$ corresponding to the diagram $\lambda = (n-1, n-2, n-3, \dots, 1, 0)$.

30 Suppose that $H \subset G$ and $\text{rank } H = \text{rank } G$. Show that every root of H is a root of G . Give interesting examples ($GL_n(\mathbb{C}) \times GL_m(\mathbb{C}) \subset GL_{m+n}(\mathbb{C})$ is a trivial example). Compute Weyl groups.

31 For $SL_n(\mathbb{C})$: can one split the homomorphism $NT \rightarrow NT/T = W$?

32 Construct a 2-fold coverings $SU(2) \times SU(2) \rightarrow SO(4)$, $Sp(2) \rightarrow SO(5)$, $SU(4) \rightarrow SO(6)$.

33 Assume that in the category \mathcal{C} the isomorphism classes of objects forms a set X . Assume that the direct sum exist. Define an relation X^2 :

$$([V], [W]) \sim ([V'], [W']) \quad \text{if} \quad \exists Z \in \text{Ob}(\mathcal{C}) \quad V \oplus W' \oplus Z \simeq V' \oplus W \oplus Z.$$

Check that it is an equivalence relation and that the in the set of equivalence classes one there is a natural structure of an abelian group.

34 „Bott periodicity“ for complex Clifford algebras: Check that $C_{n+2} \otimes_{\mathbb{R}} \mathbb{C}$ is isomorphic to the algebra of 2×2 matrices with coefficients in $C_n \otimes_{\mathbb{R}} \mathbb{C}$.

35 Compute the group of invertible elements C_2^* of the real Clifford algebra and the Clifford group Γ_2 . Which two circles in Γ_2 form $Pin(2)$?

36 Find explicite isomorphisms or show that it does not exist between representations of $Spin(n)$:

- spinors S and S^* for n odd
- spinors S^{\pm} and $(S^{\pm})^*$ for n even

37 Which spinors are complexifications of real representations of $Spin(n)$? The answer depends on the desirability of n by 8.

38 Check the isomorphism of $Spin(2n)$ representations

$$Sym^2(S^+) = (\lambda^n)^+ + \lambda^{n-4} + \lambda^{n-8} + \dots$$

$$\Lambda^2(S^+) = \lambda^{n-2} + \lambda^{n-6} + \lambda^{n-10} + \dots$$

$$Sym^2(S^-) = (\lambda^n)^- + \lambda^{n-4} + \lambda^{n-8} + \dots$$

$$\Lambda^2(S^-) = \lambda^{n-2} + \lambda^{n-6} + \lambda^{n-10} + \dots$$

Here λ^k is the k -th exterior power of the natural representation of the orthogonal group.

39 Check the isomorphism of $Spin(2n+1)$ representations

$$Sym^2(S) = \lambda^n + (\lambda^{n-3} + \lambda^{n-4}) + \dots + (\lambda^{n-4i-3} + \lambda^{n-4i-4}) + \dots$$

$$\Lambda^2(S) = (\lambda^{(n-1)} + \lambda^{n-2}) + (\lambda^{n-5} + \lambda^{n-6}) + \dots + (\lambda^{n-4i-1} + \lambda^{n-4i-2}) + \dots$$

40 Show that the stabilizer in $GL_7(\mathbb{R})$ of the 3-form $\Phi \in \bigwedge^3 \mathbb{R}^n$ defining multiplication of octonions is equal G_2 .