LE PRINCIPE DE DUALITE ET LA THEORIE DES GROUPES SIMPLES
ET SEMI-SIMPLES;

Par M. E. CARTAN.

1. M. Weinstein, dans un Mémoire récent ('), a posé et résolu
le probléme suivant : Faire correspondre, suivant uné loi déter-
minée, & une malrice arbitraire X d’ordre n une autre
matrice X" d’ordre n, de telle sorte qu'au produit XY de deux
matrices quelconques corresponde le produit X'Y' des deux
maltrices correspondantes.

Si I'on se borne au cas o les n? éléments de X' sont des fonc-
tions indépendantes des n? éléments de X, et ot les matrices con-
sidérées sont de déterminant égal a 1, le probléme comporte deux
solutions, données respectivement par les formules

(1) X'=A-1XA,
(2) X'= A-1X-1A,

ou A désigne une matrice fixe arbitraire et X la matrice qui se
déduit de X par I'échange des lignes et des colonnes.

Si 'on remarque que les n? éléments d’une matrice X sont les
paramétres d'une substitution linéaire, le probléme de M. Weinstein
revient a trouver toutes les transformations de paramétres qui
laissent invariante la loi de composition des substitutions du groupe

{') Math. Zeitschr,, t. AVI, 1923, p. 78-91.

555



556

362 PREMIERE PARTIE:

linéaire. Une substitution de déterminant 1 pouvant étre regardée
comme définissant une homographie de I'espace 4 n — 1 dimen-
sions, les formules (1) et (2) fournissent toutes les transformations
effectuées sur les homographies de | espace projectif qui conservent
la structure de cet espace; les formules (1) et (2) montrent que lg
structure de Uespace projectif est invariante dans le groupe
mizte des homographies [form. (1)] et des corrélations
[(form. (2)]; on voit que, de ce point de vue, le principe de
dualité s'introduit d'une maniére nécessaire en Géométrie pro-
jective ().

Le probléeme de M. Weinstein est un cas particalier du probléme
général suivant :

E'tant donné un groupe continu G a rparameétres ay, ..., a,.,
trouver toutes les transformations qui, effectuées sur ces para-
métres, laissent invariante la loi de composition des transfor-
mations du groupe, ou encore laissent invariante la structure
du groupe.

Si l'on désigne par S, une que]conque des transformations du
groupe G, on a une premiére solution du probléme par la formule

(3) S

wn

e

@y

= §;! Sg

dans laquelle les @ sont fixes; elle fait correspondre 4 la transfor-
mation variable S la transformation S.

>

"en respectant évidemment
la loi de composition des transformations du groupe. Les trans-
formations de paramétres définies par Péquation (3) engendrent
le groupe adjoint T de G, au sens de S. Lie.

Il peut avriver que les transformations du groupe adjoint soient
les seules qui laissent invariapte la structure du groupe; mais le
contraire peut aussi se présenter : en ce cas, les transformations
les plus générales forment un groupe I qui contient le groupe
adjoint ' comme sous-groupe invariant; si en cffet dans la for-
mule (3) on effectuc sur les a, les ¢ et les ¢ une méme transfor-
mation T de I, les transformations Sas Sg, S¢’ se changent en Sy,

(') On peat dire de méme que la structure de P'espace euclidien ordinaire est
invariante par le groupe mixte des déplacements et des symétries; elle I'est
aussi par le groupe des similitudes.
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S S.', et on a la relation

ST“: SET S,‘S,r,,

qui montre bien que la transformation T laisse le groupe I inva-
riant (Ja transformation de paramétres a de I' étant simplement
changée dans la transformation de parameétres b).

Toute transformation T de I'" sera théoriquement déterminée si
'on connait l'effet qu’elle produit sur les transformations infini-
tésimales de G : il est évident, en effet, que la transformation
identique de G est conservée par T, et (ue par suite toute trans-
formation infinitésimale de G est changée par T en une autre
transformation infinitésimale. Cela posé, soient

Xy o v Ko

les symboles de r transformations infinitésimales indépendantes

de G avee les relations de structure

(1 (X:X;)= Ec,—,-‘\-x_‘. Ly J=1,...,1)
5
Par la wansformation T, les transformations X; subissent une

substitution linéaire

(3) \f,rZz,-;..‘(/_. (Bo= B 0y P

k

Lles coefficients o sont assujettis a satisfaire aux relations

algébriques

16) E a,4zl,-;<:4,‘.:?c',j,z,\. (G Jas=1,..., 1),
k,l t

([ui expriment que la substitution (5) conserve les relations { i).

les formules (6) définissent done en somme le groupe 1"

2. Le probléme est particuliérement intéressant dans le cas ou
le groupe G est simple ou semi-simple. Dans ce cas en eflet toute
transformation infinitésimale de [ laissant invariant le groupe
adjoint continu I', qui'est simple ou semi-simple, fait partic du

groupe adjomt lui-méme ('). Si donele eroupe 17 n'est pas
: | J L) -

(') E. Cantan, Thése (Paris, Nony, 18¢%), p. 113.
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364 PREMIERE PARTIE.

confondu avec I, il est formé de plusieurs familles continues dis-
ll‘ i » " 4 - [ ‘. ’- 5 - 3
crétes de transformations (groupe mizte d’aprés S. Lie), dont une
seule forme un groupe (a savoir le groupe adjoint). C'est ce qui
se passe dans I'exemple cité plus haut, ot I'on a les deux familles
définies par (1) et (2).
On sait que toute transformation infinitésimale génerale Y (1)
o H Ak ? - = c1: » . i
de G fait partie d'un sous-groupe abélien 1 dont'ordre est égal au
rang [ du groupe et qui est défini par 'ensemble des transforma-
tions infinitésimales échangeables avec Y. Ce sous-groupe n'est
invariant dans aucun sous-groupe plus grand de G. Les sous-
groupesydépendent essentiellement de r— [ paramétres, puisque Y
dépend de r parameétres et que oo’ transformations Y distinctes
donnelu le méme sous-groupe 7. D’autve part, (Iuand on ellectue
sur un sous-groupe y les oo” transformations du groupe adjoint,
on obtient évidemment co"! sous-groupes vy, puisqu’il existe
[ - ’ > - e . . . . * . N i ;
oo transformations du groupe adjoint qui laissent + invariant. Il
B ]
est done a presumer que les différents sous-groupes Y sont tous
}mmolngues entre eux par rapport au groupe adjoint. Mais le rai-
sonnement précédent n’est pas suffisant pour le démontrer, car les
({IHLI‘I‘(‘RLS sous-groupes vy pourraient a priori former plusieurs
famllles.rllslm(rtes (non homologues entre elles), chacune élant
néanmoins a r — { dimensions. Nowus allons voir que cette der-
niere eventualité ne peut pas se présenter.
'En effet, tout sous-groupe v est formé des s transforma-
tions Ze; X; définies par les » équations linéajres (dont » — [ seu-
lement sont indépendantes)

E A;ieLCrls= 0 ($=1,...,r),

ik

ou les paramétres arbitraires a; sont assujelttis a I'unique condition

de ne pas annuler un certain polynome ;,sl:_:t_f'brique entier

| / .
Zr-t(@yy ooy @), Wl en vésulle que, dans le domaine complexe,

on peut toujours passer par continuité d'an sous-groupe v arbi-

.A( '} Cela signifie (ue son e€qualion caractéristique idmet le nombre minimum
(a =avoir Z) de rvacines nulles Léquation caras Lervistique de Y est eelle a laguelle
on ext comduit en cherehant les valeurs de % pour lesquelles il existe une trans-
formation infinitésimale Z telle que Pon wit (YZ) = 1 Z.
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traire & tout autre sous-groupe v. Les sous-groupes 1 forment donc
un seul domaine connexe. Si 'hypothése envisagée était exacte,
on pourrail trouver un sous-groupe Y, qui ne serait pas homo-
logue avec tous les sous-groupes y infiniment voisins; or cela
contredit la transitivité, dans le domaine infinitésimal, du groupe
adjoint considéré en tant qu’opérant sur les sous-groupes 7.

Cela posé, soit Y une transformation générale du groupe G,
soit Y' la transformation qui s’en déduit par une transforma-
tion T donnée de I"; soient y et ¥ les sous-groupes abéliens cor-
respondant 2 Y et Y'; soit enfin © une transformation du groupe
adjoint transformant y' en y. La transformation TO ' de " lais-
sera fize le sous-groupe ¥y.

1l suffira donc de déterminer toutes les transformations T qui
laissent invariant un sous-groupe y fixé une fois pour toutes, et de
les multiplier ensuite par une transformation arbitraire du groupe
adjoint. D'autre part, si deux transformations T et T’ laissant inva-
riant le sous-groupe v transforment de la méme maniére les trans-
formations inlinitésimales de y, la transformation T'T-' laisse
invariante chacune de ces transformations, et I'on démontre faci-
lement alors qu’elle appartient au groupe adjoint.

Finalement, tout revient a vhercher les transformations del’
qui laissent invariant le sous-groupe y et a étudier de quelle
maniére elles transforment entre elles les transformations

de ~.
]

3. Rappelons que les racines de I'équation caractéristique d’une
transformation arbitraire Xe;Y; de y sont r — [ formes linéaires
Wy vvey Wp_g G €4y ..., €7 €L que 7 — 5! d’entre elles sont des
combinaisons linéaires a coefficients entiers déterminés des [
autres ((iilt"_~.,f'()lu[umenm('.f_’.\'\. A chacune des » — [ racines w, est
associée une transformation déterminée Y, du sous-groupe y.
Toute transformation T aura pour effet d’effectuer sur les
1 — L transformations Yy associées aux r— [ racines wy, et par
suite aussi sur ces racines elles-mémes, une substitution (')
assujettic «a la seule condition de laisser invariantes les rela-

it d'une substitulion sur »— [ objets, chacun de ces objets étant

remplacé par un autre.
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forme quadr;ltiqm' non dégénér
plus intéressant. Le groupe (' est 1
d'ordre 2/-1]! = 53, 1!, tandis que le groupe ( est d’ordre
fois plus grand que dans le cas
L'indice / est ¢gal 4 6. La partic
vient de ce que 'on peut remplacer
dans I'expression générale des r;

acines == w; 2= wy, par des expres-

——— 3 ) P sy
général, donc d’ordre 3.2, i !
les quantités w; qui entrent

" o I/ 1 : |
sions de la forme (Foto,tutuw,)
Supposons la forme qnzu[mtir[urf invariante par G réduite a la
forme canonique

A0 .9 .2
.lu-f‘.ll-k...—}—..r.

Toute transformation infinitésimale de G est de Ja forme

af af
Z a;; (‘T{. J.;,. & Z}?,) (flf'_,": — Q).

EJ '

Cela posé soit [ un quelcunque des indices 1, 4, .. ., Z et consi-

dérons les 7 ensembles de 4 composantes

Aoy Qi g3y Qithi+5y  Aigasity,

ot 'on suppose que tout indice supérieur i 7

est i(lenli([m' au
méme indice diminué de 7. Considérons les substitutions

| 1 1 1 I
[T2 T3 T T h
| 0 ( 1|
| 3 5 m g
H=| |
| 1 I I L
IR
" I I I ![
| - == == = |
| ; 2 2 2|

elles engendrent un groupe fini d’ordre 6, contenant, outre I. K
562

€e & 8 variables). Ce cas est |e
ci, comme dans le cas géneral,

Lrois

alarité qui se présente ici pro-

?
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et la substitution identique, les substitutions

1 1
—= = : =
I 1 r
it z = =
2 — 1
H2 = . . . 1
e W 5 ~
1 | 1 I
._.‘; -—2 2 2
I 1 ! s
; 5 2 2
I I ! !
— KH?2 = ]
HK = KH : " . 1
1 I I =
e e S : =
1 1 I o
i 3 4 3
i 1 ! i
3 2 "3 Ta
2 — KH = -
H2K = Kl : : ; 1
2 T3 3 T
1 ! [ 1
2 2 2 2

i ec - chaque
Toute transformation de I s’obtient en effectuant, pour ch 1'q ;
aleur 1, 2 7 de V'indice ¢, I'une des six substitutions précé-
valeur 1, 2, ...,
dentes sur les quantités

Qo Qig,i+3y iy, i+6,  Ei+2,043

et en effectuant ensuite une transformation du g[:()‘llpl_" “d"mn[.l

Les résultats précédents se lient 1 un sk\‘.sleine._dt: “11;;:1: ):ltui
complexes, inventé par Graves et (Jn_\"l(z_\y,‘ (ll.].ll.l;,',lelu;hl ;“”.h;;
quaternions, et qu’on appelle les octaues. Considérons 7 ]

= ~ isfais: aux is de tiplication
Cal L ==1T, +.4. ) Séllljflll.‘?dnl aux ll)lh (ll_ miu [ H
=z % y y
»2 — 1
€q = )
€y = €y+1Ca+s = — Ca+3Cat+1t = €a+iCxabs
= — Co+45Cu+i = Ca+2€at+s = ——€a+3€oa+2-

[ ] 2® série Y {. (Décembre 1923.)
Bull. des Sciences matheém., 2* série, t. XLIX. (Décer e 19 s
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Un octave est un nombre complexe de la forme
X=x+ 7161+ T2€3+...+ T7€7;
le produit Z = Z3z;e; de deux octaves
X = Iz¢, Y=Zye
jouit de la propriété exprimée par la formule
i Bi= (2l i+ )l i 00

Cela posé, effectuons sur les composantes z; de l'octave X une
substitution orthogonale donnée A (de déterminant égal & 1); il
sera possible de déterminer une substitution orthogonale B telle
que, quelles que soient les deux octaves X et Y, le produit AX . BY
se déduise du produit XY par une substitution orthogonale C
convenablement choisie. Le passage de la substitution A a la subs-
titution B est donné par une transformation de I'" qui n’est autre
que celle fournie par la substitution H? ('), et le passage de A a C
est fourni par la substitation H2K.

Il y a une infinité de transformations de G invariantes par les
substitutions H et K ; toutes ces transformations laissent invariante
la variable x, et transforment les sept autres variables suivant un
groupe simple a 14 paramétres du type G.

G. On peut encore présenter les résultats précédents sous une
forme géomeétrique, différente seulement en apparence de la pré-
cédente, On peut prendre pour groupe G le groupe conforme de
I'espace a six dimensions. Supposons le ds? de cet espace réduit a

Ja forme
daydre, + dr, dr; + dry dog,.

Il existe deux familles de variétés planes a trois dimensions
totalement isolropes, c¢'esl-a-dire jouissant de la propriéié que
deux points quelconques d'une telle variété sont sur une méme

droite isotrope, tout entiére contenue dans la variété. Les équa-

(') Cette transformation de I, appliquée & une transformation infinitésimale
de G, est uniforme; appliquée a une transformation finie A, elle donne deux
transformations B et — B (qui seraient du reste identiques si on les regardait
comme des transformations projectives de I'espace a sept dimensions),
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tions générales des variétés V' de la premiére famille sont

; Ty— QA+ Ay T3— (1373 = 03
(;‘] Ty— az;+ Q31— QT3 = 0,

 Tg— Qg+ QT3 — AT = 0]

celles des variétés V' de la seconde famille sont

x:—b1+baﬂ'a—ba:rﬁ=0,
(8) x3— by byxr,—b,z3=0,

XTg— bs+ bgﬂl‘g— 512'5: 0.

Les variétés V', aussi bien que les variétés V", dépendent de six
paramétres.

Les points, les variétés V' et les variétés V" jouissent de eer-
taines propriétés communes. D’abord, de méme qu’il passe par un
point o' droites isotropes, il existe sur une V' ou une V" également
o' droites isotropes. Gonvenons de dire que deux points sont unis
si la droite qui les joint est isotrope; il peut arriver également que
deux variétés V' distinctes aient en commun une droite isotrope
(etalorsil n’y en a qu'une), nous dirons qu’elles sont unies; deux
variétés V' non unies n’ont aucun point commun. On définit de
méme deux variétés V" unies.

Convenons de dire qu'une variété V' est en incidence avec un
point M quand elle contiént ce point : 1l existe alors s? droites
isotropes passant par M et contenues dans V'. On définira de
méme l'incidence d’une variété V" et d’un point. De méme, une
variété V' et une variété V' n’ont en général aucune droite (iso-
trope) commune (mais seulement un point); s’ils ont une droite
commune, ils en ont «?; nous dirons alors qu’elles sont en inei-
dence.

Les conditions pour que deux points de coordonnées (z) et (z'),
deux variétés V' de paramétres («) et (a'), deux variétés V" de
paramétres (0) et (4') soient unies sont respectivement

(@) —a)) (&, — @) + (2 — 23) (2 — @5) + (T — &) (2, — 25) = o,
() —a,)(a,—a,)+ (ay—ay) (as—a;) + (ay —a3) (ay — az) = o,

(DY —Dy) (&, — by) + (by— by) (b5 — bs) + (b —- b3) (b — bg)

0,

De méme, les équations (7) et (8) expriment les conditions d'in-
eidence d'un point et d'une variété (V') et (V”). Les conditions
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d'incidence d’une variété (V') et d’une variété (V’) sont de méme

5 by—a,+ asb;— ayb,= o,

|

(9)

b;—(15+ (1’3[)1—— a;ba: 0,

bg— ag+ a,by— ay by =o.

.On voit d’aprés ce qui précéde que les notions d'union et d’in-
czde:n'ccf sont communes aux trois ensembles d’étres géométriques
ou éléments (points, variétés V', variétés V"), soit ql?e I'on m! )
(’ié're deux éléments de méme espéce, soit que I'on considére‘drem:
cl,e:n?ents d’espéces différentes. Nous affecterons ces tmis’os )écmL
d’éléments de trois indices o, 1, 2. o
) 0_“ vérifie facilement qu’'un élément donné d’espéce i est
1nf:1dencc avec oo éléments d’espéce différente j, et qut; ceen
c0® éléments sont deux a deux unis. Réciproquemm,ll s’1l existS
co? éléments d’espéce ¢ deux a deux unis, ils sont Cl’i in(‘.idenc:j
avec 1fn' méme élément d’espéce différente. On vérifie aussi u(;
de,zux falem('ants.unis d’espéce ¢ sont en incidence avec oo é]émecinq
d espéce J = i, et que réciproquement deux éléments d’espéce lr'
<n incidence avec co' éléments d’espéce différente sont uni;. :

cnzibgil:s po‘sc, 1.101!5 allo?s con_sidé.rel‘, a (':me des Lr:tnsfnrmations
f ! pa)ple;nenl dites, directes et inverses, d’aulres trans-
ormations. Cherchons a fair T i 1vi 1dé
inée, § tout Qimment Tespis domnée , wn Slimens dane mee
: e (, ément d’une autre
espéce donnée i, avec la condition qu’a deux éléments d’espéce z
unis correspondent deux éléments d’espéce ¢’ unis. On voit facile-
.|_ncnt que de telles correspondances existent. Si par exemple i =1
1'=2, 1l faudra déterminer six fonctions b,, by, ..., b d(’ia ,
...y ag, de maniére que I'équation de Monge K T

dby db,+ dby dbs+ dby dbg= o,
soil une conséquence de I'équation de Monge

da, da,+ da, das+ day dag= o :

la s 1 e AT obti !
olution générale s’obtient en partant d’une transformation

conforme arbitraire, en regardant les ; comme les coordonnées

du lfnmt transformé du point (a;). Il y a méme deux familles
continues de correspondances satisfaisant a la condition imposée.
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Prenons une de ces correspondances, et soit, j 5% i. Considérons
un élément d’espéce j : il existe oo® éléments d’espéce i en incidence
avec lui, et ils sont deux a deux unis. Il leur correspondra
o éléments d’espéce ¢/, deux a deux unis, et par suite en inci-
dence avec un méme élément d’espéce différente. Soit j' cette
espece. Nous établissons ainsi une correspondance entre un élément
quelconque d’espéce j et un élément d’espéce j'. De plus, deux
sléments unis d’espéce j étant en incidence avec o' éléments
d’espéce i, les deux éléments correspondants d'espéce j' seront en
incidence avec o' éléments d’espéce t' et par suite seront unis. Si
enfin 4 est le troisiéme indice autre que Z et j, et k' le troisiéme
indice autre que ¢’ et j', & tout ¢lément d’espéce & nous pouvons
faire correspondre comme ci-dessus un élément d’espéce k' par
Pintermédiaire des oo’ éléments d’espéce { qui sont en incidence
avec lui; a deux éléments unis d’espéce & correspondront deux
¢léments unis d’espéce k'. On démontre facilement qu'a deux
¢cléments en incidence d’espéces j et k correspondront deux
éléments en incidence d’especes J' et k.

Nous avons donc finalement, a toute substitution portant sur les
trois indices o, 1, 2, fait correspondre une famille continue de
transformations changeant deux ¢léments unis en deux éléments
unis et deux éléments en incidence en deux éléments en incidence.
’ensemble de toutes ces transformations forme un groupe mixte,
formé de six familles discrétes, qui prolonge le groupe conforme
de la méme maniére que le groupe des homographies et des corré -
lations prolonge le groupe des homographies en Géométrie projec-
tive. On peut dire que le principe de dualité de la Géométrie
projective est remplacé ici par un principe de trialité.

Il y a cependant une différence essentielle entre les corrélations
de la Géométrie projective et les nouvelles transformations adjointes
au groupe conforme de l'espace a six dimensions, c’est que ces
derniéres ne peuvent pas étre définies comme des transforma-
tions de contact; cela tient a ce que les variétés qui correspondent
4 un point arbitraire satisfont (au sens de Lie) a une méme équa—
tion aux dérivées partielles du premier ordre

p1ps - paps + paPs = 0.

11 est facile maintenant de définir les gix familles de transforma
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tions du groupe I'" qui conservent la structure du groupe conforme.
Il suffit de faire correspondre & une transformation arbitraire de
eelle qui s’en déduit par une transformation du groupe conforme
mixte prolongé.

8. Revenons au probléme général. Le cas des groupes semi-
simples est facile a discuter. Si un tel groupe G est formé de plu-
sieurs sous-groupes simples de p structures différentes, a savoir
a, de la premiére structure, «, de la seconde, etc., le nombre /
des familles discrétes de transformations constituant le groupe I',
s'obtient immédiatement si I'on connait les nombres &y, /iy, ..., 0y,

correspondant aux p structures donnces. On a
fo=agtag) oo, apl RP AR G

Un cas simple est celui du groupe G des substitutions orthogo-
nales (de déterminant 1) & quatre variables, groupe qui n’est que
semi-simple, étant formé de deux sous-groupes simples a trois
paramétres de rang 1. Onaicip=1,0=1,2, =2, h=2.Cela
est d’accord avec le résultat général relatif au groupe orthogonal
2 un nombre pair de variables (n° 4).

——————

Matematica. — Sur les espaces de Riemann dans lesquels le
transport par parallélisme conserve la courbure. Nota di E. Carran,
presentata ¥ dal Socio T. Levi-CiviTa.

Dans une note récente ), M. Harry Levy s’est propost de rechercher
I’ expression générale des ds* pour lesquels les symboles de Riemann 2 cing
indices sont tous nuls. Je viens précisément de m’occuper du méme pro-
bleme et je désirerais signaler rapidement une partie des résultats auxquels
je suis arrive.

Le probléme s’est posé 3 moi sous la forme suivante: Trouver fous
les espaces de Riemann jouissant de la propriété que la courbure riemanienne
&’ une facette quelcongue se conserve lorsqu’ on lui fait subir un transport par
parallélisme quelconque. Je suppose le ds* défini et je me borne aux solutions
irréductibles du probléme, c’est-a-dire A celles pour lesquelles le ds* ne peut
pas étre regardé comme la somme de deux autres éléments linéaires 3 va-
riables indépendents qui soient eux-mémes des solutions du probléme.

1. On sait qu’) tout point A d’un espace de Riemann on peut attacher
un groupe de rotations I' (groupe de holonomie) ® qui indique les rota-
tions subies par le corps des vecteurs issus de A quand on le transporte par
parallélisme le long d’un cycle arbitraire; ce groupe est le méme en tous
les points de I'espace. Il est évident que le groupe I laisse invariante la
forme de Riemann

(1) R = R,ju, x ‘,'f xt y;’

dont dépend la courbure riemanienne de la facette définie par les deux vec-
teurs x' et y .

Le probléme propost peut alors se ramener 3 la recherche de tous les
groupes de rotations T' qui ne laissent invariante aucune multiplicité plane

(1) Nella seduta del 18 aprile 1926.

(2) «Rendiconti», (6) 3!, 1926, pp. 65-69.

(3) E. Carrax, « Ann. Ec. Norm.», (3) 42, 1925, p. 21; voir aussi E. Cawrax,
La Géométrie des espaces de Riemann, « Mémorial des Sc. Math. », Gauthier-Villars, 1925,
P- 54 ¢t §5; ¢t un mémoire des « Acta Math.», t. 48, 1925.
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