
GAL2⋆
Zadania wybrane przez Andrzeja Webera i Jarosława Wiśniewskiego
Zadania na pierwszy tydzień (28.02–04.03)

Kategoria przestrzeni wektorowych, przestrzenie ilorazowe

Ta seria zadań dotyczy materiału, który będzie przerabiany na ćwiczeniach przed wykładami, ma więc spe-
cjalny charakte Przypominam, że Państwa aktywność na ćwiczeniach (i związana z nią ocena punktowa)r:
materiał jest prezentowany równocześnie z przykładami, które mają charakter zadań do samodzielnego
zrobienia. Zwykle zestaw zadań do zrobienia na kolejny tydzień będzie przedstawiony w sposób bardziej
zwięzły.

Kategorie
Przypomnienie: Zajmujemy się przestrzeniami liniowymi nad ustalonym ciałem K; często (z reguły)
będziemy zakładać, że są to przestrzenie skończonego wymiaru. Przekształcenia liniowe ϕ : V −→ W
zachowują kombinacje liniowe. Zbiór L(V,W ) = {ϕ : V −→W, liniowe} jest przestrzenią liniową nad K.
Przekształcenia liniowe możemy składać

V W U
φ

ψ◦φ

ψ

czyli mamy złożenie
L(V,W )× L(W,U) ∋ (φ, ψ) −→ ψ ◦ φ ∈ L(V,U)

Opis kategoryjny: Pracujemy w kategorii VectK przestrzeni liniowych nad ciałem K:

• obiektami w tej kategorii są przestrzenie liniowe V nad ciałem K;

• morfizmami (strzałkami) w tej kategorii są odwzorowania liniowe; dla każdej pary przestrzeni liniowych
mamy zbiór(!) MorVectK (V,W ) = L(V,W );

• morfizmy można składać, dla dowolnej trójki obiektów V, W, Z mamy

MorVectK (V,W )×MorVectK (W,Z) ∋ (φ, ψ) −→ ψ ◦ φ ∈ MorVectK (W,Z)

• składanie morfizmów jest łączne, czyli dla trójki morfizmów, które można składać, wynik nie zależy od
kolejności składania, czyli (φ ◦ ψ) ◦ χ = φ ◦ (ψ ◦ χ)

• identyczność: dla każdego obiektu V mamy wyróżniony (jedyny!) element idV ∈ MorVectK (V, V ), iden-
tyczność jest neutralna dla składania,

∀φ ∈ MorVectK (V,W ) : idW ◦ φ = φ = φ ◦ idV

Uwaga Powyższe punkty charakteryzują dowolną kategorię C: wystaczy zdefiniować klasę obiektów i
morfizmy, i zamiast VectK piszemy C (lub cokolwiek innego). Na przykład w kategorii VectK mamy
podkategorię, w której obiektami są przestrzenie skończonego wymiaru, oznaczamy ją Vect<∞K .
Zadanie 1 Sprawdź, że to są kategorie.

(a) Kategoria Set, w której obiektami sa zbiory a morfizmami funkcje.

(b) Dla dowolnego zbioru X kategoria P(X), w której obiektami są podzbiory zbioru X a morfizmami
zawieranie (inkluzje) podzbiorów, czyli

MorP(X)(A,B) =

{
{ι : A ↪→ B} jeśli A ⊆ B
∅ jeśli A ̸⊆ B

(c) Kategoria z jednym obiektem ⋆, w której Mor(⋆, ⋆) = G, gdzie G jest dowolnym grupoidem z
działaniem G×G ∋ (g1, g2)→ g1 ◦ g2 ∈ G, które jest łączne i ma element neutralny 1G.



Izomorfizm: dwa obiekty V,W są izomorficzne jeśli istnieją φ ∈ MorVectK (V,W ) i ψ ∈ MorVectK (W,V ),
takie że ψ ◦ φ = idV i φ ◦ ψ = idW .
Obiekt zerowy, morfizm zerowy. Kategoria VectK ma wyróżniony obiekt: przestrzeń zerową 0. Dla
dowolnej przestrzeni V istnieje dokładnie jeden morfizm 0→ V i dokładniej jeden morfizm V → 0, czyli
|MorVectK (0, V )| = |MorVectK (V, 0)| = 1. Morfizm Θ : V −→W nazywamy zerowym jeśli faktoryzuje się
przez obiekt zerowy, czyli zachodzi równość dla złożenia

V 0 W

Θ

Morfizm zerowy jest wyznaczony jednoznacznie w MorVectK (V,W ) (dlaczego?) i będziemy go oznaczac
po prostu przez 0. Zwróć uwagę, że id0 = 0.

Uwaga Diagram (graf) składający się z obiektów (wierzchołków grafu) i morfizmów (strzałek) nazywamy
przemiennym, jeśli złożenie strzałek w odpowiedniej kolejności dają ten sam rezultat w odpowiednich
zbiorach morfizmów (więcej przykładów poniżej).

Obiekt początkowy. P to taki obiekt w kategorii C, że dla każdego obiektu A zbiór morfizmów
MorC(P,A) jest jednoelementowy.
Obiekt końcowy. K to taki obiekt w kategorii C, że dla każdego obiektu A zbiór morfizmów MorC(A,K)
jest jednoelementowy.

Zadanie 2 Udowodnić następujące fakty

(a) Jeśli w kategorii mamy dwa obiekty początkowe, to są one izomorficzne. Jeśli w kategorii mamy dwa
obiekty końcowe, to są one izomorficzne.

(b) Obiekt zerowy zdefiniowany dla kategorii VectK jest początkowy i końcowy.

(c) W kategorii Set istnieje obiekt początkowy ∅ i istnieje obiekt końcowy •. Pokaż, że te obiekty nie są
izomorficzne.

Monomorfizm. Mówimy, że f : X → Y jest monomorfizmem, jeśli dla dowolnych morfizmów g1, g2 :
Z → X

f ◦ g1 = f ◦ g2 ⇒ g1 = g2 .

Epimorfizm. Mówimy, że f : X → Y jest epimorfizmem, jeśli dla dowolnych morfizmów g1, g2 : Y → Z

g1 ◦ f = g2 ◦ f ⇒ g1 = g2 .

Zadanie 3

(a) Opisać monomorfizmy i epimorfizmy w kategorii zbiorów.

(b) Opisać monomorfizmy i epimorfizmy w kategorii przestrzeni wektorowych.

(c) Udowodnić, że jeśli f jest izomorfizmem, to jest monomorfizmem oraz epimorfizmem.

(d) Wskazać kategorię, w której istnieje morfizm, który jest monomorfizmem i epimorfizmem, ale nie jest
izomorfizmem.

Jądro morfizmu ϕ : V →W to κ : K → V takie, że ϕ◦κ = 0 (zakładamy, że w kategorii C istnieje obiekt
zerowy) oraz dla dowolnego κ′ : K ′ → V , takiego że ϕ ◦ κ′ = 0, istnieje dokładnie jeden(!) morfizm µ, że
ten diagram jest przemienny:

K

V W

K ′

κ

0

ϕ

∀κ′

0

∃!µ



Zadanie 4 Sprawdź, że powyższa kategoryjna definicja jądra jest spełniona w kategorii VectK przez
jądro odwzorowań przestrzeni liniowych kerϕ = {v ∈ V : ϕ(v) = 0} → V . Pokaż, że jądro zdefiniowane
kategoryjnie jest jednoznaczne z dokładnością do izomorfizmu. Pokaż, że jądro morfizmu κ jest zerowe.

Jądro różnicowe (uogólnienie definicji jądra): Dane dwa przekształcenia f, g : V →W . Jądro różnicowe
to taki morfizm ι : K → V spełniający f◦ι = g◦ι oraz mający własność uniwersalną: dla każdego morfizmu
h : Z → V , takiego że f ◦ h = g ◦ h, istnieje dokładnie jeden morfizm h0 : Z → K taki, że h = ι ◦ h0.

Z K V W∃!h0

∀h

ι

f

g

Zadanie 5 Czy w kategorii zbiorów Set istnieje jądro różnicowe dla dowolnych morfizmów f, g : X → Y ?
Czy w kategorii przestrzeni liniowych VectK istnieje jądro różnicowe?

Produkt. Mówimy, że P wraz z przekształceniami π1 : P → V1 i π2 : P → V2 jest produktem obiektów
V1 i V2 (i piszemy P ≃ V1 × V2) jeśli jest spełniony warunek dla dowolnego obiektu Z oraz morfizmów
φ1 : Z → V1, φ2 : Z → V2 istnieje dokładnie jeden morfizm φ : Z → P taki, że φi = πi ◦ φ dla i = 1, 2

P

V1 V2

Z

π2π1

∀φ1 ∀φ2

∃!φ

Koprodukt. Mówimy, że S wraz z przekształceniami ι1 : V1 → S i ι2 : V2 → S jest koproduktem
obiektów V1 i V2 (i piszemy S ≃ V1 ⊔ V2) jeśli jest spełniony warunek dla dowolnego obiektu Z oraz
morfizmów φ1 : V1 → Z, φ2 : V2 → Z istnieje dokładnie jeden morfizm φ : S → Z, taki, że φi = φ ◦ ιi dla
i = 1, 2

S

V1 V2

Z

∃!φ

ι1

∀φ1

ι2

∀φ2

Zadanie 6

(a) Czy w kategorii przestrzeni wektorowych istnieją produkty i koprodukty dowolnych dwóch obiektów?
Czy koprodukt dwóch przestrzeni wektorowych jest izomorficzny produktowi?

(b) Czy w kategorii zbiorów istnieją produkty i koprodukty dowolnych dwóch obiektów? Czy koprodukt
dwóch zbiorów jest izomorficzny produktowi?

Produkt i koprodukt rodziny obiektów Niech Ai będzie rodzina obiektów indeksowaną i ∈ I.

• Obiekt S wraz z odwzorowaniami ιi : Ai → S nazywamy koproduktem rodziny {Ai}i∈I gdy dla
dowolnego obiektu C oraz morfizmów fi : Ai → C istnieje dokładnie jeden morfizm f : S → C taki, że
fi = f ◦ ιi dla każdego i ∈ I.

• Obiekt P wraz z odwzorowaniami πi : P → Ai nazywamy produktem rodziny {Ai}i∈I gdy dla do-
wolnego obiektu C oraz morfizmów fi : C → Ai istnieje dokładnie jeden morfizm f : C → P taki, że
fi = πi ◦ f dla każdego i ∈ I.



Zadanie 7

(a) Wykazać, że produkty i koprodukty skończonych rodzin przestrzeni wektorowych są izomorficzne w
kategorii VectK .

(b) Wykazać, że produkty i koprodukty nieskończonych rodzin przestrzeni wektorowych na ogół nie są
izomorficzne w kategorii VectK .

(c) Czy w kategorii P(X) zdefiniowanej powyżej istnieją produkty i koprodukty dowolnych dwóch obiek-
tów? Czy koprodukt dwóch zbiorów jest izomorficzny produktowi?

Ilorazy

Iloraz przestrzeni wektorowych. Niech W ⊂ V będzie podprzestrzenią przestrzeni liniowej nad K.
Definiujemy relację równoważności w V w sposób następujący: α ∼ β jeśli α − β ∈ W . Klasa abstrakcji
wektora α to zbiór α+W = {α+w : w ∈W} nazywany też warstwą wektora α względem podprzestrzeni
W . Zbiór klas abstrakcji ma strukturę przestrzeni liniowej z dodawaniem (α+W )+(β+W ) = (α+β)+W
i mnożeniem przez skalary a · (α+W ) = (a · α) +W (sprawdź, że te operacje sa dobrze określone). Tak
zdefiniowaną przestrzeń nad K nazywamy przestrzenią ilorazową i oznaczamy V/W .
Zadanie 8 Dowiedź następujących podstawowych własności przestrzeni ilorazowej

(a) Odwzorowanie π : V → V/W zdefiniowane wzorem π(α) = α +W jest liniowe, jest epimorfizmem
oraz ker(π) =W .

(b) Własność uniwersalna ilorazu. Dla każdego przekształcenia liniowego φ : V → Z takiego, że φ|W = 0
istnieje dokładnie jedno przekształcenie φ : V/W → Z takie, że φ = φ ◦ π

V/W

W V

Z

∃! φ

0

0

π

∀φ

(c) Powyższa własność uniwersalna determinuje iloraz z dokładnością do izomorfizmu. Dokładniej: jeśli
odwzorowanie p : V → Q spełnia warunek: p◦ι = 0, gdzie ι :W → V jest włozeniem, oraz dla każdego
przekształcenia liniowego φ : V → Z takiego, że φ|W = 0 istnieje dokładnie jedno przekształcenie φ
takie, że φ = φ ◦ p, to Q ≃ V/W oraz ten izomorfizm jest zgodny z przekształceniami p : V → Q i
π : V → V/W .

(d) Jeśli ψ : V → U i φ : U → Z sa przekształceniami liniowymi taki, że (φ ◦ ψ)|W = 0, to istnieje
dokładnie jedno przkształcenie liniowe ψ : V/W → Z takie, że następujący diagram jest przemienny

W V V/W

ker(φ) U Z

ψ|W

π

∀ψ ∃!ψ
φ

gdzie ”haczykowate” strzałki oznaczają monomorfizmy.

Zadanie 9 Pokaż następujące własności ilorazu.

(a) Dla dowolnych podprzestrzeni U,W ⊂ V zachodzi izomorfizm ilorazów

(U +W )/W ≃ U/(U ∩W )

(b) Niech φ : V → Z będzie przekształceniem liniowym. Wówczas istnieje naturalne przekształcenie

φ : V/ker(φ)→ Z

takie, że φ = φ ◦ π. Ponadto φ zadaje izomorfizm V/ker(φ) ≃ im(φ)



(c) Jeśli V =W ⊕U to mamy izomorfizm V/W ≃ U . Jeśli V jest skończonego wymiaru, to dim(V/W ) =
dim(V ) − dim(W ). Uwaga: kowymiar podprzestrzeni liniowej definiujemy jako wymiar przestrzeni
ilorazowej codimV (W ) = dim(V/W ). Kowymiar może być Jeśli V jest skończonego wymiaru, to
dim(V/W ) = dim(V )− dim(W ). Kowymiar definiujemy jako

codimV (W ) = dim(V/W ).

Kowymiar może być skończony nawet gdy dimV =∞.

(d) Niech U ⊂W ⊂ V będą przestrzeniami liniowymi, wówczas mamy izomorfizm ilorazów

(V/U)/(W/U) ≃ V/W .

(e) Niech A ⊂ R będzie zbiorem domkniętym oraz niech C(A) oznacza zbiór funkcji ciągłych na A.
Wtedy mamy izomorfizm R przestrzeni liniowych C(A) ≃ C(R)/I(A), gdzie I(A) = {f ∈ C(R) | ∀x ∈
A , f(x) = 0}.

Kojądro morfizmu definiujemy kategoryjnie przez odwrócenie strzałek w definicji jądra. Kojądro morfi-
zmu ϕ : V →W to κ :W → Q takie, że κ ◦ϕ = 0 oraz dla dowolnego κ′ :W → Q′, takiego że κ′ ◦ϕ = 0,
istnieje dokładnie jeden(!) morfizm µ : Q→ Q′, że ten diagram jest przemienny:

Q

V W

Q′

∃! µϕ

0

0

κ

∀κ′

Zadanie 10

(a) Pokaż, że kojądro jest zdefiniowane jednoznacznie z dokładnościa do izomorfizmu. Pokaż, że kojądro
istnieje w kategorii VectK .

(b) Niech ϕ : V → W będzie przekształceniem liniowym przestrzeni wektorowych z jądrem ι : K → V i
kojądrem κ : W → Q. Pokaż, że jądro przekształcenia sprzężonego ϕ∗ : W ∗ → V ∗ to κ∗ : Q∗ → W ∗

a kojądro ϕ∗ to ι∗ : V ∗ → K∗.

Push-out, pull-back. Załóżmy, że mamy dane trzy obiekty i dwa morfizmy V1 W V2
φ1 φ2 .

Push-out to obiekt P i morfizmy V1 P V2
π1 π2 takie, że π1◦φ1 = π2◦φ2, które mają następującą

własność uniwersalną: Dla każdej pary przekształceń ψ1 : V1 → Z, ψ2 : V2 → Z takiej, że ψ1◦φ1 = ψ2◦φ2
istnieje dokładnie jedno przekształcenie ψ : P → Z takie, że ψ1 = ψ ◦ π1 i ψ2 = ψ ◦ π2:

W V1

V2 P

Z

φ1

φ2 π1
∀ψ1π2

∀ψ2

∃!ψ

Definicja push-outu ma sens w dowolnej kategorii (choć nie zawsze push-out musi istnieć). Odwracając
kierunki strzałek w diagramie definiującym push-out zdefiniujemy pojęcie dualne, tzw. pull-back. Czyli

dla V1 W V2
φ1 φ2 definiujemy obiekt R z morfizmami V1 R V2

π1 π2 , dla których
odpowiednie złożenia i własność uniwersalna opisuje się przez diagram

Z

R V1

V2 W

∀ψ2

∀ψ1

∃!ψ

π1

π2 φ1

φ2



Zadanie 11

(a) Pokazać, że jeśli V2 = 0, to push-out π1 : V1 → P jest kojądrem φ1.

(b) Udowodnić, że w kategorii przestrzeni wektorowych push-out jest izomorficzny z ilorazem P = (V1 ×
V2)/U , gdzie

U = {(φ1(w),−φ2(w)) | w ∈W}

(c) Czy pull-backi istnieją w kategorii zbiorów oraz w kategorii przestrzeni wektorowych? Jeśli tak, to
podaj konstrukcję.



GAL2⋆
Zadania na drugi tydzień (07.11–11.03)

Endomorfizmy, wielomian charakterystyczny,
wektory własne, wartości własne, diagonalizowalność

Zadania oznaczone † są do zrobienia w pierwszej kolejności.

Endomorfizmy.
Zadanie 1 † Niech ϕ będzie automorfizmem przestrzeni wektorowej V spełniającym ϕ2 = id. Załóżmy,
że charakterystyka ciała bazowego jest różna od 2.
a) Wykazać, że ϕ symetrią, tzn istnieje rozkład V = V1 ⊕ V2 taki, że φ|V1 = id|V1 i φ|V2 = −id|V2
b) Podać wzór na rzutowania V na podprzestrzenie V1 i V2.
c) Przeanalizować sytuację gdy charakterystyka ciała jest równa 2.
Zadanie 2 Załóżmy, że zbiór endomorfizmów {ϕ1, . . . , ϕk} liniowej przestrzeni V tworzy grupę ze
względu na operację składania. Niech ψ = ϕ1+ . . .+ϕk. Pokazać, że ψ2 = ψ. Udowodnić, że ψ2 = ψ =⇒
V = ker(ψ)⊕ im(ψ).
Zadanie 3 Niech ϕ będzie automorfizmem przestrzeni wektorowej V nad ciałem K. Załóżmy, że ϕ ̸=
±idV , ϕ ̸= 0 oraz ϕ2 = id. Udowodnić, że jeśli w(ϕ) = 0 dla pewnego wielomianu w[x] ∈ K[x], to x2 − 1
dzieli w(x).
Zadanie 4 † Niech n > 1, oraz ϕ : Rn → Rn, ϕ(x1, x2, . . . , xn−1, xn) = (x2, x3, . . . , xn, x1). Wskazać
wielomian, możliwie najmniejszego stopnia, spełniający w(ϕ) = 0.

Wielomian charakterystyczny. Wektory i wartości własne.
Zadanie 5 † Niech

A =
(
cosx − sinx
sinx cosx

)
.

Znaleźć wartości własne i wektory własne nad R i nad C.

Zadanie 6 Niech z ∈ C. Uzasadnij, że macierz A = diag(z, z) =
(
z 0
0 z

)
jest podobna (nad ciałem C)

do macierzy rzeczywistej 2× 2.
Zadanie 7 † Liczby Fibonacciego Fn definiujemy rekurencyjnie:

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 dla n ­ 2 .

Wskazać macierz kwadratową A taką, że

A ·
(
Fn−2
Fn−1

)
=
(
Fn−1
Fn

)
Znaleźć jej wartości własne i wektory własne. Podać wzór na An i wyprowadzić wzór na liczby Fibonac-
ciego.
Zadanie 8 † Znaleźć wartości własne macierzy A,B ∈Mn×n(R) postaci:

A =


1 1 . . . 1
1 1 . . . 1
...
...
. . .
...

1 1 . . . 1

 , B =


a b . . . b
b a . . . b
...
...
. . .
...

b b . . . a

 .
Zadanie 9 Niech vT = (a1, . . . , an) ∈ Rn oraz niech A = v · vT ∈Mn×n(R). Znaleźć wszystkie wektory
własne macierzy A.
Zadanie 10 † Niech ϕ : V → V będzie izomorfizmem przestrzeni n–wymiarowej nad ciałem K. Wyrazić
wielomian charakterystyczny wϕ−1 w terminach wielomianu wϕ.
Zadanie 11 Niech V = C∞(R) będzie przestrzenią liniową funkcji gładkich na R. Wyznaczyć wartości
własne i podprzestrzenie własne endomorfizmu Φ ∈ End(V ) danego wzorem Φ(f) = f ′.



Zadanie 12 Niech V = C∞(S1) będzie przestrzenią liniową funkcji gładkich na R, które są okresowe
o okresie 2π. Wyznaczyć wartości własne i podprzestrzenie własne endomorfizmu Φ ∈ End(V ) danego
wzorem Φ(f) = f ′′.
Zadanie 13 † Wykazać równość wielomianów charakterystycznych wφψ = wψφ dla dowolnych φ, ψ ∈
End(V ) i przestrzeni V skończonego wymiaru nad R lub C.
Zadanie 14 Niech ϕ : V → V będzie endomorfizmem skończenie wymiarowej przestrzeni liniowej nad
ciałem K. Pokazać, że jeżeli dim(imϕ) = k, to endomorfizm ϕ ma co najwyżej k + 1 różnych wartości
własnych.
Zadanie 15 Niech V będzie przestrzenią skończonego wymiaru nad R i niech ϕ : V → V będzie
endomorfizmem, takim, że ϕ2 = −id. Udowodnić, że wymiar V jest podzielny przez 2.

Diagonalizowalność
Zadanie 16 † Udowodnić, że jeżeli przekształcenie liniowe φ : V −→ V przestrzeni liniowej nad K ma
n = dimV różnych wartości własnych i dla ψ : V −→ V zachodzi ψ ◦φ = φ◦ψ, to istnieje baza V złożona
z wektorów własnych ψ.
Zadanie 17 Znaleźć wielomian charakterystyczny i zbadać diagonalizowalność następującej macierzy
nad C 

0 0 0 ... 0 −a0
1 0 0 ... 0 −a1
0 1 0 ... 0 −a2
. . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 ... 1 −an−1


(Taka macierz nazywa się cykliczną.)
Zadanie 18 Udowodnić, że macierz rozmiaru n× n postaci A = {aij}i,j=1...n, gdzie

aij = (j − i) mod n

jest diagonalizowalna nad C.
Zadanie 19 † Niech endomorfizm ϕ : Cn → Cn będzie dany wzorem

ϕ(x1, x2, . . . , xn) = (xn, x1, . . . , xn−1) .

Wykazać, że ϕ jest diagonalizowalny i znaleźć bazę złożoną z wektorów własnych.
Zadanie 20 † Wykazać, że jeśli φ : V → V jest przekształceniem liniowym skończenie wymiarowej
przestrzeni liniowej nad C takim, że φn = id dla pewnego n ∈ N, to φ jest przekształceniem diago-
nalizowalnym. Czy stwierdzenie to jest prawdziwe dla przestrzeni nad ciałem liczb rzeczywistych? Czy
stwierdzenie to jest prawdziwe dla przestrzeni nad dowolnym ciałem algebraicznie domkniętym?
Zadanie 21 † Niech φ : R3 −→ R3 i ψ : C3 −→ C3 będą przekształceniami liniowymi, które w bazach
standardowych mają macierz:

A =

 0 −1 11 1 0
−1 0 1


Zbadać, czy istnieją bazy R3 i C3 odpowiednio, w których przekształcenia φ i ψ mają macierz diagonalną.
Zadanie 22 Zbadać diagonalizowalność (nad R i C) macierzy

1 0 2 −1
0 1 4 −2
2 −1 0 1
2 −1 −1 2





GAL2⋆
Zadania na trzeci tydzień (14.03–18.03)

Endomorfizmy nilpotentne, podprzestrzenie niezmiennicze, rozkład Jordana

Zadanie 1 Załóżmy, że V jest przestrzenią liniową nad ciałem K, ϕ ∈ End(V ) endomorfizmem nilpo-
tentnym, a w ∈ k[x] pewnym wielomianem o współczynnikach w K. Pokaż, że jeśli w(0) = 0 to w(ϕ) jest
endomorfizmem nilpotentnym a jeśli w(0) ̸= 0, to w(ϕ) jest automorfizmem.
Zadanie 2 Pokazać, że jeśli przekształcenie f : V −→ V przestrzeni liniowej nad ciałem K jest nilpo-
tentne i dimV = n, to fn = 0
Zadanie 3 Niech A ∈ Mn×n(K) i albo charK = 0, albo charK > n. Pokaż, że jeśli tr(Ak) = 0 dla
k = 1, 2, . . . n, to macierz A jest nilpotentna.
Zadanie 4 Niech φ, ψ ∈ End(V ) i ψ ◦ φ = φ ◦ ψ. Pokaż, że ker(ψ) jest podprzestrzenią niezmienniczą
endomorfizmu φ.
Zadanie 5 Niech f będzie endomorfizmem R4, zadanym wzorem f(x1, x2, x3, x4) = (x2 + x3, x3, 0, 0).
Znaleźć wartości własne i odpowiadające im wektory własne. Czy istnieją f niezmiennicze podprzestrzenie
dwuwymiarowe W,Y ⊆ R4, dla których R4 =W ⊕ Y ?
Zadanie 6 Zadania rachunkowe: Znaleźć bazy w Cn w których przekształcenie liniowe f : Cn −→ Cn
ma formę Jordana (i wskazać tę formę) jeżeli w bazie standardowej e1, ..en przekształcenie ma macierz:

a)

3 2 −3
4 10 −12
3 6 −7

 b)


0 1 −1 1
−1 2 −1 1
−1 1 1 0
−1 1 0 1

 c)


6 −9 5 4
7 −13 8 7
8 −17 11 8
1 −2 1 3


Zadanie 7 Macierze A i B poniżej, mają taki sam wielomian charakterystyczny. Ustalić, czy są podobne.

A =

 6 2 −2−2 2 2
2 2 2

 B =

 6 2 2−2 2 0
0 0 2

 .
Zadanie 8 Znaleźć formę Jordana macierzy nad C:

a)


1 1 1 ... 1
0 1 1 ... 1
0 0 1 ... 1
. . . . . . . . . . . . . . .
0 0 0 ... 1

 b)


α 0 1 0 ... 0 0
0 α 0 1 ... 0 0
0 0 α 0 ... 0 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 ... α 0
0 0 0 0 ... 0 α

 c)


0 0 0 0 . . . 0 a0
1 0 0 0 . . . 0 a1
0 1 0 0 . . . 0 a3
. . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . 1 an

 .

Zadanie 9 Załóżmy, że char(K) ̸= 3. Niech φ : K4 → K4 będzie przekształceniem zadanym w bazie
standardowej przez macierz 

3 4 0 2
−1 −1 1 0
0 0 3 2
0 0 1 2

 .
Znaleźć bazę Jordana dla φ.
Zadanie 10 Niech f : V −→ V będzie przekształceniem liniowym skończenie wymiarowej przestrzeni
liniowej nad K. Pokazać, że istnieją niezmiennicze podprzestrzenie W i U , takie że f|W : W → W jest
przekształceniem nilpotentnym, a f|U : U → U izomorfizmem, V = U ⊕W . Pokazać, że przestrzenie W i
U są wyznaczone jednoznacznie.
Zadanie 11 Niech f : V → V będzie przekształceniem przestrzeni skończonego wymiaru, którego
macierz w postaci Jordana składa się z klatek odpowiadającym różnym wartościom własnym. Pokazać,
że istnieje wektor v ∈ V taki, że v, f(v), f2(v), . . . , fdimV−1(v) jest bazą.
Zadanie 12 Dane jest przekształcenie φ : K7 → K7. Wiemy, że wartości własne φ to 1 i 2. Ponadto
wiemy, że

dim(ker(φ− Id)) = 2, dim(ker((φ− Id)2)) = 4,



dim(ker(φ− 2Id)) = 1, dim(ker((φ− 2Id)2)) = 2.

Jakiej postaci Jordana może być macierz φ?
Zadanie 13 Wielomian charakterystyczny macierzy A nad R jest równy (λ− 5)5(λ− 1)2. Ponadto

dimker(A− 5I) = 2 , dimker(A− 5I)2 = 4 , ker(A− I) ∩ im(A− I) ̸= {0} .

Znaleźć formę Jordana.
Zadanie 14 Rozpatrzmy endomorfizm φ : V → V przestrzeni liniowej V nad ciałem K.

(a) Niech W ⊂ V będzie podprzestrzenią φ – niezmienniczą i niech α1, . . . , αk będą wektorami własnymi
endomorfizmu φ o parami różnych wartościach własnych. Wykazać, że jeśli zachodzi α1 + · · ·+ αk ∈W ,
to αi ∈W dla i = 1, ..., k.

(b) Załóżmy, że jeśli V jest skończenie wymiarową przestrzenią nad ciałem algebraicznie domkniętym.
Wykazać, że endomorfizm φ jest diagonalizowalny wtedy i tylko wtedy, gdy dla każdej podprzestrzeni
φ-niezmienniczej W ⊂ V istnieje podprzestrzeń φ-niezmiennicza W ′ ⊂ V taka, że V =W ⊕W ′.



GAL2⋆
Zadania na czwarty tydzień (21.03–25.03)

Formy dwuliniowe, tensory

UWAGA: Zakładamy, że ciało bazowe K jest charakterystyki różnej od 2 a przestrzenie są skończonego
wymiaru.

Zadanie 1 Niech φ(u, v) będzie symetryczną formą dwuliniową na V . Udowodnij, że forma φ jest zadana
przez swoje wartości na parach (v, v) ∈ V ×V , czyli φ(v, v). Czy to stwierdzenie jest prawdziwe dla formy
nad ciałem o charakterystyce 2?
Zadanie 2 Wyznacz macierz formy dwuliniowej na R3 w bazie e′1 = e1+e2, e′2 = e1−e2, e′3 = 2e1+e2+e3

gdy dana jest macierz w bazie standardowej

1 2 33 1 4
5 1 6

.
Zadanie 3 Dana jest przestrzeń liniowa z dwuliniową formą symetryczną (V, φ). Dla podprzestrzeni
W ⊆ V definiujemy W⊥ = {v ∈ V : ∀w ∈W φ(w, v) = 0}.

(a) Pokaż, że V ⊥ = ker(φ̃ : V → V ∗), gdzie φ̃(v)(w) = φ(w, v).

(b) Pokaż, że dimW + dimW⊥ = dimV + dim(V ⊥ ∩W ).

(c) Pokaż, że na przestrzeni ilorazowej V ′ = V/V ⊥ istnieje forma dwuliniowa symetryczna φ′ : V ′×V ′ →
K, taka że φ′(π(v1), π(v2)) = φ(v1.v2), gdzie π : V → V ′ jest odwzorowaniem ilorazowym.

(d) Czy powyższe punkty są prawdziwe jeśli φ jest formą antysymetryczną?

Zadanie 4 Załóżmy, że (V, φ) jest przestrzenią z dwuliniową niezdegenerowaną (maksymalnego rzędu)
formą symetryczną lub antysymetryczną. Dla v ∈ V \{0} definiujemy v⊥ = {w ∈ V : φ(v, w) = 0}. Przez
φv oznaczmy zawężenie formy φ do v⊥, czyli formę dwuliniową φv : V ⊥ × V ⊥ → K.

(a) Pokaż, że φv jest formą niezdegenerowaną wtedy i tylko wtedy gdy φ(v, v) ̸= 0.

(b) Pokaż, że jeśli φ(v, v) = 0, to (v⊥)⊥ = K · v.

(c) Pokaż, że jeśli φ jest antysymetryczna, to dimV jest liczbą parzystą.

Zadanie 5 Dane macierze:

A =
(
−3 0
0 −2

)
, B =

(
3 0
0 2

)
, C =

(
1 0
0 1

)
, D =

(
2 −2
−2 5

)
, E =

(
35 −25
−25 35

)
.

Które z tych macierzy są kongruentne nad Q?
Zadanie 6 Niech A ∈ Mn×n(Q) będzie macierzą symetryczną i niezdegenerowaną, czyli detA ̸= 0.
Udowodnij, że następujące dwie macierze są kongruetne nad Q:(

A 0
0 −A

)
oraz

(
In 0
0 −In

)
Zadanie 7 Niech (V, φ) będzie niezdegenerowaną formą dwuliniową i niech φ̃ : V −→ V ∗ będzie izomor-
fizmem wyznaczonym przez φ. Pokazać, że jeśli α1, .., αn jest bazą V , taką że α1, .., αk jest bazą W ⊆ V ,
to φ̃−1(α∗k+1), .., φ̃

−1(α∗n) jest bazą W
⊥.

Zadanie 8 Z własności uniwersalnej sumy prostej i iloczynu tensorowego pokaż izomorfizm

V ⊗ (W1 ⊕W2) ≃ (V ⊗W1)⊕ (V ⊗W2).

Zadanie 9 Wykaż, że jeśli wektory v1, v2, . . . , vr ∈ W są liniowo niezależne, oraz
∑
vi ⊗ wi = 0 w

produkcie tensorowym V ⊗W , to w1 = w2 = · · · = wr = 0.



Zadanie 10 Niech V będzie przestrzenią linową nad C. Przez VR oznaczamy przestrzeń liniową nad R
równą V jako zbiór (zapominamy o mnożeniu przez i). Ponadto przez V oznaczamy przestrzeń liniową
nad C, która jako zbiór jest równa V , ale ma zdefiniowane mnożenie przez skalary zespolone: z ⋆ v := zv.
Wskaż naturalny (nie zależący od wyboru baz) izomorfizm przestrzeni liniowych nad C

C⊗ VR ≃ V ⊕ V .

Zadanie 11 Forma wieloliniowa φ : V ⊗k → K nazywa się alternująca, gdy φ(v1, v2, . . . , vk) = 0 jeśli
vi = vj dla pewnej pary i ̸= j. Czy każda forma antysymetryczna jest alternująca? Czy każda forma
aleternująca jest antysymetryzna? Rozpatrzeć także przypadek charakterystyki ciała bazowego równej 2.

Zadanie 12 Niech V będzie przestrzenią wektorową. Na produkcie n kopii V , czyli V ×n =

n︷ ︸︸ ︷
V × · · · × V

działa grupa Sn permutując współrzędne

σ(v1, . . . , vn) = (vσ(1), . . . , vσ(n))

Pokaż, że w ten sposób dostajemy dobrze zdefiniowane odwzorowania liniowe produktu V ⊗n = V ⊗ · · · ⊗ V︸ ︷︷ ︸
n

σ : V ⊗n −→ V ⊗n

Tensor κ ∈ V ⊗· · ·⊗V nazywamy symetrycznym jeśli ∀σ ∈ Sn mamy σ(κ) = κ i antysymetrycznym, jeśli
σ(κ) = sgn(σ)κ. Podprzestrzenie tensorów symetrycznych i antysymetrycznych oznaczamy Symn(V ) lub
SnV i, odpowiednio,

∧n
V ; oblicz ich wymiar.

Zadanie 13 Algebra symetryczna. Załóżmy, że ciało bazowe K ma charakterystykę 0. Niech V będzie
przestrzenią wektorową. W produkcie tensorowym n kopii V , czyli w V ⊗n zdefiniujmy podprzestrzeń

Vn = lin{κ− σ(κ) | κ ∈ V ⊗n , σ ∈ Sn} .

Niech S̃ymn(V ) = V ⊗n/Vn.

(a) Udowodnić, że złożenie włożenia i rzutowania

Symn(V ) ↪→ V ⊗n
πn
↠ S̃ymn(V )

jest izomorfizmem.

(b) Udowodnić, że mnożenie tensorów definijuje mnożenie w S̃ym(V ) =
⊕∞

n=1 S̃ym
n(V ), tzn istnieje

działanie dwuargumentowe ⊙ takie, że następujacy diagram jest przemienny

V ⊗n × V ⊗n V ⊗n+m

S̃ymk(V )× S̃ymn(V ) S̃ymk+n(V ) ,

⊗

πk⊗πn πk+n

⊙

przy czym mnożenie ⊙ jest przemienne.

(c) Wybierzmy bazę w α1, α2, . . . αn przestrzeni wektorowej V . Niech

Φ : K[x1, x2, . . . , xn] −→
∞⊕
d=0

Symk(V )

spełnia Φ(xi) = αi oraz Φ(fg) = Φ(f)⊙ Φ(g). Pokaż, że Φ jest izomorfizmem.

(d) Wskaż naturalny (niezależny od wyboru bazy) epimorfizm
∞⊕
d=0

Symk(V ∗) −→ {Funkcje wielomianowe V → K} .

Zadanie 14 Załóżmy, że przestrzeń V ma wymiar 2 i bazę α1, α2 a przestrzeń W ma wymiar n i
bazę β1, . . . , βn. Znajdź warunki, równania na współczynniki aij , które opisują zbiór tensorów prostych
w V ⊗W zapisanych jako ∑

i,j

aij · (αi ⊗ βj)



GAL2⋆
Zadania na szósty tydzień (04.04–08.04)
Formy dwuliniowe, ortogonalizacja

Zakładamy, że ciało bazowe jest charakterystyki różnej od 2.

Jeśli Φ jest formą symetryczną lub antysymetryczną na przestrzeni V , to podprzestrzeńW ⊂ V nazywamy
izotropową względem Φ (lub, równoważnie, całkowicie zdegenerowaną względem Φ) jeśli ΦW×W jest formą
zerową; wektor v ∈ V jest izotropowy jeśli Φ(v, v) = 0.

Dwuwymiarową przestrzeń rzeczywistą z formą symetryczną zadaną w pewnej bazie przez macierz(
0 1
1 0

)
nazywa się płaszczyzną hiperboliczną.

Zadanie 1
a) Udowodnić, że dla A ∈ M(n × n;K) jeśli A = −AT to istnieje p ∈ K takie, że det(A) = p2, tzn.
wyznacznik macierzy antysymetrycznej jest zawsze kwadratem.
b) Dana jest A – macierz antysymetryczna o wyrazach całkowitych. Wykazać, że detA jest kwadratem.
c)⋆ Wykazać, że det(A) = P (A)2, gdzie P (A) jest wielomianem od wyrazów macierzy.

Zadanie 2 Dane macierze

2 2 02 0 2
0 2 0

 i
0 0 20 1 0
2 0 0

.
Nad którymi z następujących ciał powyższe macierze są kongruentne: Q, Q(

√
2), R, C?

Zadanie 3 Czy istnieje macierz rzeczywista symetryczna 4×4, dla której znaki wyznaczników kolejnych
podmacierzy kwadratowych w lewym górnym rogu są następujące: (a) −, +, 0, −; (b) −, +, 0, +. Czy
znamy sygnaturę tej macierzy?
Zadanie 4 Dana jest przestrzeń z formą symetryczną (R4, φ), gdzie 2-forma φ w bazie standardowej
jest zadana przez macierz: 

0 0 1 0
0 0 0 1
1 0 1 −1
0 1 −1 1


(a) Znajdź bazę ortogonalną tej przestrzeni.

(b) Znajdź W⊥, gdzie W jest podprzestrzenią zadaną przez układ równań:{
x2 = 0

x1 + x3 = 0

Czy R4 =W ⊕W⊥? Czy forma φ|W×W jest niezdegenerowana?

(c) Znajdź stożek wektorów izotropowych.

Zadanie 5 W przestrzeni W macierzy 2 × 2 o współczynnikach rzeczywistych rozpatrujemy formę
dwuliniową φ(A,B) = tr(AB). Znajdź największy wymiar podprzestrzeni izotropowej.
Zadanie 6 Pokaż, że dla niezdegenerowanej formy symetrycznej (V, φ) nad ciałem charakterystyki różnej
od 2 następujące warunki są równoważne:

(a) (V, φ) jest sumą ortogonalną płaszczyzn hiperbolicznych

(b) istnieje podprzestrzeń W ⊂ V , taka, że W⊥ =W

(c) w pewnej bazie macierz φ ma postać: (
0 I
I 0

)
,

gdzie I jest macierzą identyczności



(d) V =W1 ⊕W2, gdzie W1 i W2 są izotropowe.

W powyższym zadaniu b) przestrzeń W nie jest wyznaczona jednoznacznie.
Zadanie 7 Niech (V, φ) będzie rzeczywistą przestrzenią wymiaru 2n z formą symetryczną. Niech V
będzie sumą ortogonalną n-wymiarowych podprzestrzeni V+ i V− takich, że φ jest dodatnio określona na
V+ i ujemnie określona na V−. Udowodnij następujące fakty:

(a) Każda podprzestrzeń (V, φ) izotropowa ma wymiar nie większy niż n;

(b) Istnieje podprzestrzeń (V, φ) izotropowa wymiaru n;

(c) Każda podprzestrzeń izotropowa jest zawarta w n wymiarowej podprzestrzeni izotropowej.

Zadanie 8 Niech ω będzie niezdegenerowaną 2-liniową formą antysymetryczną na przestrzeni V . Niech
L ⊂ V będzie podprzestrzenią Lagrange’a, czyli maksymalną podprzestrzenią izotropową. Wykaż że
istnieje baza przestrzeni V

α1, α2, . . . , αn, β1, β2, . . . , βn

taka, że wektory αi rozpinają L a wektory βi rozpinają inną podprzestrzeń Lagrange’a, oraz ω(αi, βj) = δij
i ω(βi, βj) = 0 dla i ̸= j.
Zadanie 9 W tym zadaniu ciało bazowe to R. Niech Γ będzie grafem nieskierowanym o wierzchołkach
v ∈ I; zakładamy, że w Γ nie ma pętli vv. Definiujemy symetryczną formę dwuliniową na przestrzeni
liniowej rozpiętej przez wierzchołki V = linv∈I{ev} następującym wzorem

f(ev, ev) = 2
f(ev, ew) = −1 gdy jest krawędź vw
f(ev, ew) = 0 gdy nie ma krawędzi vw

Załóżmy, że tak określona forma jest dodatnio określona. Pokaż, że graf Γ nie ma cykli i znajdź ograni-
czenie na walencję wierzchołków (liczbę krawędzi wychodzących z wierzchłka)
Podpowiedź: diagramy Dynkina.
Zadanie 10 Niech A i B będą rzeczywistymi macierzami symetrycznymi i dodatnio określonymi. Załóż-
my, że wartości własne A należą do odcinka [a, b], a wartości własne B należą do odcinka [c, d]. Wykaż,
że wartości własne A+B należą do odcinka [a+ c, b+ d].
Zadanie 11 Opisz orbity działania następujacych grup:

(a) grupy SO3(R) na R3,

(b) grupy SO(1, 1) na R2,

(c) grupy SO(1, 3) na R4.

Zadanie 12 Niech K będzie dowolnym ciałem. Niech SO1,1(K) ⊂ SL2(K) będzie grupą specjalnych

izometrii formy
[
1 0
0 −1

]
. Znajdź bijekcję SO1,1(K) ≃ K \ {0}.

Zadanie 13 Niec V = {X ∈ M2×2(C) | X
T
= X}. Dla A ∈ SL2(C) definiujemy A ⊙X = AXA

T
. W

ten sposób dostajemy odwzorowanie SL2(C)→ Aut(V ). Opisz jądro tego odwzorowania, czyli

{A ∈ SL2(C) | ∀X∈V A⊙X = X} .

⋆ zadanie trudniejsze



GAL2⋆
Zadania na siódmy tydzień (11.04–22.04)
Przestrzenie z iloczynem skalarnym

W tej serii problemów wszystkie przestrzenie liniowe są zdefiniowane nad R. Grupę ortogonalną macierzy
rzeczywistych n× n oznaczamy O(n).

Zadanie 1 Norma na przestrzeni V to funkcja V ∋ v −→ ∥v∥ ∈ R­0, która jest: (1) niezdegenerowana
∥v∥ = 0 =⇒ v = 0, (2) jednorodna ∥a·v∥ = |a|·∥v∥, (3) spełnia warunek trójkąta ∥v1+v2∥ ¬ ∥v1∥+∥v2∥.
Udowodnić, że następujące funkcje są normami na Rn:

(a) ∥(x1, x2, . . . , xn)∥ = max{|xi| : i = 1, . . . n}

(b) ∥(x1, x2, . . . , xn)∥ =
∑n
i=1 |xi|

Pokaż, że powyższe normy nie pochodzą od iloczynów skalarnych, czyli nie są postaci ∥v∥ =
√
⟨v, v⟩ dla

pewnego iloczynu skalarnego na Rn.
Zadanie 2 Zastosuj metodę ortogonalizacji Grama-Schmidta do bazy 1, x, x2, .., xn w przestrzeni wie-
lomianów stopnia ¬ n z iloczynem skalarnym

⟨f g⟩ =
+1∫
−1

f(x)g(x)dx

Wielomiany P̃m z tak uzyskanej bazy ortonormalnej nazywamy wielomianami Legendre’a (a ściślej wie-

lomiany Pm =
√

2
2m+1 P̃m nazywamy wielomianami Legendre’a).

(a) Znajdź kilka pierwszych wielomianów Legendre’a i pokaż formułę rekurencyjną

Pm+1(x) =
2m+ 1
m+ 1

· xPm(x)−
m

m+ 1
Pm−1(x)

(b) Pokaż formułę Rodrigues’a

Pm =
1
2mm!

·
(
(x2 − 1)m

)(m)
Zadanie 3

(a) Wykazać że forma 2-liniowa φ(A,B) = −tr(AB) jest iloczynem skalarnym na przestrzeni liniowej
rzeczywistych macierzy antysymetrycznych n× n.

(b) Niech C ∈ O(n). Wykazać, że jeśli A jest macierzą antysymetryczną, to CAC−1 też jest macierzą
antysymetryczną. Ponadto A 7→ CAC−1 jest izometrią przestrzeni macierzy antysymetrycznych ze
względu na formę φ.

Zadanie 4 Niech V będzie przestrzenią euklidesową i α1, . . . , αr układem wektorów w V .

(a) Pokaż, że dla wyznaczników Grama zachodzi równość

W (α1, . . . , αr) =W (α1, . . . , αr−1) · ∥αr − pU (αr)∥2

gdzie pU :W −→ U = lin(α1, . . . , αr−1) jest rzutem prostopadłym.

(b) Pokaż, że jeśli pW : V −→ U jest rzutem prostopadłym na podprzestrzeń U ⊂ V , to wyznacznik
Grama spełnia nierówność

W (pU (α1), . . . , pU (αr)) ¬W (α1, . . . αr)



(c) Pokaż, że wyznacznik Grama spełnia nierówność:

W (α1, .., αr, β1, .., βs) ¬W (α1, .., αr) ·W (β1, .., βs)

przy czym równość zachodzi wtedy i tylko wtedy gdy (αi, βj) = 0 dla dowolnych 1 ¬ i ¬ r, 1 ¬ j ¬ s
lub co najmniej jeden z układów α1, .., αr, β1, .., βs jest liniowo zależny.

Zadanie 5 Niech v1, v2, v3, v4 będą wektorami w przestrzeni euklidesowej (V, ⟨ , ⟩). Pokazać, że jeśli
⟨vi, vj⟩ < 0 dla wszystkich par i ̸= j, to pewne trzy z tych wektorów są liniowo niezależne.
Zadanie 6 Pokazać, że jeśli w liniowej przestrzeni z iloczynem skalarnym α1, . . . , αn jest bazą ortonor-
malną zaś β1, . . . , βn jest układem wektorów takim, że

n∑
i=1

∥βi∥2 < 1

to układ α1 + β1, . . . , αn + βn jest liniowo niezależny.
Zadanie 7 Wykazać, że jeśli A jest macierzą izometrii f w bazie ortonormalnej, to f jest symetrią wtedy
i tylko wtedy gdy macierz A symetryczna.
Zadanie 8 Przekształcenie przestrzeni z iloczynem skalarnym zadane jest, w kanonicznej bazie ortonor-
malnej e1, e2, e3 macierzą:

1
3

 2 −1 2
2 2 −1
−1 2 2

 .

Przedstawić to przekształcenie w postaci złożenia co najwyżej trzech symetrii prostopadłych względem
płaszczyzn.
Zadanie 9 Rozpatrujemy R4 ze standardowym iloczynem skalarnym. Znaleźć macierz w bazie standar-
dowej (i wzór analityczny) opisujący rzut prostopadły na podprzestrzeń

W = lin{(1, 1, 1, 1), (1, 2, 2,−1), (1, 0, 0, 3)} .

Zadanie 10 Przekształcenie ortogonalne f : R4 −→ R4 przestrzeni ze standardowym iloczynem skalar-
nym ma w standardowej bazie ortonormalnej macierz:

1
2


1 1 1 1
1 1 −1 −1
−1 1 −1 1
−1 1 1 −1


Sprawdzić, że jest to izometria. Opisać geometrycznie czym jest to przekształcenie: przedstawić R4 jako
sumę niezmienniczych przestrzeni prostopadłych, V1 ⊕ V2 tak, że f jest w jednej przestrzeni obrotem, a
w drugiej symetrią.
Zadanie 11 Niech A ∈M3×3(R) będzie macierzą ortogonalną i detA = 1. Pokazać, że

(trA)2 − trA2 = 2trA .

Wsk: skorzystac z tego że A jest macierzą obrotu i wykorzystać wzory trygonometryczne.
Zadanie 12 Pokzać, że jeśli przekształcenie liniowe przestrzeni z iloczynem skalarnym f : V → V
zachowuje kąty (a ściślej cos(∢(α, β)) dla dowolnej pary wektorów), to f jest postaci c g, gdzie c jest
stałą, a g przekształceniem ortogonalnym (izometrią).



GAL2⋆
Zadania na ósmy tydzień (25.04–29.04)

Przekształcenia samosprzężone i twierdzenie spektralne

Rozważamy euklidesowe przestrzenie liniowe, tzn. przestrzenie skończonego wymiaru nad R z iloczynem
skalarnym. Wszystkie macierze mają rzeczywiste współczynniki.
Przypomnijmy, że jeśli (V, ⟨ , ⟩) jest przestrzenią euklidesową to iloczyn skalarny wyznacza izomorfizm
V ∋ v −→ (w → ⟨w, v⟩) ∈ V ∗, który oznaczmy η : V −→ V ∗.

Zadanie 1 Załóżmy, że φ, ψ ∈ End(V ) są przekształceniami samosprzężonymi. Wykaż, że

(a) kombinacja liniowa przekształceń φ i ψ jest przekształceniem samosprzężonym,

(b) φ ◦ ψ + ψ ◦ φ jest przekształceniem samosprzężonym,

(c) φ ◦ ψ jest przekształceniem samosprzężonym wtedy i tylko wtedy, gdy φ ◦ ψ = ψ ◦ φ

(d) kerφ ⊥ imφ oraz V = kerφ⊕ imφ.

Zadanie 2 Twierdzenie spektralne w praktyce: dla podanej macierzy A znajdź macierz ortogonalną B
taką, że B⊺AB jest macierzą diagonalną.

a) A =

17 −8 4
−8 17 −4
4 −4 11

 b) A =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0



Zadanie 3 Pierwiastek macierzy Mówimy, że endomorfizm ϕ ∈ End(V ) jest dodatnio określony
jeśli jest samosprzężony i dla każdego niezerowego v ∈ V mamy ⟨ϕ(v), v⟩ > 0. Macierz symetryczna jest
dodatnio określona jeśli definiujew dodatnio określoną formę symetryczną.

(a) Pokaż, że ϕ jest dodatnio określony wtedy i tylko wtedy gdy jego macierz w bazie ortonormalnej V
jest symetryczna i zdefiniowana przez nią forma symetryczna jest dodatnio określona.

(b) Pokaż, że jeśli ϕ ∈ End(V ) jest dodatnio określony to istnieje ψ ∈ End(V ) dodatnio określony taki, że
ψ2 = ϕ.

(c) Pokaż, że dla każdej dodatnio określonej macierzy symetryczne A istnieje macierz B o takich samych
własnościach, taka że A = B2.

Zadanie 4 Rozkład biegunowy. Pokaż, że dla każdej odwracalnej macierzy M istnieje dodatnio okre-
ślona macierz symetryczna B oraz oraz macierz ortogonalna C takie, żeM = BC (Takie porzedstawienie
M nazywamy rozkładem biegunowym M .) Pokaż, że macierze B i C są wyznaczone jednoznacznie. I

Zadanie 5 Znajdź rozkład biegunowy macierzy

 4 −2 2
4 4 −1
−2 4 2

.
Zadanie 6 SVD Rozkład według wartości osobliwych Pokaż, że dla dowolnej macierzy odwracalnej
M istnieją macierze C1, C2 ∈ O(n) oraz macierz diagonalna taka, że M = C1DC2. Takie przedstawienie
nazywamy rozkładem SVD. Korzystając z przypadku kiedyM jest odwracalna dowiedź istnienie rozkładu
SVD dla dowolnej macierzy M . II

Zadanie 7 Niech ϕ będzie przekształceniem samosprzężonym przestrzeni euklidesowej V = Rn ze
standardowym produktem skalarnym. Przez Sn−1 oznaczmy sferę jednostkową Sn−1 = {v : ∥v∥ = 1}.
Wiadomo, że każda fukcja ciągła rzeczywista na Sn−1 przyjmuje swoje minima i maksima. Połóżmy
f(v) = ⟨f(v), v⟩. Wykaż co następuje

(a) Jeżeli λ1 jest minimum funkcji f na sferze jednostkowej przyjmowanym w punkcie α1, to α1 jest
wektorem własnym o wartości własnej λ1. III



(b) Przestrzeń lin{α1}⊥ jest ϕ niezmiennicza i opisana w poprzednim punkcie procedura stosowana induk-
cyjnie prowadzi do znalezienia ciągu rosnącego wartości własnych λ1 ¬ λ2 ¬ · · · ¬ λn i odpowiadają-
cych im wektorów własnych.

Zadanie 8 Udowodnić, że przekształcenia samosprzężone φ i ψ przestrzeni euklidesowej są przemienne,
czyli φ ◦ ψ = ψ ◦ φ, wtedy i tylko wtedy, gdy posiadają wspólną ortonormalną bazę wektorów własnych.
Zadanie 9 Znaleźć wspólną bazę ortonormalną (względem standardowego iloczynu skalarnego w R4)
złożoną z wektorów własnych obu poniższych macierzy:

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0



0 0 0 1
0 0 1 0
0 1 0 1
1 0 1 0


Zadanie 10 Niech ϕ : V −→ V będzie endomorfizmem przestrzeni euklidesowej spełniającym ϕ2 = 0.
Połóżmy ϕ̃ = η−1 ◦ϕ∗ ◦ η, gdzie η : V −→ V ∗ jest izomorfizmem wyznaczonym przez produkt skalarny a
ϕ∗ : V ∗ −→ V ∗ jest sprzężeniem ϕ. Niech δ = ϕ̃ ◦ ϕ+ ϕ ◦ ϕ̃. Wykaż co następuje

(a) ker(δ) = ker(ϕ) ∩ ker(ϕ̃)

(b) V = ker(δ)⊕ im(ϕ)⊕ im(ϕ̃) oraz ten rozkład jest ortogonalny.



GAL2⋆
Zadania na dziewiąty tydzień (09.05–13.05)
Przekształcenia ortogonalne i unitarne

W tej serii zadań przestrzenie są skończonego wymiaru nad R lub C.
Zadanie 1 Niech V będzie przestrzenią wektorową nad C z iloczynem hermitowskim. Przez V oznaczamy
tę samą przestrzeń (jako zbiór) z mnożeniem przez z ∈ C zadanym formułą z⊙v = zv. Znajdź izomorfizm
V
≃→ V ∗, który nie zależy od wyboru bazy a jedynie od iloczynu hermitowskiego.

Zadanie 2 Niech V będzie parzystowymiarową rzeczywistą przestrzenią wektorową z formą antysyme-
tryczną ω maksymalnego rzędu. Udowodnij, że na V istnieje struktura zespolona oraz iloczyn hermitowski
takie, że ω(v, w) = − im(⟨v|w⟩).

Zadanie 3 Niech J =
[
0 −I
I 0

]
będzie macierzą struktury zespolonej na R2n ≃ Cn w bazie

e1, e2, . . . , en, ie1, ie2, . . . , ien .

Rozważamy U(n) i GLn(C) jako podgrupy GL2n(R) oraz standardowe podgrupy O2n(R) i Spn(R) =
{A ∈ GL2n(R) | ATJA = J}. Wykaż następujące równości

(a) GLn(C) ∩ Spn(R) = U(n),

(b) GLn(C) ∩O2n(R) = U(n),

(c) O2n(R) ∩ Spn(R) = U(n).

Zadanie 4 Niech (V, ⟨ | ⟩) będzie przestrzenią hermitowską wymiaru n nad C.

(a) Pokaż, że część rzeczywista iloczynu hermitowskiego, czyli re(⟨ | ⟩), jest iloczynem skalarnym na V ja-
ko przestrzeni wymiaru 2n nad R, którą oznaczymy przez VR. Pokaż, że im(⟨ | ⟩) jest antysymetryczną
formą dwuliniową na VR maksymalnego rzędu.

(b) Załóżmy, że dany jest iloczyn skalarny ⟨ , ⟩ na VR, który jest zachowany przez strukturę zespoloną,
czyli ⟨i · v1, i · v2⟩ = ⟨v1, v2⟩. Czy istnieje iloczyn hermitowski ⟨ | ⟩ na V , taki że re(⟨ | ⟩) = ⟨ , ⟩?

(c) Załóżmy, że ω jest dwuliniową rzeczywistą formą antsysmetryczną na VR, taką że ω(i · v1, i · v2) =
ω(v1, v2). Czy istnieje iloczyn hermitowski na V , taki że im(⟨ | ⟩) = ω?

Definicja: Niech V i W będą zespolonymi skończenie wymiarowymi przestrzeniami wektorowymi z ilo-
czynami hermitowskim. Dla ϕ ∈ L(V,W ) definiujemy ϕ∗ ∈ L(W,V ) za pomocą tożsamości

⟨ϕ(v) | w⟩W = ⟨v | ϕ∗(w)⟩V .

Zadanie 5 Wykaż, że powyższa definicja jest dobra, czyli jednoznacznie wyznacza ϕ∗. Wykaż, że jeśli
A jest bazą ortonormalną w V oraz B jest bazą ortonormalną w W to

M(ϕ∗)AB = (M(ϕ)
B
A)

T .

Zadanie 6 Niech V będzie i ϕ ∈ End(V ) endomorfizmem takim, że ϕ ◦ ϕ∗ = ϕ∗ ◦ ϕ. Pokaż, że ϕ jest
diagonalizowalny w bazie ortonormalnej. Jeśli ϕ = ϕ∗, to endomorfizm ϕ nazywamy samosprzężonym;
pokaż, że wówczas wartości własne ϕ są rzeczywiste.
Zadanie 7 Sprawdź, że macierze

(a)
1√
3

[
1 + i 1
−1 1− i

]
(b)

1
9

4 + 3i 4i −6− 2i
−4i 4− 3i −2− 6i
6 + 2i −2− 6i 1


są unitarne i znajdź bazy przestrzeni C3 i C4 składające się z ich wektorów własnych.



Zadanie 8 Na C2 weźmy standardową strukturę przestrzeni unitarnej. Endomorfizm φ ∈ End(C2) jest
zadany macierzą [

4 + 2i 5 + 4i
4 + 3i 2

]
Przedstaw φ jako złożenie ψ ◦ η, gdzie ψ jest samosprzężone a η unitarne.
Zadanie 9 Przekształcenie przestrzeni euklidesowej zadane jest w bazie ortonormalnej macierzą:

(a)

−2 1 −2
2 2 −1
−1 2 2

 , (b)


1 1 1 1
1 1 −1 −1
−1 1 −1 1
−1 1 1 −1

 .
Znajdź bazę ortogonalną, w której to przekształcenie ma postać klatkowo-diagonalną z klatkami wymiaru
nie większego niż 2× 2.
Zadanie 10 Dla macierzy o wyrazach zespolonych przez A∗ oznaczamy macierz AT .

(a) Dla dowolnej macierzy A ∈ Mn×n(C) definiujemy exp(A) :=
∑∞
n=0

1
n!A

n. Pokaż, że ta definicja jest
dobra, czyli ten szereg jest zbieżny do macierzy w Mn×n(C)

(b) Pokaż, że exp(A) jest zawsze macierzą odwracalną.

(c) Udowodnij, że jeśli A = −A∗, to exp(A) ∈ U(n).

(d) Wykaż, że jeśli B ∈ U(n), to istnieje macierz A = −A∗ taka, że B = exp(A).

Zadanie 11 Niech

V = {A ∈M2×2(C) | A = A∗, tr(A) = 0} = linR
{(
1 0
0 −1

)
,

(
0 1
1 0

)
,

(
0 i
−i 0

)}
.

Sprawdź, że exp(iA) ∈ SU(2) dla A ∈ V . Zbadaj obrazy prostych exp(itA) dla macierzy A takich jak
powyżej.



GAL2⋆
Zadania na dziesiąty tydzień (16.05–20.05)
Kwaterniony, przestrzenie afiniczne

Kwaterniony, przypomnienie: Standardową R-bazę w kwaternionach H oznaczamy przez 1, i, j, k. Rozwa-
żamy iloczyn skalarny ⟨ , ⟩ wH, dla którego to jest baza ortonormalna. Przestrzeń czystych kwaternionów
rozpiętą przez i, j, k oznaczamy przez ℑ.
Iloczyn wektorowy, definicja: Rozważamy R3 ze standardowym iloczynem skalarnym oraz standardową
orientacją. Niech vol = e1∧e2∧e3 (forma ta zależy tylko od iloczynu skalarnego i orientacji). Definiujemy
iloczyn wektorowy × : R3 × R3 → R3 formułą

⟨u, v × w⟩ · vol = u ∧ v ∧ w dla u, v, w ∈ R3 .

Zadanie 1 Zauważ, że każdy kwaternion można zapisać x = r · A, gdzie r = ∥x∥ oraz A ∈ SU(2).
Wykazać, że iloczyn skalarny w kwaternionach spełnia tożsamość

2 · ⟨x, y⟩ = tr(x · y∗)

Zadanie 2 Pokaż, że jeśli q1, q2 ∈ ℑ, to

q1 · q2 = −⟨q1, q2⟩+ q1 × q2

gdzie ⟨q1, q2⟩ to iloczyn skalarny w R3 ≃ I, a q1 × q2 to iloczyn wektorowy dla bazy i, j, k.
Zadanie 3 Pokaż, że {

q ∈ H : ∀q′∈H q · q′ = q′ · q
}
= R · 1

Zadanie 4 Pokaż, że jeśli a i b są liczbami całkowitymi będącymi sumami czterech kwadratów liczb
całkowitych, to iloczyn ab też jest sumą czterech kwadratów.

Oktoniony. Definiujemy funkcję ⋆ : H2 ×H2 → H2 wzorem

(a, b) ⋆ (c, d) = (ac− d∗b , da+ bc∗)

for h ∈ H h := (h, 0) ℓ := (0, 1)

Definiujemy (a, b)# = (a∗,−b). Parę (H2, ⋆) nazwiemy oktonionami z mnożeniem ⋆ i sprzężeniem #.
Zadanie 5 Sprawdź następujące własności zdefiniowanych powyżej pojęć

(a) ⋆ jest odwzorowaniem R-dwuliniowym i jego obcięcie do H× 0 jest mnożeniem w kwaternionach.

(b) Element (1, 0) jest neutralny dla ⋆, czyli (1, 0) ⋆ (a, b) = (a, b) ⋆ (1, 0) = (a, b).

(c) Dla v ∈ H2 produkt v ⋆ v# ∈ H2 jest postaci (r, 0), gdzie r ∈ R ⊂ H.

(d) Dla każdego niezerowego elementu v ∈ H2 istnieje w taki, że v ⋆ w = w ⋆ v = (1, 0).

Rozstrzygnij czy mnożenie ⋆ jest łączne, czyli czy dla każdej trójki vi ∈ H2 zachodzi (v1 ⋆ v2) ⋆ v3 =
v1 ⋆ (v2 ⋆ v3)?

Przestrzenie afiniczne, przypomnienie: Rozważamy przestrzenie afiniczne E z przestrzenią styczną
T (E), gdzie T (E) jest przestrzenią liniową skończonego wymiaru nad ciałem K. Dla zbioru X ⊂ E przez
af(X) rozumiemy podprzestrzeń afiniczną rozpietą przez X. Dla prostej rozpiętej przed dwa punkty p ̸= q
piszemy L(p, q). Dla przestrzeni liniowej V mamy standardową strukturę przestrzeni afinicznej na V . Jeśli
V = Kn, to przez [a1, . . . , an] oznaczmy punkt w przestrzeni afinicznej a przez (a1, . . . , an) wektor w jej
przestrzeni stycznej.

Zadanie 6 Znajdź bazę punktową podprzestrzeni K3 opisanej równaniem

x1 + 2x2 + 4x3 = 4

Zadanie 7 Niech p = [−1,−1, 1] ∈ R3 i L = [2, 3, 5] + lin{(1, 2, 1)} ⊂ R3.



(a) Znajdź równanie płaszczyzny w H ⊂ R3 zawierającej punkt p i prostą L.

(b) Niech prosta L′ będzie opisana układem równań{
x1 − x2 + x3 = 7
3x1 − 2x2 + 2x3 = 17

Sprawdź, że istnieje prosta K ⊂ R3 zawierająca p i przecinająca proste L oraz L′ i znajdź punkty
przecięcia prostej K z prostymi L i L′.

Zadanie 8 W przestrzeni afinicznej R4 znajdź przedstawienie parametryczne oraz układ równań opisu-
jący podprzestrzeń afiniczną rozpiętą przez następujące punkty:

a) [−1, 1, 0, 1], [0, 0, 2, 0], [−3,−1, 5, 4], [2, 2,−3,−3]

b) [1, 1, 1,−1], [0, 0, 6,−7], [2, 3, 6,−7], [3, 4, 1,−1]

Przestrzenie te przedstaw jako przecięcia hiperpłaszczyzn w R4. (Hiperpłaszczyzna = przestrzeń kowy-
miaru jeden.)
Zadanie 9 Sformułuj i udowodnij twierdzenie Talesa w przestrzeni afinicznej nad ciałem K.
Zadanie 10 Mówimy, że układ czterech punktów p, q, r, s ∈ E jest równoległobokiem gdy−→pq = −−→rs.
Udowodnij, że jeśli char(K) ̸= 2, to mamy wówczas równość kombinacji afinicznych

1
2
p+
1
2
r =
1
2
q +
1
2
s

Zadanie 11 Twierdzenie Menelaosa. Dane sześć różnych punktów a, b, c, p, q i r w przestrzeni afinicznej
nad K. Przypuśćmy, że punkty p, q i r leżą odpowiednio na prostych L(b, c), L(c, a) i L(a, b) oraz

p = λb+ (1− λ)c q = µc+ (1− µ)a r = νa+ (1− ν)b

dla λ, µ, ν ∈ K. Udowodnij, że punkty p, q, r są współliniowe (czyli leżą na jednej prostej afinicznej) wtedy
i tylko wtedy gdy λµν = (λ− 1)(µ− 1)(ν − 1).
Zadanie 12 Niech E1 = p + V1, E2 = q + V2 będą podprzestrzeniami przestrzeni afinicznej E, gdzie
E1, E2 ⊂ T (E). Udowodnij, że:

(a) E1 ∩ E2 ̸= ∅ ⇐⇒ −→pq ∈ V1 + V2

(b) jeśli E1 ∩ E2 ̸= ∅ to dim⟨E1 ∪ E2⟩ = dim E1 + dim E2 − dim E1 ∩ E2

(c) jeśli E1 ∩ E2 = ∅, to dim⟨E1 ∪ E2⟩ = dim E1 + dim E2 − dim V1 ∩ V2 + 1.

Zadanie 13 Niech E1, E2 będą dwoma podprzestrzeniami afinicznymi w przestrzeni afinicznej E nad
ciałem K. Opisz zbiór {

λ · p+ (1− λ) · q : p ∈ E1, q ∈ E2, λ ∈ K
}

Zadanie 14 Niech E1 = p + V1, E2 = q + V2 będą dwiema skośnymi podprzestrzeniami w przestrzeni
afinicznej; skośnymi, czyli spełniającymi następujące warunki: V1 ∩ V2 = {0} i E1 ∩ E2 = ∅.

(a) Pokaż, że dla każdego punktu x /∈ E1 ∪ E2 istnieje co najwyżej jedna prosta P przechodząca przez
punkt x i przecinająca E1 i E2.

(b) Pokaż, że taka prosta istnieje wtedy i tylko wtedy, gdy x ∈ af(E1 ∪ E2) ale −→px,−→qx /∈ V1 + V2.



GAL2⋆
Zadania na jedenasty tydzień (23.05–27.05)

Przekształcenia afiniczne i przestrzenie afiniczne euklidesowe

Mówimy, że punkt p ∈ X jest stałym dla przekształcenia ϕ : X → X gdy ϕ(p) = p. Zbiór A ⊂ X jest
niezmienniczy ze względu na przekształcenie ϕ gdy ϕ(A) ⊂ A.
Zadanie 1 W przestrzeni afinicznej A4R podprzestrzeń H zadana jest równaniami:{

x1 + x2 + x3 − x4 = 2
x1 + x2 = 1

Niech π będzie rzutem wzdłuż lin{(1, 0,−1, 1), (0, 1, 1, 0)} na H.

(a) Znajdź przeciwobraz prostej L = [1, 0, 1, 0] + lin(1,−1, 1, 1).

(b) Znajdź układ równań opisujący obraz płaszczyzny M = [1, 0, 1, 0] + lin{(1, 1, 0, 1), (0, 0, 0, 1)}.

Zadanie 2 Niech f : AnK → AnK będzie przekształceniem afinicznym. Załóżmy, że 1 nie jest wartością
własną T (f). Udowodnij, że f ma dokładnie jeden punkt stały.
Zadanie 3 Niech f : AnK → AnK będzie przekształceniem afinicznym, które ma dokładnie jeden punkt
stały p0. Pokaż, że każda podprzestrzeń niezmiennicza przekształcenia f zawiera p0.
Zadanie 4 Niech f : A3R −→ A3R będzie przekształceniem afinicznym. Wykazać, że jeśli f przeprowadza
parę prostych skośnych na parę prostych równoległych, to f nie jest różnowartościowe. Podać przykład
takiego przekształcenia.
Zadanie 5 Niech N,L,M ⊂ A3R będzie trójką prostych parami skośnych. Czy każdą taką trójkę można
przekształcić na dowolną inną za pomocą automorfizmu afinicznego? Jeśli nie, to podać warunek na
to, żeby dla dwóch trójek prostych jak wyżej istniało przekształcenie afiniczne f takie, że f(N) = N ′,
f(L) = L′, f(M) =M ′.
Zadanie 6 Dane są proste E1, E2, E3, F1, F2, F3 w A3K takie, że

T (E1) + T (E2) + T (E3) = T (F1) + T (F2) + T (F3) = T (A3K)

oraz
E1 ∩ E2 = E1 ∩ E3 = E2 ∩ E3 = F1 ∩ F2 = F1 ∩ F3 = F2 ∩ F3 = ∅.

Zbadaj, czy istnieje izomorfizm afinicznyf : A3K → A3K taki, że f(Ei) = Fi dla i = 1, 2, 3.
Zadanie 7 Znalezć warunki konieczne i dostateczne na to, by by zbiór liczb dodatnich {aij} był

(a) zbiorem odległości wszystkich możliwych par wierzchołków n wymiarowego niezdegenerowanego sym-
pleksu w przestrzeni euklidesowej Rn,

(b) zbiorem odległości wszystkich możliwych par punktów pewnego zbioru n + 1 punktów przestrzeni
euklidesowej Rn (to znaczy nie zakładamy tak jak w a), że punkty są w położeniu ogólnym).

Zadanie 8 Ustalmy k i n takie, że 0 < k < n. Niech f : E → E będzie przekształceniem afinicznym
prezestrzeni euklidesowej wymiaru n zachowującym objętość równoległościanów k-wymiarowych. Pokaż,
że f jest izometrią.
Zadanie 9 Udowodnij, że odległość ρ(x0, H) punktu x0 od podprzestrzeni afinicznej H = y0 + T (H),
gdzie T (H) = lin{α1, .., αk}, można wyrazić przy pomocy wyznacznika Grama G:

(ρ(x0, H))2 =
G(α1, α2, .., αk,−−→x0y0)
G(α1, α2, .., αk)

,

Zadanie 10 W afinicznej przestrzeni euklidesowej A4R ze standardowym iloczynem skalarnym znajdź
odległość punktu [4, 2,−5, 1] od podprzestrzeni opisanej przez układ równań:

2x1 − 2x2 + x3 + 2x4 = 9
2x1 − 4x2 + 2x3 + 3x4 = 12.



Zadanie 11 NiechH iK będą podprzestrzeniami euklidesowej przestrzeni afinicznej E i niechH∩K = ∅.
Pokaż,że istnieje prosta L taka, że L ⊥ H, L ⊥ K, i L ma punkty wspólne z H i z K.
Zadanie 12 W afinicznej przestrzeni euklidesowej A5R ze standardowym iloczynem skalarnym znajdź
miejsce geometryczne punktów, przez które można przeprowadzić prostą przecinającą płaszczyzny P1 i
P2 i będącą do nich prostopadłą

P1 : [2, 2, 2, 4, 5] + lin{(1, 0,−1, 0, 0), (0, 1, 0,−1, 0)}

P2 :

 x1 + x2 + 2x4 = 15
x2 + 2x3 = 11

−x2 − 2x4 + 2x5 = −1

Znajdź odległość P1 od P2.
Zadanie 13 W przestrzeni afinicznej euklidesowej R4 dane są proste L = {[0, 7, 1, 2] + t(0, 1,−1, 0)}
oraz K = {[1, 1, 1, 1] + t(1, 0, 0,−1)}. Znajdź płaszczyznę przechodzącą przez punkt [4, 1, 3, 1], która jest
prostopadła do L i nie przecina K.



GAL2⋆
Zadania na dwunasty tydzień (30.05–06.06)

Przestrzenie rzutowe i kwadryki

Jeśli nie jest powiedziane inaczej, to zakładamy, że ciało K jest nieskończone i charK ̸= 2. Mapa afiniczne
na przestrzeni PnK , to układ współrzędnych jednorodnych (x0 : · · · : xn) i izomorfizm

Ui = {xi ̸= 0} ∋ [x0 : · · · : xn]
ψi−→
(
x0
xi
, · · · , xn

xi

)
∈ AnK

dla pewnego i.
Zadanie 1 Niech f : Kn+1 → K będzie funkcją liniową. Podzbiór Uf = PnK \V (f) nazywamy otoczeniem
afinicznym. Udowodnić, że przekształcenie

{(x0, x1, . . . , xn) ∈ Kn+1 | f(x0, x1, . . . , xn) = 1} → Uf , (x0, x1, . . . , xn) 7→ [x0 : x1 : · · · : xn]

jest bijekcją. Udowodnij, że dla każdego skończonego zbioru punktów w przestrzeni rzutowej istnieje
otoczenie afiniczne, która zawiera te punkty.
Zadanie 2 Wykaż, że dowolną k-wymiarową podprzestrzeń liniową w Λk ⊆ PnK można pokryć k + 1
mapami afinicznymi (czyli przestrzeń Λk zawarta jest w teoriomnogościowej sumie ich dziedzin), ale nie
można jej pokryć mniejszą liczbą takich map.
Zadanie 3 Pokaż, że na płaszczyźnie rzutowej każde dwie proste przecinają się w jednym punkcie lub
są równe. Uogólnij to stwierdzenie na wyższe wymiary.
Zadanie 4 Niech K będzie ciałem algebraicznie domkniętym, L ⊂ PnK będzie prostą rzutową oraz D ⊂
PnK hiperpowierzchnią stopnia d. Wykaż, że L ∩D ̸= ∅. Załóżmy dodatkowo, że L ̸⊂ D; ile maksymalnie
może być punktów w L ∩D?
Zadanie 5 Niech K będzie dowolnym ciałem. Weźmy Q1 = V (xy − z2) ⊂ P2K . Pokaż bijekcję Q ≃ P1K .
Niech Q1 = V (xy − zw = 0) ⊂ P3K . Pokaż bijekcję Q2 ≃ P1K × P1K .
Zadanie 6 Ile różnych prostych rzutowych przecina jednocześnie cztery poniższe proste w P3K opisane
we współrzędnych jednorodnych równaniami:

L1 : x = y = 0,

L2 : z = w = 0,

L3 : x = y, z = w,

L4 : x+ 2y = z + w, x+ 2w = y + z.

Znajdź te proste.
Zadanie 7 Rozpatrzmy przestrzeń afiniczną V =Mm×n(K) ≃ AmnK z naturalnymi współrzędnymi xij .
Weźmy s < min(n,m). Pokaż, że zbiór Xs = {A ∈ Mm×n : rkA ¬ s} jest algebraiczny. Czy Xs jest
stożkiem? Znajdź równania opisujące X1 dla m = 2 i n dowolnego.
Zadanie 8 Pokaż, że dla dowolnej przestrzeni wektorowej V nad ciałem K zbiór klas tensorów prostych
symetrycznych w P(S2V ) jest zbiorem algebraicznym. Podaj jego równania jeśli dimV = 2, 3.
Zadanie 9 W przestrzeni afinicznej R3 dane są kwadryki zadane równaniami:
(a) 9 + 18y − 18z + 7x2 + 8xy + y2 + 8xz − 16yz + z2 = 0,
(b) 5x2 + 7y2 − 4xz + 4yz + 6z2 − 12x+ 6y − 12z + 18 = 0,
(c) x2 − 3y2 + z2 + 6yz + 4xz + 8x = 0.
(d) 26− 6(2x− y + 2z) + 13 (5x

2 + y2 + 8xz − 8yz + 3z2) = 0
Zmieniając afiniczny układ współrzędnych sprowadź te kwadryki do postaci kanonicznej (zob. tw. z
wykładu 22). Znajdź środki symetrii, jeśli je mają.
Zadanie 10 Znajdź wszystkie proste leżące na kwadryce zadanej w R3 równaniem

x21 + x
2
2 + 5x

2
3 − 6x1x2 + 2x2x3 − 2x1x3 = 12 ,

które są równoległe do płaszczyzny x1 − 2x2 = 0.
Zadanie 11 Znajdź proste leżące na zespolonej kwadryce zadanej w C3 równaniem

x21 + x
2
2 + x

2
3 = 9

i przechodzące przez punkt (1, 2, 2).



GAL2⋆
Zadania na trzynasty tydzień (08.06–13.06)

Przekształcenia rzutowe

Zakładamy, że ciało K jest nieskończone.
Przypomnienie: przestrzeń rzutowa i przestrzeń afiniczna jako jej podzbiór. Rozważmy przestrzeń rzutową
PnK ze współrzędnymi (y0 : y1 : · · · : yn). Z wykładu wiemy, że zbiór U0 = {(y0 : y1 : · · · : yn) | y0 ̸= 0} =
PnK \ V (y0) utożsamiamy z przestrzenią afiniczną AnK = Kn ze współrzędnymi afinicznymi xi =

yi
y0
. W

tej sytuacji podprzestrzeń liniową V (y0) ⊂ PnK nazywamy punktami w nieskończoności dla U0 ≃ AnK .

Zadanie 0 Od przekształcenia rzutowego do przekształcenia przestrzeni afinicznej: Niech f : Kn+1 →
Kn+1 będzie przekształceniem liniowym zadanym macierzą odwracalną A = [aij ] ∈ GLn+1(K), czyli w
podanych powyżej współrzędnych f zadane jest wzorem

f(y0, y1, . . . , yn) =

(
n∑
i=0

a0iyi,

n∑
i=0

a1iyi, . . . ,

n∑
i=0

aniyi

)
.

Niech

Ũ0 = PnK \ V (y0, f∗(y0)) = U0 \ f−1(V (y0)) = AnK \ V
( n∑
i=0

a0iyi

)
i przez f̃ : Ũ0 −→ U0 oznaczmy obcięcie przekształcenia f do Ũ0. Uwaga: z reguły f̃ nie jest przekształ-
ceniem afinicznym (dlaczego?).
Udowodnij, że we współrzędnych afinicznych [x1, . . . , xn] przekształcenie f̃ przedstawia się następującym
wzorem.

f̃(x1, x2, . . . , xn) =
(
a1,0+

∑n

i=1
a1,ixi

a0,0+
∑n

i=1
a0,ixi

,
a2,0+

∑n

i=1
a2,ixi

a0,0+
∑n

i=1
a0,ixi

, . . . ,
an,0+

∑n

i=1
an,ixi

a0,0+
∑n

i=1
a0,ixi

)
.

W poniższych zadaniach mówiąc o przekształceniu rzutowym przestrzeni afinicznej AnK mamy na myśli
przekształcenie zadane jak wyżej, czyli jest to przekształcenie określone na dopełnieniu pewnej hiperpłasz-
czyzny.

Zadanie 1 Znajdż jakiekolwiek przekształcenie rzutowe płaszczyzny A2R, które okrąg x2 + y2 = 1
przeprowadza na siebie oraz:

(a) punkt (0, 0) na punkt (1/2, 0);

Rozwiązanie: (x, y) 7→ ( 2x+1x+2 ,
√
3y

x+2 )

(b) prostą x = 2 na prostą w nieskończoności.

Rozwiązanie: (x, y) 7→ ( 2x−1x−2 ,
√
3y

x−2 )

Wykaż, że istnieje przekształcenie rzutowe płaszczyzny zachowujące powyższy okrąg i przeprowadzające
dany punkt wewnętrzny tego okręgu na dowolny inny punkt wewnętrzny.
Zadanie 2 Znajdź jakiekolwiek przekształcenie rzutowe przestrzeni A3R przeprowadzające kwadrykę Qi
na Qj lub uzasadnij, dlaczego takie przekształcenie nie istnieje:

Q1 : x21 + x
2
2 + x

2
3 = 1 , Q2 : x21 + x

2
2 − x23 = 1 , Q3 : x21 − x22 − x23 = 1 ,

Q4 : x21 + x
2
2 = 2x3 , Q5 : x21 − x22 = 2x3 .

Rozwiązanie: Q1, Q3, Q4 są równoważne, topologicznie to są sfery w P2R, Q2, Q5 topologicznie są
torusami. Np równoważność Q5 ∼ Q2

x21−x22 = 2x3x4
x3=u+v, x4=u−v⇝ x21−x22 = 2u2−2v2 ⇝ x21+2v

2−x22 = 2u2 ⇝
(
x1√
2u

)2
+
( v
u

)2
−
(
x2√
2u

)2
= 1,



przy czym u = 12 (x3 + x4) =
1
2 (x3 + 1), v =

1
2 (x3 − x4) =

1
2 (x3 − 1). Ostatecznie(√

2
x1

x3 + 1

)2
+
(
x3 − 1
x3 + 1

)2
−
(√
2

x2
x3 + 1

)2
= 1,

Definicja: Punktem stałym przekształcenia f : X → X nazywamy taki x ∈ X, że f(x) = x.

Zadanie 3 Udowodnij, że dowolne przekształcenie rzutowe przestrzeni rzutowej PnC ma co najmniej
jeden punkt stały.
Rozwiązanie: Nad C mamy wektor własny.

Zadanie 4 Udowodnij, że jeśli n jest liczbą parzystą, to dowolne przekształcenie rzutowe przestrzeni
rzutowej PnR ma co najmniej jeden punkt stały.
Rozwiązanie: Nad R mamy wektor własny, jeśli przestrzeń wektorowa ma nieparzysty wymiar.

Zadanie 5 Udowodnij, że jeśli przekształcenie rzutowe n-wymiarowej przestrzeni rzutowej nad ciałem
nieskończonym ma skończoną liczbę punktów stałych to ich liczba jest nie większa od n+ 1.
Rozwiązanie: Przekształcenie rzutowe jest wyznaczone przez n+2 wartości. Zatem, jeśli jest n+2

punktów stałych, to przekształcenie jest stałe i ma nieskończenie wiele punktów stałych.

Zadanie 6 Wykaż, że jeśli przekształcenie rzutowe PnK przeprowadza pewną mapę afiniczną w siebie,
to indukuje na tej mapie przekształcenie afiniczne.
Rozwiązanie: Jeśli jest określone we wszystkich punkatach, to mianownik musi być stały.

Zadanie 7 Niech A1, A2, B1, B2 podprzestrzeniami rzutowymi w przestrzeni rzutowej PnK . Załóżmy, że

A1 ∩A2 = ∅ , B1 ∩B2 = ∅ , oraz dimAi = dimBi dla i = 1, 2 .

Udowodnij, że istnieje przekształcenie rzutowe przeprowadzające A1 na B1 i A2 na B2.
Rozwiązanie: Zamieniamy problem na zagadnienie liniowe.

Definicja: Niech a, b, c, d ∈ K będzie czwórką różnych elementów ciała. Dwustosunkiem tej czwórki na-
zywamy

a− c
a− d

· b− d
b− c

∈ K \ {0} .

Zadanie 8 Sprawdź, że przekształcenia rzutowe P1K zachowują dwustosunek.
Rozwiązanie:Wygodnie jest osobno sprawdzać przekształcenia x 7→ x+a, x 7→ ax (te przekształcenia

zachowują iloraz różnic) oraz x 7→ 1/x.
Zadanie 9 Udowodnij, że każde bijektywne przekształcenie dwuwymiarowej płaszczyzny P2R, przepro-
wadzające proste na proste i zachowujące dwustosunek czterech punktów na każdej prostej, jest prze-
kształceniem rzutowym.
Rozwiązanie: Możemy założyć (składająć z przekształceniem rzutowym), że przekształcenie ma 4

stałe punkty a, b, c, d. Przecięcie e ∈ ab∩cd jest piątym punktem stałym. Ponieważ dwustosunek musi być
zachowany dla x, a, b, e, więc cała prosta ab, tak samo cd jest stała, podobnie ac, bd i już przez wszystkie
punkty można poprowadzić proste, które mają conajmniej 3 punkty stałe.

Zadanie 10 Udowodnij, że odpowiednim przekształceniem rzutowym P2K można przeprowadzić dowolne
cztery proste, z których żadne trzy nie przecinają się w jednym punkcie na dowolne inne cztery proste o
tej samej własności.
Rozwiązanie: Zamiast P(V ), gdzie V = K3 patrzeć na P(V ∗).

Zadanie 11 Korzystając z przekształceń rzutowych P2R udowodnij, że odcinki łączące wierzchołki trój-
kąta z punktami przeciwległych boków trójkąta przecinają się w jednym punkcie wtedy i tylko wtedy,
gdy te punkty są punktami styczności pewnej elipsy wpisanej w trójkąt.
Zadanie 12 Zadanie z treścią: Malarz namalował obraz olejny przedstawiający aleję wysadzoną drze-
wami. Drzewa posadzono w równych odległościach. Na obrazie odległość od pierwszego drzewa alei do
linii horyzontu jest równa ℓ, a odległość między drzewami k i k + 1 jest równa ak. Wyrazić:



(a) a3 za pomocą a1 i a2,

Rozwiązanie: To jest przekształcenie rzutowe prostej w naturze na prostą na płótnie:

p1 − p2
p1 − p3

p4 − p3
p4 − p2

=
−d
−2d

d

2d
=
1
4

p′1 − p′2
p′1 − p′3

p′4 − p′3
p′4 − p′2

=
a1

a1 + a2

a3
a2 + a3

=
1
4

a3 =
(a1 + a2)a2
3a1 − a2

(b) a2 za pomocą a1 i ℓ.

Rozwiązanie: p4 →∞

lim
p4→∞

p1 − p2
p1 − p3

p4 − p3
p4 − p2

=
p1 − p2
p1 − p3

=
1
2

Niech h oznacza punkt na horyzoncie

p′1 − p′2
p′1 − p′3

h− p′3
h− p′2

=
a1

a1 + a2

ℓ− a1 − a2
ℓ− a1

=
1
2

a2 =
(l − a1)a1
l + a1

Następujące zadania ”szkolne” dotyczą rzeczywistej płaszczyzny afinicznej. Prostą przechodzącą przez dwa
punkty p i q oznaczamy pq

Zadanie 13 (twierdzenie Desargues’a o prostych na płaszczyźnie). Dane sześć różnych punktów na
płaszczyźnie. Pokaż, że że jeśli proste aa1, bb1, cc1 przecinają się w jednym punkcie, to punkty przecięcia
prostych ab z a1b1, bc z b1c1, ac z a1c1 leżą na jednej prostej.
Rozwiązanie:Wybrać afiniczne otoczenie, w którym jedna z prostych jest prostą w nieskończoności.

Zadanie 14 (twierdzenie Pascala o sześciokącie na płaszczyźnie). Udowodnij, że punkty przecięcia
przeciwległych boków sześciokąta wpisanego w okrąg leżą na jednej prostej.

Rozwiązanie: Wybrać mapę afiniczną, w której dwie pary przeciwległych boków sześciokąta są
równoległe. Co prawda okrąg jest wtedy przekształcony na elipsą, ale przekształceniem afinicznym można
go z powrotem zamienić na okrąg, co nie zmieni równoległości prostych. Uwaga: okrąg można zastąpić
dowolną stożkową.

Zadanie 15 (twierdzenie Pappusa o sześciokącie na płaszczyźnie). Udowodnić, że punkty przecięcia
przeciwległych boków sześciokąta, którego wierzchołki znajdują się kolejno na dwóch zadanych prostych
leżą na jednej prostej.



GAL2⋆
Zadania na czternasty tydzień (13.06–15.06)

Seria ostatnia, na do widzenia

Zadań jest dużo i oczywiście na ćwiczeniach wszystkich nie zrobimy, ale zachęcamy by spróbować zrobić
ile się da, dodając ewentualnie upraszczające założenia, np. w zadaniach o Grassmanianach zakładać
k ¬ 2

W poniższych zadaniach będziemy rozważać wielomiany o współczynnikach w ciele K. Zakładamy, że
ciało ma charakterystykę różną od 2 i w zadaniach o wielomianach Schura można zakładać, że jest
nieskończone.

Ustalmy n ∈ N. Niech a = (a1 > a2 > a3 > · · · > an ­ 0) będzie ciągiem liczb naturalnych. Oznaczmy
przez Wa antysymetryzację jednomianu x

a1
1 x

a2
2 . . . xann , czyli:

Wa =
∑
σ∈Sn

sgn(σ)
n∏
i=1

x
aσ(i)
i = det

[
x
aj
i

]
1¬i,j¬n

∈ K[x1, x2, . . . , xn]

W szczególności dla a = ρn = (n − 1, n − 2, . . . 0) wielomian Wρn jest równy z dokładnością do znaku
wyznacznikowi Vandermonde’a

Wρn =
∏
i>j

(xi − xj) .

Zadanie 16 Udowodnić, że wielomiany Wa stanowią bazę wielomianów antysymetrych od n zmiennych,
czyli podprzestrzeni wielomianów

An(K) = {f ∈ K[x1, x2, . . . xn] | f(x1, . . . xi, . . . , xj , . . . , xn) = −f(x1, . . . xj , . . . , xi, . . . , xn) dla i ̸= j}.

Uwaga: stwierdzenie jest prawdziwe nad Z jeśli właściwie interpretować pojęcie bazy.

Zadanie 17 Niech Sn(K) oznacza przestrzeń liniową wielomianów symetrycznych. Udowodnić, że prze-
kształcenie

Sn(K)→ An(K)

f 7→Wρn · f

jest izomorfizmem.

Definicja. Niech λ = (λ1 ­ λ2 ­ · · · ­ λn) będzie ciągiem liczb naturalnych. Wielomianem Schura
sλ ∈ K(x1, x2, . . . , xn) nazywamy iloraz

sλ =Wλ+ρn/Wρn .

Na przykład

s3,2,0(x1, x2, x3) =W5,3,0/W2,1,0 = det

x51 x31 1
x52 x32 1
x53 x33 1

 / det

x21 x1 1
x22 x2 1
x23 x3 1

 =
= x31x

2
2+ x

2
1x
3
2+ x

3
1x2x3+2x

2
1x
2
2x3+ x1x

3
2x3+ x

3
1x
2
3+2x

2
1x2x

2
3+2x1x

2
2x
2
3+ x

3
2x
2
3+ x

2
1x
3
3+ x1x2x

3
3+ x

2
2x
3
3

Zadanie 18 Przedstawić sk,ℓ jako wielomian zmiennych x1, x2.
Zadanie 19 Wykazać, że sλ(x1, x2, . . . , xn) jest wielomianem, ponadto sλ ∈ Sn(K).
Zadanie 20 Wykazać, że wielomiany Schura stanowią bazę Sn(K).
Zadanie 21 Wykazać że dla k < n mamy

sλ(x1, x2, . . . , xk, 0, . . . , 0) = 0

jesli λk+1 > 0, oraz
sλ(x1, x2, . . . , xk, 0, . . . , 0) = sλ(x1, x2, . . . , xk)



w przeciwnym przypadku.
Zadanie 22 Sprawdzić, że jeśli λ = (1, 1, 1, .., 1︸ ︷︷ ︸

k

, 0, 0, 0, . . . , 0) to sλ jest elementarnym wielomianem

symetrycznym

ek =
∑

i1<i2<···<ik

k∏
j=1

xij

n∏
i=1

(1 + xit) =
n∑
k=0

ekt
k.

Zadanie 23 Grassmanian podprzestrzenmi wymiaru k w przestrzeni liniowej wymiaru n nad ciałem K
oznaczamy GrassK(k, n) lub po prostu Grass(k, n). Niech V1 ⊂ V2 ⊂ · · · ⊂ Vn = Kn będzie standardową
flagą, tzn Vi = lin{ϵ1, ϵ2, . . . , ϵi}. Niech 0 < a1 < a2 < · · · < ak ¬ n będzie ciągiem liczb naturalnych.
Zdefiniujmy

Ωa(K) = {W ∈ Grass(k, n) | dim(W ∩ Vai) = i , dim(W ∩ Vai−1) < i dla i = 1, 2, . . . k}

(przyjmujemy V0 = 0). Wskazać bijekcję Ωa(K) = Kda , gdzie da =
∑k
i=1(ai − i).

Zadanie 24 Niech Fq będzie ciałem o q elementach. Ile jest podprzestrzeni k wymiarowych w Fnq ?
Oznaczmy tę liczbę przez ζk,n(q). Udowodnić, że ζk,n(q) zależy od q wielomianowo. Udowodnić, że współ-
czynnik przy qℓ jest równy ilości ciągów rosnących 0 < a1 < a2 < · · · < ak ¬ n takich, że

∑
(ai − i) = ℓ.

Zadanie 25 Dualność Poincaré: Wykazać równość

qk(n−k)ζk,n(q−1) = ζk,n(q)

Zadanie 26 Rozważyć afiniczne otoczenie lin{ϵ1, ϵ2} ∈ U1,2 ⊂ Grass(2, 4)

U1,2 = {W ∈ Grass2(K4) |W ∩ lin{ϵ3, ϵ4} = 0} .

Współrzędne Plückera zadają bijekcję

(x13x12 ,
x14
x12

, x23x12 ,
x24
x12
) : U1,2

≃−→ A4K .

Opisać przecięcia zbiorów Ωa z U1,2 we współrzędnych.
Zadanie 27 Rozważmy podgrupę G ⊂ GLn(C) składającą się z macierzy diagonalnych

g(t) = diag(tn, tn−1, . . . , t) , t ∈ C \ {0} .

Grupa G działa na Cn, a zatem i na zbiorze podprzestrzeni liniowych w Cn, czyli na grassmanianie
Grassk(Cn). Wykazać, to działanie zachowuje standardowe otoczenia afiniczne. Opisać punkty stałe
działania.

Wskazowka: punkty stałe są postaci Wa = lin{ϵa1 , ϵa2 , . . . , ϵak}.
Zadanie 28 Dla W ∈ Grassk(Cn) wykazać, że granica limt→0 g(t) ·W zawsze istnieje i jest punktem
stałym działania G. Niech V ∈ Grassk(Cn) będzie punktem stałym. Udowodnić, że zbiór

X+a = {W ∈ Grassk(Cn) | lim
t→0

g(t) ·W =Wa}

jest równy Ωa z zadania 12.

Wskazówka: rozważyć na początku przypadek k = 1, czyli Grass1(Cn) = Pn−1C , a potem Grass2(C4).



GAL2⋆
Zadania domowe, pierwsza seria, do oddania 21.03, godz 14:30

Zadanie 1 Niech ϕ : V → W będzie przekształceniem liniowym przestrzeni wektorowych z jądrem
ι : K → V i kojądrem κ : W → Q. Pokaż, że jądro przekształcenia sprzężonego ϕ∗ : W ∗ → V ∗ można
utożsamić z κ∗ : Q∗ → W ∗ a kojądro ϕ∗ z ι∗ : V ∗ → K∗: przedstaw izomorfizmy jako odwzorowania
przestrzeni funkcjonałów

ker(ϕ∗) ≃ (cokerϕ)∗, coker(ϕ∗) ≃ (kerϕ)∗

Zadanie 2
Niech V będzie przestrzenią skończonego wymiaru nad Q i niech ϕ : V → V będzie endomorfizmem,
takim że ϕ5 = id. Załóżmy, że 1 nie jest wartością własną ϕ. Udowodnij, że wymiar V jest podzielny
przez 4.
Zadanie 3 Zbadaj diagonalizowalność (nad R i C) macierzy

1 0 2 −1
0 1 4 −2
2 −1 0 1
2 −1 −1 2


Zadanie 4 Niech ϕ : K5 → K5 będzie przekształceniem zadanym w bazie standardowej przez macierz

−2 1 1 0 0
1 2 −1 0 0
−2 2 1 0 0
−6 −6 5 −1 1
−2 2 2 0 −1


Znajdź bazę Jordana dla ϕ. Rozstrzygnij jak odpowiedź zależy od charakterystyki ciała.
Zadanie 5 Korzystając z formy Jordana pokaż, że każda macierz nad C jest produktem dwóch macierzy
symetrycznych.



GAL2⋆
Zadania domowe, druga seria, do oddania 04.04, godz 14:30

Zadanie 1
Niech ϕ : V → W będzie niezerowym przekształceniem liniowym. Przypomnijmy, że przekształceniu ϕ
odpowiada tensor w ϕ̃ ∈ V ∗ ⊗W .
a) Pokaż, że rząd przekształcenia ϕ jest równy rzędowi tensora ϕ̃ czyli minimalnej liczbie tensorów
prostych, których suma jest równa ϕ̃.
b) Załóżmy, że przestrzeń V ma wymiar 2 i bazę α1, α2 a przestrzeń W ma wymiar n i bazę β1, . . . , βn.
Znajdź warunki, równania na współczynniki aij , które opisują zbiór tensorów prostych w V ∗ ⊗W zapi-
sanych jako ∑

i,j

aij (α∗i ⊗ βj) .

Zadanie 2
Niech V będzie przestrzenią liniową skończonego wymiaru. Niech

ϑ̃ : V ∗ ⊗ V −→ L(V, V )

będzie indukowane przez przekształcenie dwuliniowe

ϑ : V ∗ × V −→ L(V, V ) , ϑ(f, v)(w) = f(w)v .

Przypomnijmy, że ϑ̃ jest izomorfizmem. Rozważyć złożenie

Θ : K α−→ K∗
tr∗−→ L(V, V )∗ ϑ∗−→ (V ∗ ⊗ V )∗ ≃ V ∗∗ ⊗ V ∗ τ−→ V ∗ ⊗ V ϑ−→ L(V, V ) .

W powyższym ciągu:

• α jest przekształceniem przeprowadzającym 1 ∈ K na funkcjonał f = id,

• tr : L(V, V )→ K, jest odwzorowaniem śladu, a tr∗ odwzorowaniem sprzężonym,

• τ jest złożeniem przestawienia czynników i izomorfizmu V ∗∗ ≃ V .

Znajdź Θ(1).
Zadanie 3
Niech εi, i = 1, 2, . . . , n będzie standardową bazą Kn. Dla ciągu I = {i1 < i2 < · · · < ik} oznaczmy przez
εI ∈

∧
kKn iloczyn zewnętrzny wektorów bazowych εi1 ∧ εi2 ∧ · · · ∧ εik . Wektory εI stanowią bazę

∧
kKn.

Niech vi = (ai1, ai2, . . . , ain) ∈ Kn, i = 1, 2, . . . , k. Oblicz współczynniki v1 ∧ v2 ∧ · · · ∧ vk w bazie εI .
Zadanie 4
Niech V będzie przestrzenią wymiaru n. Przekształcenie liniowe ϕ : V → W indukuje przekształcenie
potęg zewnętrznych ∧kϕ : ∧kV −→ ∧kW ,

v1 ∧ v2 ∧ · · · ∧ vk 7→ ϕ(v1) ∧ ϕ(v2) ∧ · · · ∧ ϕ(vk) .

Wykaż, że jeśli ϕ jest rzędu k, to wymiar obrazu im(
∧
kϕ) ⊂

∧
kW jest równy 1.

Zadanie 5
Niech (V, ϕ) będzie dwuliniową formą symetryczną. Rozważmy podprzestrzeń W ⊂ T (V ) =

⊕∞
n=0 V

⊗n

rozpiętą przez tensory postaci
a⊗ v ⊗ v ⊗ b− ϕ(v, v) a⊗ b ,

gdzie v ∈ V , a, b ∈ T (V ). Zakładając, że dim(V ) = n oblicz dim(T (V )/W ).



GAL2⋆
Zadania domowe, trzecia seria, do oddania 21.04, godz 14:30

Zadanie 1
Policz, w zależności od parametrów t, s ∈ R, rząd i sygnaturę dwuliniowej rzeczywistej formy symetrycz-
nej zadanej poniższą macierzą : 

0 0 0 0 t2

0 1 0 −1 0
0 0 1 s 0
0 −1 s s2 + 1 0
t2 0 0 0 0


Zadanie 2 W odpowiedziach na poniższe pytania sformułuj twierdzenie (lub twierdzenia), z którego (z
których) korzystasz

(a) Załóżmy, że rzeczywista dwuliniowa forma symetryczna h : R3 × R3 → R jest zadana w bazie stan-
dardowej za pomocą macierzy symetrycznej A takiej, że detA = −7. Załóżmy dodatkowo, że istnieje
wektor v ∈ R3 spełniający warunek h(v, v) = 5. Znajdź macierz diagonalną, która jest kongruentna z
A nad R.

(b) Załóżmy, że h : R3 × R3 → R jest niezerową dwuliniową formą symetryczną, która jest osobliwa i ma
sygnaturę zero. Pokaż, że istnieje wektor v ∈ R3 taki, że h(v, v) = 0 oraz lin(v)⊥ ̸= R3.

Zadanie 3 Niech V będzie przestrzenią liniową wymiaru n nad ciałem K charakterystyki ̸= 2. Na
przestrzeni liniowej W = {(v, f), v ∈ V, f ∈ V ∗} = V × V ∗ nad ciałem K rozważamy symetryczną formę
dwuliniową h : W ×W → K postaci h((v, f), (w, g)) = f(w) + g(v). Znajdź rząd formy h. Rozstrzygnij
czy W jest sumą prostą podprzestrzeni izotropowych dla formy h i jeśli tak, to je wskaż.
Zadanie 4 Niech h będzie formą dwuliniową na przestrzeni liniowej M2×2(R) zadaną wzorem

h(A,B) = 2 · tr(AB)− tr(A) · tr(B)

dla dowolnej pary macierzy A,B ∈ M2×2(R). Znajdź rząd i sygnaturę formy formy h oraz maksymalny
wymiar jej podprzestrzeni izotropowych. Odpowiedź uzasadnij.
Zadanie 5 Wykorzystując algorytm ortogonalizacji Grama-Schmidta udowodnij, że każdą odwracalną
macierz A ∈ GLn(R) można przedstawić jako iloczyn macierzy ortogonalnej K ∈ On(R) i macierzy
górnotrójkątnej M z wyrazami dodatnimi na przekątnej:

A = KM .

Wykaż, że to przedstawienie jest jednoznaczne oraz znajdź je dla macierzy

A =

3 6 04 8 1
0 1 1

 .



GAL2⋆
Zadania domowe, czwarta seria, do oddania 05.05, godz 14:30

Zadanie 1
Niech (R3, ⟨ , ⟩) będzie przestrzenią euklidesową z iloczynem skalarnym zadanym formułą

⟨(x1, x2, x3), (y1, y2, y3)⟩ = 2x1y1 + x2y1 + x1y2 + 2x2y2 + x3y2 + x2y3 + 2x3y3.

Rozstrzygnij, czy przekształcenie, które w bazie standardowej ma macierz:1 0 00 2 0
0 0 3

 .
jest samosprzężone; odpowiedź uzasadnij.
Zadanie 2
Przedstaw macierz

M =

 2 −64 25
50 −25 40
14 2 −50


w postaci M = PA, gdzie P = P ⊺ oraz A ∈ OR(3). Przedstaw kroki pośrednie i stosowne obliczenia.
Zadanie 3
Rozpatrzmy macierz Z ∈Mm×n(C). Pokaż, że

det(Im − Z · Z⊺) = det(In − Z⊺ · Z)

gdzie Ik jest jednostkową macierzą k × k.
Zadanie 4
Niech A będzie macierzą symetryczną, którą interpretujemy jednocześnie jako przekształcenie samo-
sprzężone przestrzeni Rn ze standardowym iloczynem skalarnym. Niech λmin(A) oraz λmax(A) będą
odpowiednio najmniejszą i największą wartością własną macierzy A. Pokaż, że:

λmin(A) = min
∥x∥=1

⟨x,Ax⟩, λmax(A) = max
∥x∥=1

⟨x,Ax⟩.

Definicja. Przez macierz sąsiedztwa grafu nieskierowanego G o zbiorze n wierzchołkow V = {1, 2, . . . , n}
oraz zbiorze krawędzi E rozumiemy macierz symetrycznąM(G) = (mij) ∈Mn×n({0, 1}) taką, żemij = 1
wtedy i tylko wtedy, gdy istnieje krawędź w G łącząca i oraz j.
Zadanie 5
Pokaż, że jeśli G jest grafem prostym (nie ma pętli i wielokrotnych krawędzi), to wartości własne λi
macierzy sąsiedztwa tego grafu spełniaja równosci

∑
λi = 0 oraz

∑
λ2i = 2e(G), gdzie e(G) oznacza

liczbę krawędzi w G.



GAL2⋆
Zadania domowe, piąta seria, do oddania 16.05, godz 14:30

Zadanie 1 Niech ϕ,ψ będą samosprzężonymi przekształceniami liniowej przestrzeni euklidesowej. Załóż-
my, że endomorfizm ϕ jest dodatnio określony. Udowodnić że wartości własne złożenia ϕ◦ψ są rzeczywiste.
Uwaga: nie zakładamy, że ϕ ◦ ψ = ψ ◦ ϕ, więc endomorfizm ϕ ◦ ψ nie musi być samosprzężony.

Zadanie 2 Niech A ∈Mn×n(C). Przypomnijmy, że exp(A) =
∑∞
n=0

1
n!A

n.

(a) Udowodnij, że jeśli A = −A∗, tr(A) = 0, to exp(A) ∈ SU(n).

(b) Wykaż, że jeśli B ∈ SU(n), to istnieje macierz A = −A∗, tr(A) = 0 taka, że B = exp(A).

(c) Pokaż, że nie każda macierz B ∈ SL2(C) jest postaci exp(A) gdzie tr(A) = 0

Zadanie 3 Załóżmy, że ϕ ∈ End(V ) jest przekształceniem samosprzężonym przestrzeni unitarnej skoń-
czonego wymiaru. Udowodnij następujące własności

(a) endomorfizm ϕ− i · idV jest automorfizmem,

(b) endomorfizm ψ = (ϕ− i · idV )−1 ◦ (ϕ+ i · idV ) jest przekształceniem unitarnym,

(c) endomorfizm ψ − idV jest automorfizmem,

(d) ϕ = i · (ψ − idV )−1 ◦ (ψ + idV ).

Zadanie 4 Przekształcenie przestrzeni euklidesowej R3 zadane jest w standardowej bazie macierzą: 3 −2 6
6 3 −2
−2 6 3

 .
Znajdź bazę ortogonalną, w której to przekształcenie ma postać klatkowo-diagonalną z klatkami nie
większymi niż 2× 2.
Zadanie 5 Przez ℑ ⊂ H oznaczmy R-przestrzeń czystych kwaternionów ze standardowym iloczynem
skalarnym.

(a) Znajdź wszystkie rozwiązania równania x2 = 1 w ℑ i w H.

(b) Pokaż, że dla dowolnej bazy ortonormalnej α1, α2, α3 przestrzeni ℑ istnieje kwaternion u o normie 1,
taki że

u · α1 · u−1 = i, u · α2 · u−1 = j, u · α3 · u−1 ∈ {k, −k}
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Zadanie 1 W przestrzeni afinicznej R4 dany jest punkt c = [4, 5, 2, 7] oraz dwie proste:
• L przechodząca przez punkty a1 = [1, 1, 1, 1], a2 = [0,−1, 0, 1],
• K przechodząca przez punkty b1 = [2, 2, 3, 1], b2 = [1, 2, 2,−2].
Czy istnieje prosta N przechodząca przez punkt c i przecinająca proste L i K? Jeśli tak, to znaleźć punkty
przecięcia L z N i K z N .
Zadanie 2 Dane sześć różnych punktów a, b, c, p, q i r w przestrzeni afinicznej nad K. Przypuśćmy, że
punkty p, q i r leżą odpowiednio na prostych L(b, c), L(c, a) i L(a, b):

p = λb+ (1− λ)c , q = µc+ (1− µ)a , r = νa+ (1− ν)b .

Załóżmy, że żadne dwie proste występujące w zadaniu nie są równoległe. Znaleźć warunek dla λ, µ, ν ∈ K
na to, by proste L(a, p), L(b, q) i L(c, r) przecinały się w jednym punkcie. (Wskazówka: Twierdzenie
Cevy.)
Zadanie 3 Niech f : A3R → A3R będzie przekształceniem afinicznym takim, że f(pi) = qi, gdzie

p0 = (3, 2, 3), p1 = (4, 2, 3), p2 = (3, 3, 3), p3 = (3, 2, 4),

q0 = (2, 4, 6), q1 = (1, 8, 12), q2 = (−1,−5,−1), q3 = (6, 12, 11).

Znaleźć punkty stałe, proste i płaszczyzny niezmiennicze przekształcenia f .
Zadanie 4 Czy istnieje przekształcenie afiniczne A4R, które punkty ai przekształca na punkty bi odpo-
wiednio, zaś prostą P na prostą H. Jeżeli takie przekształcenie istnieje to znaleźć jego postać analityczną
i ustalić, czy jest ono wyznaczone jednoznacznie.

a0 = [1, 1, 1, 1]
a1 = [2, 3, 2, 3]
a2 = [3, 2, 3, 2]

b0 = [−1, 1,−1, 1]
b1 = [0, 4, 0, 4]
b2 = [2, 2, 2, 2]

P = [1, 2, 2, 2] + t(0, 1, 0, 1)
H = [−1, 2, 0, 3] + s(1,−5, 1,−5)
Zadanie 5 Niech p0, p1, p2, . . . , pn będą punktami przestrzeni euklidesowej, takimi. Załóżmy, że wszyt-
kie odległości są jednostkowe: ρ(pi, pj) = 1 dla i ̸= j. Niech 0 ¬ k < n. Znaleźć odległość pomiędzy
podprzestrzenią ⟨p0, p1, p2, . . . , pk⟩ a ⟨pk+1, p1, p2, . . . , pn⟩
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We wszystkich zadaniach zakładamy charK ̸= 2.

Zadanie 1 W przestrzeni afinicznej H = AnK z przestrzenią styczną V = T (H) = Kn, w pewnym
układzie bazowym z punktem bazowym p0, zadana jest niepusta kwadryka Q = V (F (p0+v)). Zakładamy,
że funkcja wielomianowa F jest postaci

F (p0 + v) = q(v) + ℓ(v) + a

gdzie q jest formą kwadratową na V , ℓ jest formą liniową na V oraz a ∈ K. Udowodnij, że jeśli q0 =
p0+w ∈ AnK jest środkiem symetrii kwadryki Q, to 2h̃(w) = −ℓ gdzie h̃ : V −→ V ∗ jest przekształceniem
liniowym odpowiadającym symetrycznej formie dwuliniowej h, takiej że q(v) = h(v, v).
Zadanie 2 Dla jakich parametrów a ∈ R funkcja kwadratowa

F = x21 + x
2
2 + x

2
3 + 2a x1x2 + 2a x1x3 + 2a x2x3 − 4a

opisuje elipsoidę w A3R? Określ typ powierzchni V (F ) w zależności od parametru a ∈ R.
Zadanie 3 W afinicznej przestrzeni euklidesowej R4 ze standardowym, produktem skalarnym dane są
proste L = {[0, 7, 1, 2] + t(0, 1,−1, 0)} oraz K = {[1, 1, 1, 1] + t(1, 0, 0,−1)}. Znajdź płaszczyznę przecho-
dzącą przez punkt [4, 1, 3, 1], która jest prostopadła do L i nie przecina K.
Zadanie 4

(a) W przestrzeni V = K4 wybierzmy bazę α0, . . . , α3 i odpowiadające jej współrzędne jednorodne (x0 : · · · :
x3) na przestrzeni rzutowej P3K = P(V ). Na zbiorze afinicznym A3K = P(V ) \ V (x0) mamy współrzędne
yi = xi

x0
. Załóżmy, że prosta L ⊂ A3K zadana jest parametrycznie w tych współrzędnych [a1, a2, a3] +

t · (b1, b2, b3). Pokaż, że prostej L odpowiada płaszczyzna w V , która jako punkt na Grassmanianie
Grass(2, 4) ⊂ P(

∧2
V ) jest reprezentowana przez tensor(

α0 + a1α1 + a2α2 + a3α3

)
∧
(
b1α1 + b2α2 + b3α3

)

(b) Rozpatrzmy następujące cztery proste w A3C zadane parametrycznie

L0 = [0, 0, 0]+ t(1, 1, 1) , L1 = [1, 0, 0]+ t(0, 1, 0) , L2 = [0, 1, 0]+ t(0, 0, 1) , L3 = [0, 0, 1]+ t(1, 0, 0)

Pokaż, że istnieją dokładnie dwie proste M1 i M2 spotykające wszystkie proste Li i zapisz Mi w postaci
parametrycznej pi + t · vi.
Wskazówka: Korzystając z poprzedniego punktu policz, że wektory styczne to odpowiednio v1 = (1, e, e2) i v2 = (1, e2, e),

gdzie e jest pierwiastkiem pierwotnym stopnia 3 z 1, czyli liczbą zespoloną spełniającą równanie e2 + e+1 = 0, następnie

znajdź pi =Mi ∩ L0.

Zadanie 5 Znajdź wszystkie proste leżące na kwadryce zadanej w R3 równaniem

x21 + x
2
2 + 5x

2
3 − 6x1x2 + 2x2x3 − 2x1x3 = 12 ,

które są równoległe do płaszczyzny x1 − 2x2 = 0.


