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Zadania wybrane przez Andrzeja Webera i Jarostawa Wisniewskiego
Zadania na pierwszy tydzien (28.02—04.03)
Kategoria przestrzeni wektorowych, przestrzenie ilorazowe

Ta seria zadan dotyczy materiatu, ktéry bedzie przerabiany na ¢wiczeniach przed wyktadami, ma wiec spe-
cjalny charakte Przypominam, ze Pafistwa aktywnosé na éwiczeniach (i zwiazana z nia ocena punktowa)r:
material jest prezentowany réwnoczesnie z przyktadami, ktore maja charakter zadan do samodzielnego
zrobienia. Zwykle zestaw zadan do zrobienia na kolejny tydzien bedzie przedstawiony w sposob bardziej
zwiezly.
Kategorie

Przypomnienie: Zajmujemy sie przestrzeniami liniowymi nad ustalonym cialem K czesto (z reguly)
bedziemy zakladaé, ze sa to przestrzenie skonczonego wymiaru. Przeksztalcenia liniowe ¢ : V — W
zachowuja kombinacje liniowe. Zbiér L(V, W) = {¢ : V — W, liniowe} jest przestrzenia liniowa nad K.
Przeksztalcenia liniowe mozemy sktadaé

Yoo

5 i

V—W —7U

czyli mamy zlozenie

L(V,W) x L(W,U) > (¢,¢)) — o ¢ € L(V,U)

Opis kategoryjny: Pracujemy w kategorii Vectx przestrzeni liniowych nad cialem K:

obiektami w tej kategorii sa przestrzenie liniowe V nad cialem K;

e morfizmami (strzatkami) w tej kategorii sa odwzorowania liniowe; dla kazdej pary przestrzeni liniowych
mamy zbidr(!) Moryeet, (V, W) = L(V,W);

e morfizmy mozna skladaé, dla dowolnej tréjki obiektéw V., W, Z mamy

MorVectK (V7 W) X MorVectK (VV; Z) = (¢7 1/1) — Z/J ° ¢ € MorVectK (Wa Z)

e skladanie morfizméw jest taczne, czyli dla tréjki morfizméw, ktére mozna skladaé, wynik nie zalezy od
kolejnodci sktadania, czyli (¢ o)) o x = ¢ o (¢ o x)

e identycznosé: dla kazdego obiektu V' mamy wyrézniony (jedyny!) element idy € Moryee, (V, V), iden-

tycznosé jest neutralna dla skladania,

Vo € Moryeet,. (V,W): idywod=¢=¢oidy

Uwaga Powyzsze punkty charakteryzuja dowolna kategorie C: wystaczy zdefiniowaé klase obiektéw i
morfizmy, i zamiast Vectx piszemy C (lub cokolwiek innego). Na przyklad w kategorii Vectx mamy
podkategorie, w ktorej obiektami sa przestrzenie skoniczonego wymiaru, oznaczamy ja Vect3>°.

Zadanie 1 Sprawdz, ze to sa kategorie.
(a) Kategoria Set, w ktérej obiektami sa zbiory a morfizmami funkcje.

(b) Dla dowolnego zbioru X kategoria P(X), w ktérej obiektami sa podzbiory zbioru X a morfizmami
zawieranie (inkluzje) podzbioréw, czyli

t:A— B} jesSi ACB
MOTP(X)(A,B) = { } AT
0 jesi AZ B
(¢) Kategoria z jednym obiektem %, w ktorej Mor(*,x) = G, gdzie G jest dowolnym grupoidem z
dzialaniem G x G 3 (g1,92) — g1 © g2 € G, ktdre jest laczne i ma element neutralny 1¢.



Izomorfizm: dwa obiekty V, W sa izomorficzne jesli istnieja ¢ € Moryeet, (V, W) 1 1 € Moryeet, (W, V),
takie ze Yo ¢ =idy i pop = idy.

Obiekt zerowy, morfizm zerowy. Kategoria Vectx ma wyrdzniony obiekt: przestrzen zerowa 0. Dla
dowolnej przestrzeni V istnieje dokladnie jeden morfizm 0 — V' i doktadniej jeden morfizm V — 0, czyli
| Moryect, (0, V)] = | Moryeet, (V,0)| = 1. Morfizm © : V. — W nazywamy zerowym jesli faktoryzuje si¢
przez obiekt zerowy, czyli zachodzi réwnoéé¢ dla ztozenia

[S]

V—s 0 — W
Morfizm zerowy jest wyznaczony jednoznacznie w Moryect, (V, W) (dlaczego?) i bedziemy go oznaczac
po prostu przez 0. Zwréé uwage, ze idg = 0.

Uwaga Diagram (graf) skladajacy sie z obiektéw (wierzchotkéw grafu) i morfizméw (strzalek) nazywamy
przemiennym, jesli zlozenie strzalek w odpowiedniej kolejnosci daja ten sam rezultat w odpowiednich
zbiorach morfizméw (wigcej przykladéw ponizej).

Obiekt poczatkowy. P to taki obiekt w kategorii C, ze dla kazdego obiektu A zbiér morfizmdow
Mor¢ (P, A) jest jednoelementowy.

Obiekt konicowy. K to taki obiekt w kategorii C, ze dla kazdego obiektu A zbiér morfizméw More (A4, K)
jest jednoelementowy.

Zadanie 2 Udowodni¢ nastepujace fakty

(a) Jesli w kategorii mamy dwa obiekty poczatkowe, to sa one izomorficzne. Jesli w kategorii mamy dwa
obiekty koncowe, to sa one izomorficzne.

(b) Obiekt zerowy zdefiniowany dla kategorii Vectx jest poczatkowy i koncowy.
(c) W kategorii Set istnieje obiekt poczatkowy 0 i istnieje obiekt koficowy e. Pokaz, ze te obiekty nie sa

izomorficzne.

Monomorfizm. Méwimy, ze f : X — Y jest monomorfizmem, jesli dla dowolnych morfizméw g1, gs :
Z — X
fogpr=[f0og2 = g1=g2.

Epimorfizm. Méwimy, ze f : X — Y jest epimorfizmem, jesli dla dowolnych morfizmoéw g1,92 : Y — Z
gof=gof =g0=g.

Zadanie 3
a) Opisa¢ monomorfizmy i epimorfizmy w kategorii zbioréw.

(
(b

) Opisaé¢ monomorfizmy i epimorfizmy w kategorii przestrzeni wektorowych.
(¢) Udowodnié, ze jesli f jest izomorfizmem, to jest monomorfizmem oraz epimorfizmenmn.
)

(d) Wskazaé kategorie, w ktdrej istnieje morfizm, ktéry jest monomorfizmem i epimorfizmem, ale nie jest
izomorfizmem.

Jadro morfizmu ¢ : V — W to k : K — V takie, ze pox = 0 (zakladamy, ze w kategorii C istnieje obiekt
zerowy) oraz dla dowolnego «' : K/ — V, takiego ze ¢ o k' = 0, istnieje doktadnie jeden(!) morfizm p, ze
ten diagram jest przemienny:
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Zadanie 4 Sprawdz, ze powyzsza kategoryjna definicja jadra jest spelniona w kategorii Vecty przez
jadro odwzorowan przestrzeni liniowych kerp = {v € V' : p(v) = 0} — V. Pokaz, ze jadro zdefiniowane
kategoryjnie jest jednoznaczne z doktadnoscia do izomorfizmu. Pokaz, ze jadro morfizmu « jest zerowe.

Jadro réznicowe (uogdlnienie definicji jadra): Dane dwa przeksztalcenia f, g : V — W. Jadro réznicowe
to taki morfizm ¢ : K — V spelniajacy for = got oraz majacy wlasnos¢ uniwersalna: dla kazdego morfizmu
h:Z — V, takiego ze f o h = g o h, istnieje doktadnie jeden morfizm hg : Z — K taki, ze h = ¢ o hyg.

Vh
~g *
Z ——K —V w
Alhg L ~_
f

Zadanie 5 Czy w kategorii zbioréw Set istnieje jadro réznicowe dla dowolnych morfizméw f,g: X — Y?
Czy w kategorii przestrzeni liniowych Vecty istnieje jadro réznicowe?

Produkt. Méwimy, ze P wraz z przeksztalceniami 7y : P — Vi i o : P — V5 jest produktem obiektéw
Vii Vs (i piszemy P ~ V; x V3) jesli jest spelniony warunek dla dowolnego obiektu Z oraz morfizmdw
¢1:Z — Vi, ¢o 1 Z — Vs istnieje dokladnie jeden morfizm ¢ : Z — P taki, ze ¢p; =m;0¢ dlai=1,2

Koprodukt. Méowimy, ze S wraz z przeksztalceniami ¢; : Vi — S i1 @ Vo — S jest koproduktem
obiektéw Vi i Vo (i piszemy S ~ Vi U V3) jesli jest spelniony warunek dla dowolnego obiektu Z oraz
morfizmow ¢1 : Vi — Z, ¢o : Vo — Z istnieje dokladnie jeden morfizm ¢ : S — Z, taki, zZe ¢; = po; dla
i=1,2

Zadanie 6

(a) Czy w kategorii przestrzeni wektorowych istnieja produkty i koprodukty dowolnych dwoch obiektéw?
Czy koprodukt dwdch przestrzeni wektorowych jest izomorficzny produktowi?

(b) Czy w kategorii zbioréw istnieja produkty i koprodukty dowolnych dwo6ch obiektéw? Czy koprodukt
dwéch zbioréw jest izomorficzny produktowi?

Produkt i koprodukt rodziny obiektéw Niech A; bedzie rodzina obiektéw indeksowana i € I.

e Obiekt S wraz z odwzorowaniami ¢; : A; — S nazywamy koproduktem rodziny {A;};e; gdy dla
dowolnego obiektu C oraz morfizméw f; : A; — C istnieje dokladnie jeden morfizm f : S — C taki, ze
fi = fou; dla kazdego i € I.

e Obiekt P wraz z odwzorowaniami m; : P — A; nazywamy produktem rodziny {A4;};cr gdy dla do-
wolnego obiektu C' oraz morfizméw f; : C' — A; istnieje dokladnie jeden morfizm f : C — P taki, ze
fi=m; o f dla kazdego ¢ € 1.



Zadanie 7

(a) Wykazaé, ze produkty i koprodukty skoficzonych rodzin przestrzeni wektorowych sa izomorficzne w
kategorii Vect k.

(b) Wykazaé, ze produkty i koprodukty nieskoficzonych rodzin przestrzeni wektorowych na ogél nie sa
izomorficzne w kategorii Vect .

(¢) Czy w kategorii P(X) zdefiniowanej powyzej istnieja produkty i koprodukty dowolnych dwéch obiek-
tow? Czy koprodukt dwdch zbioréw jest izomorficzny produktowi?

Ilorazy

Iloraz przestrzeni wektorowych. Niech W C V bedzie podprzestrzenia przestrzeni liniowej nad K.
Definiujemy relacje réwnowaznosci w V' w spos6b nastepujacy: a ~ (§ jesli a — 8 € W. Klasa abstrakcji
wektora « to zbior a+W = {a+w : w € W} nazywany tez warstwa wektora o wzgledem podprzestrzeni
W . Zbiér klas abstrakeji ma strukture przestrzeni liniowej z dodawaniem (a+W)+(6+W) = (a+05)+W
i mnozeniem przez skalary a - (o + W) = (a - ) + W (sprawdz, ze te operacje sa dobrze okreslone). Tak
zdefiniowang przestrzen nad K nazywamy przestrzenia ilorazowa i oznaczamy V/W.

Zadanie 8 Dowiedz nastepujacych podstawowych wlasnosci przestrzeni ilorazowej

(a) Odwzorowanie m : V' — V/W zdefiniowane wzorem m(«) = o + W jest liniowe, jest epimorfizmem
oraz ker(m) = W.

(b) Wtlasnoé¢ uniwersalna ilorazu. Dla kazdego przeksztalcenia liniowego ¢ : V' — Z takiego, ze ¢y = 0
istnieje doktadnie jedno przeksztalcenie ¢ : V/W — Z takie, ze ¢ = po

i

W e——1V e

Vo
0

Z

(c) Powyzsza wlasno$é uniwersalna determinuje iloraz z dokladnoscia do izomorfizmu. Dokladniej: jesli
odwzorowanie p : V — @ spelnia warunek: por = 0, gdzie . : W — V' jest wlozeniem, oraz dla kazdego
przeksztalcenia liniowego ¢ : 'V — Z takiego, Ze ¢\ = 0 istnieje dokladnie jedno przeksztalcenie ¢

takie, Ze ¢ = ¢ op, to Q =~ V/W oraz ten izomorfizm jest zgodny z przeksztalceniami p : V — Q i
m:V->V/W.

(d) Jedliep : V. — Ui ¢ : U — Z sa przeksztalceniami liniowymi taki, ze (¢ o ¥);y = 0, to istnieje
dokladnie jedno przksztatcenie liniowe 1) : V/W — Z takie, ze nastepujacy diagram jest przemienny

We——V "5 V/W
J{WW va lﬂ!@
ker(¢) —— U —2— 7
gdzie "haczykowate” strzalki oznaczaja monomorfizmy.
Zadanie 9 Pokaz nastepujace wlasnoéci ilorazu.
(a) Dla dowolnych podprzestrzeni U, W C V zachodzi izomorfizm ilorazéw
U+W)/W=U/(UNW)
(b) Niech ¢ : V — Z bedzie przeksztalceniem liniowym. Woéwczas istnieje naturalne przeksztalcenie
¢ :V/ker(¢) — Z

takie, ze ¢ = ¢ o . Ponadto ¢ zadaje izomorfizm V/ker(¢) ~ im(¢)



(¢) Jesi V =W @ U to mamy izomorfizm V/W ~ U. Jedli V jest skoniczonego wymiaru, to dim(V/W) =
dim(V) — dim(W). Uwaga: kowymiar podprzestrzeni liniowej definiujemy jako wymiar przestrzeni
ilorazowej codimy (W) = dim(V/W). Kowymiar moze by¢ Jedli V jest skohczonego wymiaru, to
dim(V/W) = dim(V) — dim(W). Kowymiar definiujemy jako

codimy (W) = dim(V/W).

Kowymiar moze by¢ skonczony nawet gdy dimV = oco.

(d) Niech U ¢ W C V beda przestrzeniami liniowymi, wéwczas mamy izomorfizm ilorazéw

V/O)/W/U) = V/W.

(e) Niech A C R bedzie zbiorem domknigtym oraz niech C(A) oznacza zbiér funkcji cigglych na A.
Wtedy mamy izomorfizm R przestrzeni liniowych C(A) ~ C(R)/I(A), gdzie I(A) = {f € C(R) |Vz €
A, f(z) =0}.

Kojadro morfizmu definiujemy kategoryjnie przez odwrdcenie strzalek w definicji jadra. Kojadro morfi-

zmu p:V — W to k: W — Q takie, ze ko p = 0 oraz dla dowolnego ' : W — @', takiego ze £’ o p = 0,
istnieje doktadnie jeden(!) morfizm p: Q — @, ze ten diagram jest przemienny:

Zadanie 10
(a) Pokaz, ze kojadro jest zdefiniowane jednoznacznie z dokladnodcia do izomorfizmu. Pokaz, ze kojadro

istnieje w kategorii Vect .

(b) Niech ¢ : V. — W bedzie przeksztalceniem liniowym przestrzeni wektorowych z jadrem ¢ : K — V i
kojadrem k : W — Q. Pokaz, ze jadro przeksztalcenia sprzezonego ¢* : W* — V* to k* : Q* — W*
a kojadro ¢* to * : V* — K*.

Push-out, pull-back. Zalézmy, ze mamy dane trzy obiekty i dwa morfizmy V; PN /LN Vs .

Push-out to obiekt P i morfizmy V; ——— P «+—=— V; takie, ze m 0¢ = m20¢s, ktére maja nastepujaca
wlasnosé uniwersalna: Dla kazdej pary przeksztalcen i : Vi — Z, 19 : Vo — Z takiej, ze 11 0¢1 = 2009
istnieje dokladnie jedno przeksztalcenie ¢ : P — Z takie, ze 1 = ¥ oy 1 g = 9 o ma:

w2y

¢2J{ Jjﬁ
Vi
Vo —/2» P
i‘l’/‘
sz\a Z
Definicja push-outu ma sens w dowolnej kategorii (choé¢ nie zawsze push-out musi istnie¢). Odwracajac

kierunki strzatek w diagramie definiujacym push-out zdefiniujemy pojecie dualne, tzw. pull-back. Czyli

dla ¥, w2 Vs definiujemy obiekt R z morfizmami Vi +—— R —=— V5 , dla ktérych
odpowiednie zlozenia i wlasno$¢ uniwersalna opisuje si¢ przez diagram

7 V1
ﬁp
R/ W
v TFQJ J{‘bl
$2



Zadanie 11
(a) Pokazaé, ze jesli Vo = 0, to push-out m : Vi — P jest kojadrem ¢;.

(b) Udowodnié¢, ze w kategorii przestrzeni wektorowych push-out jest izomorficzny z ilorazem P = (V7 X
V2)/U, gdzie

U={(¢1(w), —¢2(w)) | w € W}

(¢) Czy pull-backi istnieja w kategorii zbior6w oraz w kategorii przestrzeni wektorowych? Jesli tak, to
podaj konstrukcje.



GAL2*
Zadania na drugi tydzien (07.11-11.03)

Endomorfizmy, wielomian charakterystyczny,
wektory wlasne, wartosci wlasne, diagonalizowalnosé

Zadania oznaczone T sg do zrobienia w pierwszej kolejnosci.

Endomorfizmy.

Zadanie 1 1 Niech ¢ bedzie automorfizmem przestrzeni wektorowej V spelniajacym ¢? = id. Zalézmy,
ze charakterystyka ciala bazowego jest rézna od 2.

a) Wykazac, ze ¢ symetria, tzn istnieje rozktad V = V) @ V5 taki, ze ¢y, = id)y, i v, = —id)y,

b) Podaé¢ wzér na rzutowania V' na podprzestrzenie V7 i V.

¢) Przeanalizowaé sytuacje gdy charakterystyka ciala jest réwna 2.

Zadanie 2 Zal6zmy, ze zbiér endomorfizméw {p1,..., @i} liniowej przestrzeni V tworzy grupe ze
wzgledu na operacje sktadania. Niech 1) = ¢ +. ..+ . Pokazaé, ze 1?2 = 1. Udowodnié, ze ¢? = ¢p =
V = ker(v)) @ im(v).
Zadanie 3 Niech ¢ bedzie automorfizmem przestrzeni wektorowej V nad cialem K. Zalézmy, ze ¢ #
+idy, ¢ # 0 oraz p? = id. Udowodni¢, ze jesli w(p) = 0 dla pewnego wielomianu w|z] € K[z], to 2% — 1
dzieli w(x).
Zadanie 4 { Niech n > 1, oraz ¢ : R®™ — R", p(z1,22,...,Tn—1,%s) = (T2,Z3,...,Tn,x1). Wskazaé
wielomian, mozliwie najmniejszego stopnia, speliajacy w(y) = 0.
Wielomian charakterystyczny. Wektory i wartosci wlasne.
Zadanie 5  Niech

A <095x —51n:1c> .

sinx cos T

Znalez¢ wartosci wlasne i wektory wtasne nad R i nad C.

Zadanie 6 Niech z € C. Uzasadnij, ze macierz A = diag(z,z) = (g 2) jest podobna (nad cialem C)

do macierzy rzeczywistej 2 x 2.
Zadanie 7 t Liczby Fibonacciego F;, definiujemy rekurencyjnie:

FOZO, Flzl, Fn:Fn—1+Fn—2 dlan>2
Wskazaé macierz kwadratowa A taka, ze
Fhn_s Fn1
A . n — n
(1) = (%)
Znalez¢ jej wartosci wlasne i wektory wlasne. Poda¢ wzér na A™ i wyprowadzi¢ wzor na liczby Fibonac-

ciego.
Zadanie 8 | Znalez¢ wartosci wlasne macierzy A, B € M, «,(R) postaci:

1 1 ... 1 a b ... b

1 1 ... 1 b a b
A= , B=

11 ... 1 b b ... a

Zadanie 9 Niech v = (ay,...,a,) € R oraz niech A = v -vT € M+, (R). Znalezé wszystkie wektory
wlasne macierzy A.

Zadanie 10 T Niech ¢ : V' — V bedzie izomorfizmem przestrzeni n—wymiarowej nad cialem K. Wyrazié¢
wielomian charakterystyczny w,-1 w terminach wielomianu w,,.

Zadanie 11 Niech V = C*°(R) bedzie przestrzenia liniowa funkcji gladkich na R. Wyznaczy¢ wartosci
wlasne i podprzestrzenie wlasne endomorfizmu ® € End(V') danego wzorem ®(f) = f’.



Zadanie 12 Niech V = C°(S!) bedzie przestrzenia liniowa funkcji gladkich na R, ktére sa okresowe
o okresie 2m. Wyznaczy¢ wartosci wlasne i podprzestrzenie wlasne endomorfizmu ® € End(V) danego
wzorem O(f) = f".

Zadanie 13 T Wykaza¢ réwno$¢ wielomianéw charakterystycznych wgy = wyg dla dowolnych ¢, €
End(V) i przestrzeni V skoficzonego wymiaru nad R lub C.

Zadanie 14 Niech ¢ : V — V bedzie endomorfizmem skonczenie wymiarowej przestrzeni liniowej nad
cialem K. Pokazaé, ze jezeli dim(im @) = k, to endomorfizm ¢ ma co najwyzej k + 1 réznych wartosci
wtasnych.

Zadanie 15 Niech V bedzie przestrzenia skoficzonego wymiaru nad R i niech ¢ : V. — V bedzie
endomorfizmem, takim, ze ¢? = —id. Udowodnié¢, ze wymiar V jest podzielny przez 2.

Diagonalizowalno$é

Zadanie 16 1 Udowodnié, ze jezeli przeksztalcenie liniowe ¢: V' — V przestrzeni liniowej nad K ma
n = dim V réznych wartosci wlasnych i dla ¢o: V' — V zachodzi ¥ o ¢ = ¢ o), to istnieje baza V zlozona
z wektoréw wlasnych .

Zadanie 17 Znalez¢ wielomian charakterystyczny i zbadaé¢ diagonalizowalnosé nastepujacej macierzy
nad C

0 0 0 0 —ag
1 00 0 —a
01 0 0 —as
0 0 0 1 —ap

(Taka macierz nazywa sie cykliczna.)
Zadanie 18 Udowodnié, ze macierz rozmiaru n x n postaci A = {a;;}: j=1..n, gdzie

Qi = (] —i) mod n

jest diagonalizowalna nad C.
Zadanie 19 t Niech endomorfizm ¢ : C" — C" bedzie dany wzorem

o(r1, T2, .., Tn) = (Tny X1y o, Tpp1) -

Wykazaé, ze ¢ jest diagonalizowalny i znalez¢ bazg zlozona z wektoréow wilasnych.

Zadanie 20 | Wykazaé, ze jesli ¢ : V. — V jest przeksztalceniem liniowym skonczenie wymiarowej
przestrzeni liniowej nad C takim, ze ¢ = id dla pewnego n € N, to ¢ jest przeksztalceniem diago-
nalizowalnym. Czy stwierdzenie to jest prawdziwe dla przestrzeni nad cialem liczb rzeczywistych? Czy
stwierdzenie to jest prawdziwe dla przestrzeni nad dowolnym cialem algebraicznie domknietym?
Zadanie 21 t Niech ¢: R? — R3 i ¢p: C3 — C? bedg przeksztalceniami liniowymi, ktére w bazach
standardowych maja macierz:

0 -1 1
A= 1 1 0
-1 0 1

Zbadaé, czy istnieja bazy R? i C3 odpowiednio, w ktérych przeksztalcenia ¢ i 1) maja macierz diagonalna.
Zadanie 22 Zbadaé¢ diagonalizowalnos$é (nad R i C) macierzy

1 0 2 -1
0 1 4 -2
2 -1 0 1
2 -1 -1 2



GAL2*
Zadania na trzeci tydzien (14.03—18.03)
Endomorfizmy nilpotentne, podprzestrzenie niezmiennicze, rozktad Jordana

Zadanie 1 Zalézmy, ze V jest przestrzenia liniowa nad cialem K, ¢ € End(V') endomorfizmem nilpo-
tentnym, a w € k[x] pewnym wielomianem o wspé6lczynnikach w K. Pokaz, ze jesli w(0) = 0 to w(yp) jest
endomorfizmem nilpotentnym a jesli w(0) # 0, to w(ep) jest automorfizmem.

Zadanie 2 Pokazaé, ze jesli przeksztalcenie f: V' — V przestrzeni liniowej nad cialem K jest nilpo-
tentne i dimV =n, to f* =0

Zadanie 3 Niech A € M, ,(K) i albo char K = 0, albo char K > n. Pokaz, ze jedli tr(A*) = 0 dla
k=1,2,...n, to macierz A jest nilpotentna.

Zadanie 4 Niech ¢, 1 € End(V) i ¢ o ¢ = ¢ o 1. Pokaz, ze ker(1) jest podprzestrzenia niezmiennicza
endomorfizmu ¢.

Zadanie 5 Niech f bedzie endomorfizmem R*, zadanym wzorem f(z1, 22,3, 74) = (T2 + 23, 23,0,0).
Znalez¢ wartosci wlasne i odpowiadajace im wektory wtasne. Czy istnieja f niezmiennicze podprzestrzenie
dwuwymiarowe W, Y C R*, dla ktérych R* =W & Y?

Zadanie 6 Zadania rachunkowe: Znalez¢ bazy w C* w ktérych przeksztalcenie liniowe f: C* — C™
ma forme Jordana (i wskazaé te forme) jezeli w bazie standardowej eq, ..e,, przeksztalcenie ma macierz:

01 -1 1 6 -9 5 4
3 2 -3

12 -1 1 7 ~13 8 7
a) |4 10 —12 D111 10 lg _17 11 8
CO A 11 0 1 1 -2 1 3

Zadanie 7 Macierze A i B ponizej, maja taki sam wielomian charakterystyczny. Ustalié, czy sa podobne.

6 2 -2 6 2 2

A=|-2 2 2 B=|-2 2 0

2 2 2 0 0 2

Zadanie 8 Znalez¢ forme Jordana macierzy nad C:
111 1 a 010 .. 00 0000 0 ag
0 a 0 1 0 0

011 1 0 0 0 0 0 1 000 0 a
a)|0 0 1 1 b) )]0 1 0 0 0 a3
............... 0 0 0 o o 0
0 0 O 1 00 0 0 0 o 0 0 0O 1 ay,

Zadanie 9 Zalézmy, ze char(K) # 3. Niech ¢ : K* — K* bedzie przeksztalceniem zadanym w bazie
standardowej przez macierz

|

—_

I

—_
_w = o
NN O DN

Znalez¢ baze Jordana dla ¢.

Zadanie 10 Niech f: V — V bedzie przeksztalceniem liniowym skonczenie wymiarowej przestrzeni
liniowej nad K. Pokaza¢, ze istnieja niezmiennicze podprzestrzenie W i U, takie ze f|,, : W — W jest
przeksztalceniem nilpotentnym, a f|, : U — U izomorfizmem, V' = U & W. Pokazac, ze przestrzenie W i
U sa wyznaczone jednoznacznie.

Zadanie 11 Niech f : V — V bedzie przeksztalceniem przestrzeni skonczonego wymiaru, ktérego
macierz w postaci Jordana sklada sie z klatek odpowiadajacym réznym wartosciom wiasnym. Pokazaé,
7e istnieje wektor v € V taki, ze v, f(v), f2(v), ..., f4™V=1(v) jest baza.

Zadanie 12 Dane jest przeksztalcenie ¢ : K7 — K7. Wiemy, ze wartoéci wlasne ¢ to 1 i 2. Ponadto
wiemy, ze

dim(ker(¢ — Id)) =2, dim(ker((¢ — Id)?)) = 4,



dim(ker(¢ — 2Id)) = 1, dim(ker((¢ — 21d)?)) = 2.

Jakiej postaci Jordana moze by¢ macierz ¢?
Zadanie 13 Wielomian charakterystyczny macierzy A nad R jest réwny (A — 5)°(\ — 1)2. Ponadto

dimker(A — 5I) = 2, dimker(A — 51)> =4, ker(A—TI)nim(A—1I)+# {0}.

Znalez¢ forme Jordana.
Zadanie 14 Rozpatrzmy endomorfizm ¢ : V' — V przestrzeni liniowej V nad cialem K.

(a) Niech W C V bedzie podprzestrzenia ¢ — niezmiennicza i niech aq, ..., a beda wektorami wlasnymi
endomorfizmu ¢ o parami réznych wartosciach wtasnych. Wykazaé, ze jesli zachodzi ag + -+ 4+ ag € W,
toa; eW dlai=1,... k.

(b) Zal6ézmy, ze jesli V jest skonczenie wymiarowa przestrzenia nad cialem algebraicznie domknietym.
Wykazaé, ze endomorfizm ¢ jest diagonalizowalny wtedy i tylko wtedy, gdy dla kazdej podprzestrzeni
¢-niezmienniczej W C V istnieje podprzestrzen ¢-niezmiennicza W/ C V taka, ze V =W & W'.



GAL2*
Zadania na czwarty tydzien (21.03—-25.03)
Formy dwuliniowe, tensory

UWAGA: Zakladamy, ze cialo bazowe K jest charakterystyki r6znej od 2 a przestrzenie sg skonczonego
wymiaru.

Zadanie 1 Niech ¢(u,v) bedzie symetryczna forma dwuliniowa na V. Udowodnij, ze forma ¢ jest zadana
przez swoje wartoéci na parach (v,v) € V xV, czyli ¢(v,v). Czy to stwierdzenie jest prawdziwe dla formy
nad cialem o charakterystyce 27

Zadanie 2 Wyznacz macierz formy dwuliniowej na R? w bazie ¢} = e;+ea, €5 = e1—ea, €4 = 2e;+eate3

1 2 3
gdy dana jest macierz w bazie standardowej | 3 1 4
5 1 6

Zadanie 3 Dana jest przestrzen liniowa z dwuliniowa forma symetryczna (V, ¢). Dla podprzestrzeni
W CV definiujemy Wt ={v eV :vw e W ¢(w,v) = 0}.

(a) Pokaz, ze V+ =ker(¢: V — V*), gdzie ¢(v)(w) = ¢(w, v).
(b) Pokaz, ze dim W + dim W+ = dim V + dim(V+ N W).

(c) Pokaz, ze na przestrzeni ilorazowej V'’ = V/V = istnieje forma dwuliniowa symetryczna ¢’ : V' x V' —
K, taka ze ¢/ (m(v1),m(v2)) = ¢p(v1.v2), gdzie w: V — V' jest odwzorowaniem ilorazowym.

(d) Czy powyzsze punkty sa prawdziwe jesli ¢ jest forma antysymetryczna?

Zadanie 4 Zalézmy, ze (V, @) jest przestrzenia z dwuliniowa niezdegenerowana (maksymalnego rzedu)
forma symetryczna lub antysymetryczna. Dla v € V'\ {0} definiujemy v+ = {w € V : ¢(v, w) = 0}. Przez
¢, oznaczmy zawezenie formy ¢ do vt czyli forme dwuliniowa ¢, : V+ x V1 — K.

(a) Pokaz, ze ¢, jest forma niezdegenerowana wtedy i tylko wtedy gdy ¢(v,v) # 0.
(b) Pokaz, ze jedli ¢(v,v) =0, to (vi)+ =K -v.
(c) Pokaz, ze jesli ¢ jest antysymetryczna, to dim V' jest liczba parzysta.

Zadanie 5 Dane macierze:

-3 0 30 10 2 -2 35 —25
A<o —2>’ B(o 2>’ C(o 1>’ D(—2 5)’ E(—25 35)'

Ktére z tych macierzy sa kongruentne nad Q?

Zadanie 6 Niech A € M, «,(Q) bedzie macierza symetryczna i niezdegenerowana, czyli det A # 0.
Udowodnij, ze nastepujace dwie macierze sa kongruetne nad Q:

A 0 I, 0
0 _A) oraz 0 —I,

Zadanie 7 Niech (V, ¢) bedzie niezdegenerowang forma dwuliniowa i niech 5 : V. — V* bedzie izomor-
fizmem wyznaczonym przez ¢. Pokazaé, ze jedli oy, .., o, jest baza V, taka ze aq, .., ay, jest bazg W C V,
to ¢~ (afyq), . ¢ Hag) jest baza WL

Zadanie 8 Z wlasno$ci uniwersalnej sumy prostej i iloczynu tensorowego pokaz izomorfizm
Ve(W oWy ~VeW,)a (Ve W).

Zadanie 9 Wykaz, ze jeSli wektory vi,vs,...,v, € W sa liniowo niezalezne, oraz » v; @ w; = 0 w
produkcie tensorowym V @ W, to wy = we = --- = w, = 0.



Zadanie 10 Niech V bedzie przestrzenia linowa nad C. Przez Vg oznaczamy przestrzen liniowa nad R
réwna V jako zbiér (zapominamy o mnozeniu przez i). Ponadto przez V oznaczamy przestrzen liniowa
nad C, ktora jako zbior jest réwna V', ale ma zdefiniowane mnozenie przez skalary zespolone: z xv := Zv.
Wskaz naturalny (nie zalezacy od wyboru baz) izomorfizm przestrzeni liniowych nad C

CoWm~VaV.

Zadanie 11 Forma wieloliniowa ¢ : V®* — K nazywa si¢ alternujaca, gdy é(vi,ve,...,v) = 0 jesli
v; = v; dla pewnej pary i # j. Czy kazda forma antysymetryczna jest alternujaca? Czy kazda forma

aleternujaca jest antysymetryzna? Rozpatrzeé takze przypadek charakterystyki ciata bazowego rownej 2.
n

. . . . . .o . ’_/%
Zadanie 12 Niech V bedzie przestrzenig wektorowa. Na produkcie n kopii V, czyi V" =V x ... x V
dziala grupa S, permutujac wspoétrzedne

O'(’Ul, ce ,’Un) = (Ua(l)a ce ,Ua(n))
Pokaz, ze w ten sposéb dostajemy dobrze zdefiniowane odwzorowania liniowe produktu V¥ =V ® ... @ V
—_———
n

o Ve, yen

Tensor k € V®---®V nazywamy symetrycznym jesli Vo € S,, mamy o(k) = k 1 antysymetrycznym, jesli
o(k) = sgn(o)k. Podprzestrzenie tensoréw symetrycznych i antysymetrycznych oznaczamy Sym™ (V') lub
S™V i, odpowiednio, A" V; oblicz ich wymiar.

Zadanie 13 Algebra symetryczna. Zalézmy, ze cialo bazowe K ma charakterystyke 0. Niech V bedzie
przestrzenia wektorows. W produkcie tensorowym n kopii V, czyli w V®" zdefiniujmy podprzestrzen

Vo, =lin{k —o(k) |k €V o €8,}.
Niech Sym™(V) = V& /V,.
(a) Udowodnié, ze ztozenie wlozenia i rzutowania
Sym™(V) — V& I Sym™(V)
jest izomorfizmem.

(b) Udowodni¢, ze mnozenie tensoréw definijuje mnozenie w §y\_r/n(V) =0, §y\_7/n"(V), tzn istnieje
dziatanie dwuargumentowe © takie, ze nastepujacy diagram jest przemienny

V@n X V®n * V®n+m

Tk ®7\'nl J{ﬂ'kﬁ-n

Sym* (V) x Sym™(V) —2 Sym*F+2(V),
przy czym mnozenie ® jest przemienne.

(¢) Wybierzmy baze w aq, aa, . . . ap, przestrzeni wektorowej V. Niech
oo
O Klxy,z9,...,2,) — @Symk(V)
d=0

spelnia ®(x;) = a; oraz ®(fg) = ®(f) © ®(g). Pokaz, ze @ jest izomorfizmem.

(d) Wskaz naturalny (niezalezny od wyboru bazy) epimorfizm

@ Sym*(V*) — {Funkcje wielomianowe V — K} .
d=0

Zadanie 14 Zalézmy, ze przestrzen V ma wymiar 2 i baze ai,as a przestrzen W ma wymiar n i
baze (1, ..., Bn. ZnajdZz warunki, réwnania na wspélczynniki a;;, ktére opisuja zbiér tensoréw prostych
w V ® W zapisanych jako

Zaij (i ® B35)
)



GAL2*
Zadania na szésty tydzien (04.04-08.04)
Formy dwuliniowe, ortogonalizacja

Zakladamy, ze cialo bazowe jest charakterystyki réznej od 2.

Jesli @ jest forma symetryczna lub antysymetryczna na przestrzeni V', to podprzestrzen W C V nazywamy
izotropowa wzgledem ® (lub, réwnowaznie, catkowicie zdegenerowana wzgledem @) jesli @y «w jest forma
zerowa; wektor v € V' jest izotropowy jesli ®(v,v) = 0.

Dwuwymiarowsa przestrzen rzeczywista z forma symetryczna zadana w pewnej bazie przez macierz

0 1
10
nazywa sie plaszczyzna hiperboliczna.

Zadanie 1
a) Udowodnié, ze dla A € M(n x n; K) jedli A = —AT to istnieje p € K takie, ze det(A) = p?, tzn.
wyznacznik macierzy antysymetrycznej jest zawsze kwadratem.
b) Dana jest A — macierz antysymetryczna o wyrazach catkowitych. Wykazaé, ze det A jest kwadratem.
c)* Wykazaé, ze det(A) = P(A)?, gdzie P(A) jest wielomianem od wyrazéw macierzy.

2 20 0 0 2
Zadanie 2 Dane macierze {2 0 2]i [0 1 0

0 2 0 2 00
Nad ktérymi z nastepujacych cial powyzsze macierze s kongruentne: Q, Q(v/2), R, C?
Zadanie 3 Czy istnieje macierz rzeczywista symetryczna 4 x 4, dla ktérej znaki wyznacznikéw kolejnych
podmacierzy kwadratowych w lewym gérnym rogu sa nastepujace: (a) —, +, 0, —; (b) —, +, 0, +. Czy
znamy sygnature tej macierzy?
Zadanie 4 Dana jest przestrzen z forma symetryczng (R?*, ¢), gdzie 2-forma ¢ w bazie standardowej
jest zadana przez macierz:

0 0 1 0
00 0 1
10 1 -1
01 -1 1

(a) Znajdz baze ortogonalng tej przestrzeni.

(b) Znajdz W+, gdzie W jest podprzestrzenia zadana przez uklad réwnan:

Czy R* = W @ W+? Czy forma ¢yw xw jest niezdegenerowana?
(¢) ZnajdZ stozek wektoréw izotropowych.

Zadanie 5 W przestrzeni W macierzy 2 x 2 o wspdlczynnikach rzeczywistych rozpatrujemy forme
dwuliniowa ¢(A, B) = tr(AB). Znajdz najwigkszy wymiar podprzestrzeni izotropowej.

Zadanie 6 Pokaz, ze dla niezdegenerowanej formy symetrycznej (V, ¢) nad cialem charakterystyki réznej
od 2 nastepujace warunki sa réwnowazne:

(a) (V, ) jest suma ortogonalna plaszczyzn hiperbolicznych

(b) istnieje podprzestrzen W C V, taka, ze W+ =W

(7o)

(¢) w pewnej bazie macierz ¢ ma postaé:

gdzie I jest macierza identycznosci



(d) V =Wy @ Wy, gdzie W1 i Wy sa izotropowe.

W powyzszym zadaniu b) przestrzen W nie jest wyznaczona jednoznacznie.

Zadanie 7 Niech (V| ¢) bedzie rzeczywista przestrzenia wymiaru 2n z forma symetryczna. Niech V
bedzie suma ortogonalna n-wymiarowych podprzestrzeni V., i V_ takich, ze ¢ jest dodatnio okre$lona na
V4 i ujemnie okreslona na V_. Udowodnij nastepujace fakty:

(a) Kazda podprzestrzen (V) ¢) izotropowa ma wymiar nie wiekszy niz n;
(b) Istnieje podprzestrzen (V| ¢) izotropowa wymiaru n;
(¢) Kazda podprzestrzen izotropowa jest zawarta w n wymiarowej podprzestrzeni izotropowej.

Zadanie 8 Niech w bedzie niezdegenerowang 2-liniowa forma antysymetryczng na przestrzeni V. Niech
L C V bedzie podprzestrzenia Lagrange’a, czyli maksymalna podprzestrzenia izotropowa. Wykaz ze
istnieje baza przestrzeni V'

a1, O2,...,0n, ﬁl, ﬁQ,...,ﬂn
taka, ze wektory «; rozpinaja L a wektory (; rozpinaja inna podprzestrzen Lagrange’a, oraz w(ay, 8;) = 5;
P w(i,B;) =0 dlai # j.
Zadanie 9 W tym zadaniu ciato bazowe to R. Niech I' bedzie grafem nieskierowanym o wierzchotkach
v € I; zakladamy, ze w ' nie ma petli 0. Definiujemy symetryczna forme dwuliniowa na przestrzeni
liniowej rozpietej przez wierzcholki V' = lin,ecr{e, } nastepujacym wzorem

f(ev; ev) =2
fley,e) = —1  gdy jest krawedz vw
fley,e) =0  gdy nie ma krawedzi 7w
Zaltozmy, ze tak okreslona forma jest dodatnio okreslona. Pokaz, ze graf I nie ma cykli i znajdz ograni-
czenie na walencje wierzchotkéw (liczbe krawedzi wychodzacych z wierzchlka)
Podpowiedz: diagramy Dynkina.
Zadanie 10 Niech A i B beda rzeczywistymi macierzami symetrycznymi i dodatnio okreslonymi. Zaléz-

my, ze wartosci wlasne A naleza do odcinka [a, b], a wartodci wlasne B naleza do odcinka [c,d]. Wykaz,
ze wartosci wlasne A + B naleza do odcinka [a + ¢, b + d].

Zadanie 11 Opisz orbity dzialania nastepujacych grup:

(a) grupy SO3(R) na R3,

(b) grupy SO(1,1) na R?,

(c) grupy SO(1,3) na R%.
Zadanie 12 Niech K bedzie dowolnym cialem. Niech SO 1(K) C SLo(K) bedzie grupa specjalnych
izometrii formy [(1) 7(1)} Zmnajdz bijekcje SO1,1(K) ~ K \ {0}.

Zadanie 13 Niec V = {X € May2(C) | X' = X}. Dla A € SLy(C) definiujemy A® X = AXA . W
ten sposdéb dostajemy odwzorowanie SLs(C) — Aut(V'). Opisz jadro tego odwzorowania, czyli

{AESLQ((C)|VX€V A@X:X}

* zadanie trudniejsze



GAL2*
Zadania na siédmy tydzien (11.04-22.04)
Przestrzenie z iloczynem skalarnym

W tej serii probleméw wszystkie przestrzenie liniowe sa zdefiniowane nad R. Grupe ortogonalna macierzy
rzeczywistych n X n oznaczamy O(n).

Zadanie 1 Norma na przestrzeni V' to funkcja V 3 v — ||v|| € R, ktéra jest: (1) niezdegenerowana
lv]| =0 = v =0, (2) jednorodna ||a-v|| = |a|-||v]|, (3) spelnia warunek tréjkata ||v1 +ve| < ||v1]|+[|v2]|-
Udowodnié, ze nastepujace funkcje sa normami na R™:

(a) |[(z1,22,...,2n)|| = maz{|z;| :i=1,...n}
() (1, @2, @) = 320 [l

Pokaz, ze powyzsze normy nie pochodza od iloczynéw skalarnych, czyli nie sa postaci ||v|| = v/ {v,v) dla
pewnego iloczynu skalarnego na R™.

Zadanie 2 Zastosuj metode ortogonalizacji Grama-Schmidta do bazy 1,z,z2,..,2" w przestrzeni wie-
lomianéw stopnia < n z iloczynem skalarnym

+1
<fm:/fwmmm

Wielomiany P, z tak uzyskanej bazy ortonormalnej nazywamy wielomianami Legendre’a (a $cislej wie-

lomiany P, = 4/ %ﬂpm nazywamy wielomianami Legendre’a).

(a) Znajdz kilka pierwszych wielomianéw Legendre’a i pokaz formule rekurencyjna

72m+1 m

Pogale) = 225D P (e) = P (a)
(b) Pokaz formule Rodrigues’a
Zadanie 3
(a) Wykazaé ze forma 2-liniowa ¢(A, B) = —tr(AB) jest iloczynem skalarnym na przestrzeni liniowej

rzeczywistych macierzy antysymetrycznych n x n.

(b) Niech C € O(n). Wykazaé, ze jesli A jest macierza antysymetryczna, to CAC~! tez jest macierza
antysymetryczng. Ponadto A — CAC™! jest izometria przestrzeni macierzy antysymetrycznych ze
wzgledu na forme ¢.

Zadanie 4 Niech V bedzie przestrzenia euklidesowa i aq, ..., a, uktadem wektoréw w V.
(a) Pokaz, ze dla wyznacznikéw Grama zachodzi réwnosé
W(a,...,ap) =W(ay,...,ar1) - [l — pu(ar)|?
gdzie py : W — U =lin(ay, . .., a,_1) jest rzutem prostopadlym.

(b) Pokaz, ze jesli pw : V. — U jest rzutem prostopadlym na podprzestrzen U C V, to wyznacznik
Grama spelnia nieréwnoéé

W(pv(ar),...,pu(ar)) < W(aq,...ar)



(c) Pokaz, ze wyznacznik Grama spelnia nieréwnosé:

W(Oél, L) O‘T‘7ﬂ1a "763) < W(Oél, ..,Olr) . W(ﬂla "753)

przy czym réwnos$¢ zachodzi wtedy i tylko wtedy gdy (v, 5;) =0 dla dowolnych 1 <i <7, 1<j<s
lub co najmniej jeden z uktadow oy, .., a;., B, .., Bs jest liniowo zalezny.

Zadanie 5 Niech vy, v2,v3,v4 beda wektorami w przestrzeni euklidesowej (V,( , )). Pokazaé, ze jesli
(v, v;) < 0 dla wszystkich par i # j, to pewne trzy z tych wektoréw sg liniowo niezalezne.

Zadanie 6 Pokazaé, ze jesli w liniowe] przestrzeni z iloczynem skalarnym aq, ..., ., jest baza ortonor-
malna zas (1, ..., O, jest ukladem wektoréw takim, ze

n
dollsilP <1
i=1

to uktad a1 + B4, ..., an + By jest liniowo niezalezny.
Zadanie 7 Wykazad, ze jesli A jest macierza izometrii f w bazie ortonormalnej, to f jest symetria wtedy
i tylko wtedy gdy macierz A symetryczna.

Zadanie 8 Przeksztalcenie przestrzeni z iloczynem skalarnym zadane jest, w kanonicznej bazie ortonor-
malnej ey, e2, e3 macierza:

2 -1 2
1 2 2 -1
-1 2 2

Przedstawi¢ to przeksztalcenie w postaci zlozenia co najwyzej trzech symetrii prostopadtych wzgledem
plaszczyzn.

Zadanie 9 Rozpatrujemy R* ze standardowym iloczynem skalarnym. Znalez¢ macierz w bazie standar-
dowej (1 wzér analityczny) opisujacy rzut prostopadly na podprzestrzen

W =1in{(1,1,1,1),(1,2,2,-1), (1,0,0,3)} .

Zadanie 10 Przeksztalcenie ortogonalne f: R* — R* przestrzeni ze standardowym iloczynem skalar-
nym ma w standardowej bazie ortonormalnej macierz:

11 1 1
1 11 -1 -1
21-1 1 -1 1
-1 1 1 -1

Sprawdzié, ze jest to izometria. Opisaé geometrycznie czym jest to przeksztalcenie: przedstawié R* jako
sume niezmienniczych przestrzeni prostopadlych, Vi @& V5 tak, ze f jest w jednej przestrzeni obrotem, a
w drugiej symetria.

Zadanie 11 Niech A € M3y3(R) bedzie macierza ortogonalng i det A = 1. Pokazaé, ze

(trA)? —trA? = 2trA.

Wsk: skorzystac z tego ze A jest macierzg obrotu i wykorzysta¢ wzory trygonometryczne.

Zadanie 12 Pokzaé, ze jesli przeksztalcenie liniowe przestrzeni z iloczynem skalarnym f : V. — V
zachowuje katy (a $cislej cos(<(«, 3)) dla dowolnej pary wektoréw), to f jest postaci cg, gdzie ¢ jest
stala, a g przeksztalceniem ortogonalnym (izometria).



GAL2*
Zadania na 6smy tydzien (25.04-29.04)
Przeksztalcenia samosprzezone i twierdzenie spektralne

Rozwazamy euklidesowe przestrzenie liniowe, tzn. przestrzenie skonczonego wymiaru nad R z iloczynem
skalarnym. Wszystkie macierze maja rzeczywiste wspotczynniki.

Przypomnijmy, ze jesli (V,( , )) jest przestrzenia euklidesowa to iloczyn skalarny wyznacza izomorfizm
Vov— (w— (w,v)) € V* ktéry oznaczmy n: V. — V*.

Zadanie 1 Zal6zmy, ze ¢, 1 € End(V) sa przeksztalceniami samosprzezonymi. Wykaz, ze

(a) kombinacja liniowa przeksztalcen ¢ i ¢ jest przeksztalceniem samosprzezonym,
(b) @ o+ 1o ¢ jest przeksztalceniem samosprzezonym,

(¢) @ o1 jest przeksztalceniem samosprzezonym wtedy i tylko wtedy, gdy ¢potp = o ¢
(d) ker¢ L im ¢ oraz V = ker ¢ @ im ¢.

Zadanie 2 Twierdzenie spektralne w praktyce: dla podanej macierzy A znajdZ macierz ortogonalna B
taka, ze BTAB jest macierza diagonalng.

17 -8 4 R

a) A=|-8 17 —4 b) A=
4 -4 11 o Lo
1000

Zadanie 3 Pierwiastek macierzy Méwimy, ze endomorfizm ¢ € End(V) jest dodatnio okreslony
jesli jest samosprzezony i dla kazdego niezerowego v € V mamy {(p(v),v) > 0. Macierz symetryczna jest
dodatnio okreslona jesli definiujew dodatnio okreslona forme symetryczna.

(a) Pokaz, ze ¢ jest dodatnio okreslony wtedy i tylko wtedy gdy jego macierz w bazie ortonormalnej V
jest symetryczna i zdefiniowana przez nig forma symetryczna jest dodatnio okreslona.

(b) Pokaz, ze jesli ¢ € End(V) jest dodatnio okreslony to istnieje ¢ € End(V) dodatnio okrelony taki, ze
P2 = .

(c) Pokaz, ze dla kazdej dodatnio okreslonej macierzy symetryczne A istnieje macierz B o takich samych
wlasnoéciach, taka ze A = B2

Zadanie 4 Rozklad biegunowy. Pokaz, ze dla kazdej odwracalnej macierzy M istnieje dodatnio okre-
$lona macierz symetryczna B oraz oraz macierz ortogonalna C' takie, ze M = BC' (Takie porzedstawienie
M nazywamy rozktadem biegunowym M.) Pokaz, ze macierze B i C sa wyznaczone jednoznacznie. !

4 -2 2
Zadanie 5 Znajdz rozklad biegunowy macierzy | 4 4 -1
-2 4 2

Zadanie 6 SVD Rozklad wedlug wartosci osobliwych Pokaz, ze dla dowolnej macierzy odwracalnej
M istnieja macierze Cy,Cy € O(n) oraz macierz diagonalna taka, ze M = C; DCs. Takie przedstawienie
nazywamy rozkladem SVD. Korzystajac z przypadku kiedy M jest odwracalna dowiedz istnienie rozktadu
SVD dla dowolnej macierzy M. !

Zadanie 7 Niech ¢ bedzie przeksztalceniem samosprzezonym przestrzeni euklidesowej V' = R™ ze
standardowym produktem skalarnym. Przez S™"~! oznaczmy sfere jednostkowa S"~! = {v : ||| = 1}.
Wiadomo, ze kazda fukcja ciagla rzeczywista na S™~! przyjmuje swoje minima i maksima. Polézmy
f(v) = (f(v),v). Wykaz co nastepuje

(a) Jezeli A1 jest minimum funkcji f na sferze jednostkowej przyjmowanym w punkcie aj, to «; jest
wektorem wlasnym o wartosci wlasnej ;. '



(b) Przestrzen lin{a; }* jest ¢ niezmiennicza i opisana w poprzednim punkcie procedura stosowana induk-
cyjnie prowadzi do znalezienia ciagu rosnacego wartosci wlasnych Ay < Ay < --- < )\, i odpowiadaja-
cych im wektoréw wlasnych.

Zadanie 8 Udowodnié, ze przeksztatcenia samosprzezone ¢ i ¢ przestrzeni euklidesowej sa przemienne,
czyli g o) =) o ¢, wtedy i tylko wtedy, gdy posiadaja wspdlng ortonormalna baze wektoréow wlasnych.
Zadanie 9 Znalezé wspdlna baze ortonormalna (wzgledem standardowego iloczynu skalarnego w R*)
zlozong z wektoréw wlasnych obu ponizszych macierzy:

01 0 0 0 0 01
10 0 0 0 010
0 0 01 0 1 01
0 01 0 1 01 0

Zadanie 10 Niech ¢ : V — V bedzie endomorfizmem przestrzeni euklidesowej spelniajacym ? = 0.
Polézmy @ =n~!o* on, gdzie n : V — V* jest izomorfizmem wyznaczonym przez produkt skalarny a
p* : V* — V* jest sprzezeniem . Niech § = ¢ o ¢ + ¢ o . Wykaz co nastepuje

(a) ker(d) = ker(p) Nker(p)

(b) V = ker(d) @ im(p) ® im(p) oraz ten rozklad jest ortogonalny.



GAL2*
Zadania na dziewiaty tydzien (09.05-13.05)
Przeksztalcenia ortogonalne i unitarne

W tej serii zadan przestrzenie sa skonczonego wymiaru nad R lub C.

Zadanie 1 Niech V bedzie przestrzenia wektorowa nad C z iloczynem hermitowskim. Przez V oznaczamy
te sama przestrzen (jako zbiér) z mnozeniem przez z € C zadanym formula z©v = Zv. Znajdz izomorfizm
V S V*, ktéry nie zalezy od wyboru bazy a jedynie od iloczynu hermitowskiego.

Zadanie 2 Niech V bedzie parzystowymiarows rzeczywista przestrzenia wektorowa z formg antysyme-
tryczna w maksymalnego rzedu. Udowodnij, ze na V istnieje struktura zespolona oraz iloczyn hermitowski
takie, ze w(v, w) = —im({v|w)).
0 —I

Zadanie 3 Niech J = L 0

} bedzie macierzg struktury zespolonej na R?” ~ C" w bazie

€1,€2,...,6n,1€1,1€2,...,1€Ey, .

Rozwazamy U(n) i GL,(C) jako podgrupy GLs,(R) oraz standardowe podgrupy Os,(R) i Sp,(R) =
{A € GLy,(R) | ATJA = J}. Wykaz nastepujace réwnosci

(a) GLn(C) N Spn(R) = U(n),
(b) GLn(C) N O2n(R) = U(n),
(€) O2m(R) N Spn(R) = U(n).
Zadanie 4 Niech (V,( | )) bedzie przestrzenig hermitowska wymiaru n nad C.

(a) Pokaz, ze czesé rzeczywista iloczynu hermitowskiego, czyli re({ | )), jest iloczynem skalarnym na V' ja-
ko przestrzeni wymiaru 2n nad R, ktéra oznaczymy przez Vi. Pokaz, ze im(( | )) jest antysymetryczna
forma dwuliniowa na Vg maksymalnego rzedu.

(b) Zalézmy, ze dany jest iloczyn skalarny ( , ) na Vg, ktéry jest zachowany przez strukture zespolona,
czyli (i-v1,i-v2) = (v1,v2). Czy istnieje iloczyn hermitowski ( | ) na V, taki ze re(( | )) =( , )?

(¢) Zalézmy, ze w jest dwuliniowa rzeczywista forma antsysmetryczna na Vg, taka ze w(i - vy,i - vy) =

w(v1, v2). Czy istnieje iloczyn hermitowski na V, taki ze im({ | )) = w?

Definicja: Niech V i W beda zespolonymi skonczenie wymiarowymi przestrzeniami wektorowymi z ilo-
czynami hermitowskim. Dla ¢ € L(V, W) definiujemy ¢* € L(W, V) za pomoca tozsamosci

(o) | wyw = (v | ¢*(w))v .

Zadanie 5 Wykaz, ze powyzsza definicja jest dobra, czyli jednoznacznie wyznacza ¢*. Wykaz, ze jesli
A jest baza ortonormalng w V oraz B jest baza ortonormalna w W to

M(¢")g = (M(9)3)T .

Zadanie 6 Niech V bedzie i ¢ € End(V) endomorfizmem takim, ze ¢ o ¢* = ¢* o ¢. Pokaz, ze ¢ jest
diagonalizowalny w bazie ortonormalnej. Jesli ¢ = ¢*, to endomorfizm ¢ nazywamy samosprzezonym;
pokaz, ze wéwczas wartosci wlasne ¢ sg rzeczywiste.

Zadanie 7 Sprawdz, ze macierze
443 43 —6—2¢

1 ; 1
(a) {1_+12 1i} ) 5| 4 4-30 —2-6i
V3 ! 6+2 —2-6i 1

s unitarne i znajdz bazy przestrzeni C3 i C* skladajace sie z ich wektoréw wlasnych.



Zadanie 8 Na C? wezmy standardows strukture przestrzeni unitarnej. Endomorfizm ¢ € End(C?) jest

zadany macierza
442 5+4i
443 2

Przedstaw ¢ jako zlozenie ¥ o ), gdzie i jest samosprzezone a 7 unitarne.
Zadanie 9 Przeksztalcenie przestrzeni euklidesowej zadane jest w bazie ortonormalnej macierza:

@ 2 2 -1}, (b
1 9 -1 1 -1 1
-1 1 1 -1

Znajdz baze ortogonalna, w ktorej to przeksztatcenie ma postaé klatkowo-diagonalna z klatkami wymiaru
nie wiekszego niz 2 x 2.
Zadanie 10 Dla macierzy o wyrazach zespolonych przez A* oznaczamy macierz AT.

(a) Dla dowolnej macierzy A € M, x,(C) definiujemy exp(A) := > 7, %A”. Pokaz, ze ta definicja jest
dobra, czyli ten szereg jest zbiezny do macierzy w My, ., (C)

(b) Pokaz, ze exp(A) jest zawsze macierza odwracalna.

(¢) Udowodnij, ze jesli A = —A*, to exp(A) € U(n).

(d) Wykaz, ze je$li B € U(n), to istnieje macierz A = —A* taka, ze B = exp(A4).
Zadanie 11 Niech
« . 1 0 0 1 0 i
V={A € My:2(C) | A= A", tr(A):O}:lmR{<0 _1), (1 0), (—i 0)} .

Sprawdz, ze exp(iA) € SU(2) dla A € V. Zbadaj obrazy prostych exp(itA) dla macierzy A takich jak
powyzej.



GAL2~"
Zadania na dziesiaty tydzien (16.05—-20.05)
Kwaterniony, przestrzenie afiniczne

Kwaterniony, przypomnienie: Standardows R-baze w kwaternionach H oznaczamy przez 1,1, j, &. Rozwa-
zamy iloczyn skalarny ( , ) w H, dla ktérego to jest baza ortonormalna. Przestrzen czystych kwaternionéw
rozpieta przez i,j, t oznaczamy przez .

Tloczyn wektorowy, definicja: Rozwazamy R3 ze standardowym iloczynem skalarnym oraz standardows
orientacja. Niech vol = e; Aeg Aes (forma ta zalezy tylko od iloczynu skalarnego i orientacji). Definiujemy
iloczyn wektorowy x : R3 x R3 — R3 formula

(u,v x w)-vol =uAhvAw dla u,v,weR3.

Zadanie 1 Zauwaz, ze kazdy kwaternion mozna zapisa¢ x = r - A, gdzie r = ||z|| oraz A € SU(2).
Wykazaé, ze iloczyn skalarny w kwaternionach spelnia tozsamosé

2-(z,y) =tr(z-y")
Zadanie 2 Pokaz, ze jesli ¢1,q2 € S, to
-2 =—(q1,q2) + @1 X q2

gdzie (g1, g2) to iloczyn skalarny w R® ~ J, a ¢; X g2 to iloczyn wektorowy dla bazy i, j, €.
Zadanie 3 Pokaz, ze

{qu:Vq’eH q-q’=q’-q} =R-1
Zadanie 4 Pokaz, ze jedli a i b sg liczbami catkowitymi bedacymi sumami czterech kwadratéw liczb
calkowitych, to iloczyn ab tez jest suma czterech kwadratow.
Oktoniony. Definiujemy funkcje x : H? x H? — H? wzorem

(a,b) * (¢,d) = (ac — d*b, da + bc™)

for he H h:= (h,0) £:=(0,1)

Definiujemy (a,b)# = (a*, —b). Par¢ (H?, x) nazwiemy oktonionami z mnozeniem * i sprzezeniem #.

Zadanie 5 Sprawdz nastepujace wlasnoéci zdefiniowanych powyzej poje¢

(a) * jest odwzorowaniem R-dwuliniowym i jego obcigcie do H x 0 jest mnozeniem w kwaternionach.
(b) Element (1,0) jest neutralny dla %, czyli (1,0)  (a,b) = (a,b) x (1,0) = (a, b).

(c) Dla v € H? produkt v x v# € H? jest postaci (r,0), gdzie r € R C H.

(d) Dla kazdego niezerowego elementu v € H? istnieje w taki, ze v xw = wxv = (1,0).

Rozstrzygnij czy mnozenie % jest taczne, czyli czy dla kazdej trojki v; € H? zachodzi (vy * ve) x v3 =

V1 % (’UQ * ’Ud)?

Przestrzenie afiniczne, przypomnienie: Rozwazamy przestrzenie afiniczne E z przestrzenia styczna
T(E), gdzie T(FE) jest przestrzenia liniowa skonczonego wymiaru nad cialem K. Dla zbioru X C F przez
af (X) rozumiemy podprzestrzen afiniczna rozpieta przez X. Dla prostej rozpietej przed dwa punkty p # ¢
piszemy L(p, ¢). Dla przestrzeni liniowej V' mamy standardowa strukture przestrzeni afinicznej na V. Jesli
V = K™, to przez [aq,...,a,] oznaczmy punkt w przestrzeni afinicznej a przez (ai,...,a,) wektor w jej
przestrzeni stycznej.

Zadanie 6 Znajdz baze punktowa podprzestrzeni K3 opisanej réwnaniem

T, + 2w + 43 =4

Zadanie 7 Niech p = [-1,—1,1] € R*i L = [2,3,5] +1in{(1,2,1)} C R3.



(a) Znajdz réwnanie plaszczyzny w H C R? zawierajacej punkt p i prosta L.
(b) Niech prosta L’ bedzie opisana ukladem réwnan

Ty — X9+ x3 =T
3%1 72.’524’21‘3 =17

Sprawdz, ze istnieje prosta K C R® zawierajaca p i przecinajaca proste L oraz L’ i znajdZ punkty
przeciecia prostej K z prostymi L i L'.

Zadanie 8 W przestrzeni afinicznej R* znajdz przedstawienie parametryczne oraz uklad réwnan opisu-
jacy podprzestrzen afiniczng rozpieta przez nastepujace punkty:

a‘) [_17170a 1]7 [0707270}7 [_3,_17534]7 [2,27_3a _3]
b) [1,1,1,—1], [0,0,6,—7], [2,3,6,—7], [3,4,1,—1]

Przestrzenie te przedstaw jako przeciecia hiperplaszczyzn w R*. (Hiperptaszczyzna = przestrzen kowy-
miaru jeden.)

Zadanie 9 Sformulyj i udowodnij twierdzenie Talesa w przestrzeni afinicznej nad ciatem K.
Zadanie 10 Moéwimy, ze uklad czterech punktéw p,q,r,s € E jest réwnolegtobokiem gdypg = —73.

Udowodnij, ze jesli char(K) # 2, to mamy wéwczas réwnosé kombinacji afinicznych
RIS S
ol Tt T 1T ot
Zadanie 11 Twierdzenie Menelaosa. Dane sze$¢ réznych punktéw a, b, ¢, p, ¢ i r w przestrzeni afinicznej
nad K. Przypu$émy, ze punkty p, ¢ i r leza odpowiednio na prostych L(b,c), L(c,a) i L(a,b) oraz
p=Ab+ (1= Xc g=pc+ (1 —pa r=va+ (1—v)b

dla A\, u, v € K. Udowodnij, ze punkty p, g, r sa wspdtliniowe (czyli leza na jednej prostej afinicznej) wtedy
i tylko wtedy gdy Apr = (A= 1)(p—1)(v —1).

Zadanie 12 Niech F; = p+ Vi, E5 = g + V5 beda podprzestrzeniami przestrzeni afinicznej E, gdzie
E,, By C T(E). Udowodnij, ze:

(a)ElﬁEg#(/)<:>p_q>€V1+V2
(b) Jeéll E1 N EQ 7§ @ to d1m<E1 U E2> = dim E1 + dim E2 —dim E1 n E2
(C) Jeéll E1 N EQ = @, to d1m<E1 U E2> = dim E1 + dim EQ — dim V1 N ‘/2 + 1.

Zadanie 13 Niech F;, F5 beda dwoma podprzestrzeniami afinicznymi w przestrzeni afinicznej E nad
cialem K. Opisz zbior

{/\~p—|—(1—)\)-q: pEthEEQ,)\EK}
Zadanie 14 Niech Fy = p+ Vi, Es = q + V5 beda dwiema sko$nymi podprzestrzeniami w przestrzeni
afinicznej; skosnymi, czyli spelniajacymi nastepujace warunki: V3 N'Vo = {0} i By N Ey = 0.

(a) Pokaz, ze dla kazdego punktu x ¢ E; U FE5 istnieje co najwyzej jedna prosta P przechodzaca przez
punkt x i przecinajaca E; i Es.

(b) Pokaz, ze taka prosta istnieje wtedy i tylko wtedy, gdy = € af (Ey U E3) ale pz,qz ¢ Vi + Va.



GAL2~"
Zadania na jedenasty tydzien (23.05-27.05)
Przeksztalcenia afiniczne i przestrzenie afiniczne euklidesowe

Méwimy, ze punkt p € X jest stalym dla przeksztalcenia ¢ : X — X gdy ¢(p) = p. Zbiér A C X jest
niezmienniczy ze wzgledu na przeksztalcenie ¢ gdy p(A4) C A.
Zadanie 1 W przestrzeni afinicznej Ag podprzestrzen H zadana jest réwnaniami:

T+ Tot+x3—24 =2
xr1 + Xo =1

Niech 7 bedzie rzutem wzdtuz lin{(1,0,-1,1),(0,1,1,0)} na H.
(a) Znajdz przeciwobraz prostej L = [1,0,1,0] 4+ lin(1,—1,1,1).
(b) ZnajdZ uklad réwnan opisujacy obraz plaszczyzny M = [1,0,1,0] + lin{(1,1,0,1),(0,0,0,1)}.

Zadanie 2 Niech f : A% — A} bedzie przeksztalceniem afinicznym. Zalézmy, ze 1 nie jest wartoscia
wlasng T'(f). Udowodnij, ze f ma dokladnie jeden punkt staly.

Zadanie 3 Niech f : A} — A’ bedzie przeksztalceniem afinicznym, ktére ma dokladnie jeden punkt
staly pg. Pokaz, ze kazda podprzestrzen niezmiennicza przeksztalcenia f zawiera py.

Zadanie 4 Niech f: A3 — A3 bedzie przeksztalceniem afinicznym. Wykazaé, ze jesli f przeprowadza
pare prostych skosnych na pare prostych réwnoleglych, to f nie jest réznowartosciowe. Podaé¢ przykiad
takiego przeksztalcenia.

Zadanie 5 Niech N, L, M C A% bedzie trdjka prostych parami skosnych. Czy kazda taka trojke mozna
przeksztalcié na dowolna inna za pomoca automorfizmu afinicznego? Jesli nie, to podaé¢ warunek na
to, zeby dla dwéch tréjek prostych jak wyzej istnialo przeksztalcenie afiniczne f takie, ze f(N) = N,
fL) =1, f(M) =M.

Zadanie 6 Dane sa proste E1, Fs, Es, Fi, Fo, F3 w A% takie, ze

T(E1) + T(E2) + T(E3) = T(Fy) + T(Fy) + T(Fs) = T(A%)

oraz
EiNEy,=FE NEs=FENEs=FNF=FNF=FNF;=40.

Zbadaj, czy istnieje izomorfizm afiniczny f : A3, — A3, taki, ze f(E;) = F; dlai=1,2,3.

Zadanie 7 Znalezé warunki konieczne i dostateczne na to, by by zbiér liczb dodatnich {a,;} byl

(a) zbiorem odleglosci wszystkich mozliwych par wierzcholkéw n wymiarowego niezdegenerowanego sym-
pleksu w przestrzeni euklidesowej R"™,

(b) zbiorem odlegloéci wszystkich mozliwych par punktéw pewnego zbioru n + 1 punktéw przestrzeni
euklidesowej R™ (to znaczy nie zakladamy tak jak w a), ze punkty sa w polozeniu ogdlnym).

Zadanie 8 Ustalmy k i n takie, ze 0 < k < n. Niech f : E — F bedzie przeksztalceniem afinicznym
prezestrzeni euklidesowej wymiaru n zachowujacym objeto$¢ réwnolegloscianéw k-wymiarowych. Pokaz,
ze f jest izometria.

Zadanie 9 Udowodnij, ze odleglo$é p(xg, H) punktu zy od podprzestrzeni afinicznej H = yo + T'(H),
gdzie T(H) = lin{ay, .., a }, mozna wyrazié przy pomocy wyznacznika Grama G:

(p(fEO H))2 _ G(O{hOZQ, "7aka$Ty0))

G(O[l,OlQ, ..7O[k)

Zadanie 10 W afinicznej przestrzeni euklidesowej Ag ze standardowym iloczynem skalarnym znajdz
odleglos$é punktu [4,2, —5,1] od podprzestrzeni opisanej przez uklad réwnan:

2%1723024’ ’133+2i]']4 =9
201 —4xo + 223+ 314 = 12.



Zadanie 11 Niech H i K bedg podprzestrzeniami euklidesowej przestrzeni afinicznej E i niech HNK = ().
Pokaz,ze istnieje prosta L taka, ze L 1 H, L 1 K, i L ma punkty wspélne z H iz K.

Zadanie 12 W afinicznej przestrzeni euklidesowej A5 ze standardowym iloczynem skalarnym znajdz
miejsce geometryczne punktéw, przez ktére mozna przeprowadzi¢ prosta przecinajaca plaszczyzny Pp i
P; i bedaca do nich prostopadta

Pr: [2,2,2,4,5] +1in{(1,0,—1,0,0), (0,1,0,—1,0)}

T, +x9+ 224 =15
Py To+2x3 =11
—x9 — 214 + 225 = -—1

Zmajdz odlegtosé Py od Ps.

Zadanie 13 W przestrzeni afinicznej euklidesowej R* dane sg proste L = {[0,7,1,2] + ¢(0,1,—1,0)}
oraz K = {[1,1,1,1] + ¢(1,0,0, —1) }. Znajdz plaszczyzne przechodzaca przez punkt [4,1,3,1], ktéra jest
prostopadia do L i nie przecina K.



GAL2*
Zadania na dwunasty tydzien (30.05—06.06)
Przestrzenie rzutowe i kwadryki

Jesli nie jest powiedziane inaczej, to zakladamy, ze cialo K jest nieskoniczone i char K # 2. Mapa afiniczne

na przestrzeni P%, to ukltad wspétrzednych jednorodnych (zg : -+ : z,) i izomorfizm
T x
Ui={x; 0} 3 [xg: -1 xp] Vi, <O7~-~ ,n> e A

dla pewnego 1.
Zadanie 1 Niech f: K™™' — K bedzie funkcja liniowa. Podzbiér Uy = P%\V(f) nazywamy otoczeniem
afinicznym. Udowodnié¢, ze przeksztalcenie

{(z0, 21, ..., 2n) € K" | f(zg,21,...,2,) = 1} — Uy, (0, 1,y s Tp) — [To @1 -+ 1 Ty
jest bijekcja. Udowodnij, ze dla kazdego skoniczonego zbioru punktéw w przestrzeni rzutowej istnieje
otoczenie afiniczne, ktéra zawiera te punkty.
Zadanie 2 Wykaz, 7ze dowolng k-wymiarowa podprzestrzen liniowg w AF C P% mozna pokry¢ k + 1
mapami afinicznymi (czyli przestrzen A zawarta jest w teoriomnogosciowej sumie ich dziedzin), ale nie
mozna jej pokry¢ mniejsza liczba takich map.
Zadanie 3 Pokaz, ze na plaszczyznie rzutowej kazde dwie proste przecinaja sie¢ w jednym punkcie lub
sg rowne. Uogdlnij to stwierdzenie na wyzsze wymiary.
Zadanie 4 Niech K bedzie cialem algebraicznie domknietym, L C P bedzie prosta rzutowa oraz D C
P hiperpowierzchnia stopnia d. Wykaz, ze L N D # (). Zalézmy dodatkowo, ze L ¢ D; ile maksymalnie
moze by¢ punktéw w L N D?
Zadanie 5 Niech K bedzie dowolnym cialem. Wezmy Q1 = V (zy — 2?) C P2%.. Pokaz bijekcje Q ~ PL..
Niech Q1 = V(zy — zw = 0) C P3.. Pokaz bijekcje Q2 ~ PL x PL..
Zadanie 6 Ile réznych prostych rzutowych przecina jednoczesnie cztery ponizsze proste w P3- opisane
we wspotrzednych jednorodnych réwnaniami:

lex:y:(),
Lo:z=w=0,
Ls:x=y, z=w,

Ly:z4+2y=z4+w, z+2w=y+z

Znajdz te proste.

Zadanie 7 Rozpatrzmy przestrzen afiniczna V' = M, (K) ~ A" z naturalnymi wspéirzednymi z;;.
Wezmy s < min(n, m). Pokaz, ze zbiér X; = {4 € Myxn : Tk A < s} jest algebraiczny. Czy X jest
stozkiem? Znajdz réwnania opisujace X; dla m = 2 i n dowolnego.

Zadanie 8 Pokaz, ze dla dowolnej przestrzeni wektorowej V nad cialem K zbiér klas tensoréw prostych
symetrycznych w P(S2V) jest zbiorem algebraicznym. Podaj jego réwnania jedli dimV = 2, 3.
Zadanie 9 W przestrzeni afinicznej R? dane sa kwadryki zadane réwnaniami:

(a) 9+ 18y — 182 + 7% + 8wy + y? + 8xz — 16yz + 22 = 0,

(b)  bx? + Ty? — 4wz + dyz + 622 — 122 + 6y — 122 + 18 = 0,

() 2% —3y?+ 2% +6yz +4rz+ 82 = 0.

(d) 26— 6(2x —y+ 2z) + 3 (52% 4+ y* + 8z — 8yz + 32%) =0

Zmieniajac afiniczny uktad wspodlrzednych sprowadZ te kwadryki do postaci kanonicznej (zob. tw. z
wykladu 22). ZnajdZ $rodki symetrii, jesli je maja.

Zadanie 10 Znajdz wszystkie proste lezace na kwadryce zadanej w R? réwnaniem

x] + 3 + 573 — 62129 + 27073 — 27175 = 12,

ktore sa réwnoleglte do plaszczyzny x1 — 2z = 0.
Zadanie 11 ZnajdZ proste lezace na zespolonej kwadryce zadanej w C3 réwnaniem

2, .2 2
] +x5+x3=9

i przechodzace przez punkt (1,2, 2).



GAL2*
Zadania na trzynasty tydzien (08.06-13.06)
Przeksztalcenia rzutowe

Zakladamy, ze cialo K jest nieskonczone.

Przypomnienie: przestrzen rzutowa i przestrzen afiniczna jako jej podzbior. Rozwazmy przestrzen rzutowa
P} ze wspblrzednymi (yo : y1 @ -+« : Yn). Z wykladu wiemy, ze zbiér Uy = {(yo : ¥1 : - 1 yn) | Yo # 0} =
P2\ V(yo) utozsamiamy z przestrzenia afiniczna A% = K™ ze wspdlrzednymi afinicznymi z; = Z—é W
tej sytuacji podprzestrzen liniowa V (yo) C P} nazywamy punktami w nieskonczonosci dla Uy ~ A%,
Zadanie 0 Od przeksztalcenia rzutowego do przeksztalcenia przestrzeni afinicznej: Niech f : K"+l —
K™ bedzie przeksztalceniem liniowym zadanym macierza odwracalng A = [a;] € GLy41(K), czyli w

podanych powyzej wspolrzednych f zadane jest wzorem

n n n
f(yOa Yty .- 7yn) = (Z apiYi, Zaliyiv cey Z%n%) .
1=0 1=0 =0

Niech
Uo =P \ V(yo, f*(%0)) = Uo \ (V1)) = A \ V(ZGOiyi)

=0

i przez f: Uy — Uy oznaczmy obciecie przeksztalcenia f do Us. Uwaga: z reguly fnie jest przeksztal-
ceniem afinicznym (dlaczego?).

Udowodnij, ze we wspdlrzednych afinicznych [x1, ..., x,] przeksztalcenie f przedstawia sie nastepujacym
wzorem.
n n n
Pt - (ll,o-l-zi:1 ai,;iT; 0/2,0+Zi=1 az,iTq (ln,O"rZi:l An,iTj
flzr,xae, ... xy,) = & —, £ —, ..., & — | .
ao,oJrZi:l ao,iT; ao,0+2i:1 ao,iT; a0,0+21’:1 ao,iT;

W ponizszych zadaniach méwige o przeksztalceniu rzutowym przestrzeni afinicznej A% mamy na mysli
przeksztalcenie zadane jak wyzej, czyli jest to przeksztalcenie okreslone na dopelnieniu pewnej hiperptasz-
czyzny.

Zadanie 1 Znajdz jakiekolwiek przeksztalcenie rzutowe plaszezyzny A%, ktére okrag x? + y* = 1
przeprowadza na siebie oraz:

(a) punkt (0,0) na punkt (1/2,0);
2z+1 x/§y)

x+2 7 x4+2

Rozwiazanie: (z,y) — (

(b) prosta = 2 na prosta w nieskonczonosci.

2w—1 @)

Rozwiazanie: (z,y) — (3=, =5

Wykaz, ze istnieje przeksztalcenie rzutowe plaszczyzny zachowujace powyzszy okrag i przeprowadzajace
dany punkt wewnetrzny tego okregu na dowolny inny punkt wewnetrzny.

Zadanie 2 Znajdz jakiekolwiek przeksztalcenie rzutowe przestrzeni A} przeprowadzajace kwadryke Q;
na @; lub uzasadnij, dlaczego takie przeksztalcenie nie istnieje:

. 2 2 2 . 2 2 2 _ . 2 2 2 _
@Qi1: x+axy+z5=1, Q2: zi+a3—z5=1, Qs: x]—x3—x5=1,

) 2 2 _ ) 2 2 _
Qs ] +25=2x3, Qs x] —x5=2x3.

Rozwigzanie: Q1,Qs3, Q4 sa réwnowazne, topologicznie to sa sfery w P4, Q2, Q5 topologicznie sa
torusami. Np réwnowazno$é¢ Qs ~ Q2

T3=u+v, T4=U—"0 2

T 2 N2 To 2
2_..2 2 2 2 2 2_,.2 2

Ti—x5 = 2232 ~ =5 = 2u° =207 ~ x{+20°—25 = 2u° ~ | — +(7> —() =1,
v s v ! 2 (\/iu) U \/ﬁu



przy czym u = (x5 + 24) = (23 + 1), v = 2 (23 — 24) = (x5 — 1). Ostatecznie
T 2 x5 —1\° x 2
Voa——) + (= —(v2—=2 =1,
1’3+1 £L'3+]. 1’3+1

Definicja: Punktem stalym przeksztalcenia f : X — X nazywamy taki x € X, ze f(x) = .

Zadanie 3 Udowodnij, ze dowolne przeksztalcenie rzutowe przestrzeni rzutowej P¢ ma co najmniej
jeden punkt staty.

Rozwigzanie: Nad C mamy wektor wlasny.

Zadanie 4 Udowodnij, ze jesli n jest liczba parzysta, to dowolne przeksztalcenie rzutowe przestrzeni
rzutowej Py ma co najmniej jeden punkt staty.

Rozwigzanie: Nad R mamy wektor wtasny, jesli przestrzen wektorowa ma nieparzysty wymiar.
Zadanie 5 Udowodnij, ze jesli przeksztalcenie rzutowe n-wymiarowe] przestrzeni rzutowej nad cialem
nieskonczonym ma skonczona liczbe punktéw stalych to ich liczba jest nie wieksza od n + 1.

Rozwiazanie: Przeksztalcenie rzutowe jest wyznaczone przez n + 2 wartosci. Zatem, jesli jest n + 2
punktéw stalych, to przeksztalcenie jest stale i ma nieskoniczenie wiele punktow statych.

Zadanie 6 Wykaz, ze jedli przeksztalcenie rzutowe P} przeprowadza pewng mape afiniczna w siebie,
to indukuje na tej mapie przeksztalcenie afiniczne.

Rozwigzanie: Jedli jest okreslone we wszystkich punkatach, to mianownik musi by¢ staty.

Zadanie 7 Niech A;, Ag, B1, By podprzestrzeniami rzutowymi w przestrzeni rzutowej P} Zatézmy, ze
A1ﬂA2:®, BlﬂBQZQ), oraz dlmAL:dlmBl dla i:1,2.

Udowodnij, ze istnieje przeksztalcenie rzutowe przeprowadzajace A1 na By i As na Bs.
Rozwigzanie: Zamieniamy problem na zagadnienie liniowe.

Definicja: Niech a,b,c,d € K bedzie czworka réznych elementéw ciata. Dwustosunkiem tej czworki na-
zZywamy
a—c b—d
a—d b—c

e K\ {0}.

Zadanie 8 Sprawdz, ze przeksztalcenia rzutowe P}, zachowuja dwustosunek.
Rozwigzanie: Wygodnie jest osobno sprawdzaé przeksztalcenia x — x+a, x — ax (te przeksztalcenia
zachowujg iloraz réznic) oraz x +— 1/x.

Zadanie 9 Udowodnij, ze kazde bijektywne przeksztalcenie dwuwymiarowej ptaszezyzny P3, przepro-
wadzajace proste na proste i zachowujace dwustosunek czterech punktéw na kazdej prostej, jest prze-
ksztalceniem rzutowym.

Rozwigzanie: Mozemy zalozy¢ (skladajaé z przeksztalceniem rzutowym), ze przeksztalcenie ma 4
stale punkty a, b, ¢, d. Przeciecie e € abNcd jest pigtym punktem statym. Poniewaz dwustosunek musi by¢
zachowany dla z, a, b, e, wiec cala prosta ab, tak samo cd jest stala, podobnie @c, bd i juz przez wszystkie

punkty mozna poprowadzi¢ proste, ktére maja conajmniej 3 punkty state.

Zadanie 10 Udowodnij, ze odpowiednim przeksztalceniem rzutowym P2%- mozna przeprowadzié dowolne
cztery proste, z ktorych zadne trzy nie przecinaja sie w jednym punkcie na dowolne inne cztery proste o
tej samej wlasnosci.

Rozwigzanie: Zamiast P(V), gdzie V = K? patrzeé na P(V*).
Zadanie 11 Korzystajac z przeksztalceii rzutowych P4 udowodnij, ze odcinki taczace wierzchotki tréj-
kata z punktami przeciwleglych bokéw tréjkata przecinaja sie w jednym punkcie wtedy i tylko wtedy,
gdy te punkty sa punktami stycznosci pewnej elipsy wpisanej w tréjkat.
Zadanie 12 Zadanie z treécia: Malarz namalowal obraz olejny przedstawiajacy aleje wysadzona drze-
wami. Drzewa posadzono w réwnych odleglosciach. Na obrazie odlegtos¢ od pierwszego drzewa alei do
linii horyzontu jest rowna ¢, a odlegtos¢ miedzy drzewami k i k + 1 jest rowna a,. Wyrazic:



(a) as za pomoca a; i ag,
Rozwiazanie: To jest przeksztalcenie rzutowe prostej w naturze na prosta na plétnie:

pr—pepa—p3 _ —dd 1
p1—p3pa—p2  —2d2d 4

Pi—popy—py __a az 1
Py —pspy—py artazaxtaz 4
(a1 + az)as
a3 = —————
30,1—0,2

(b) as za pomoca aq i £.

Rozwigzanie: p; — o0

i PL"P2Pa—DPs _P1—P2 _ 1
im = =
Pa—0 Pl —P3Pa—P2  P1—DP3 2
Niech h oznacza punkt na horyzoncie
Ph—poh—py a L—a—ay 1
pl—psh—py ar+a C—a 2
l—a
gy = L=
[+ a1

Nastepujgce zadania ”szkolne” dotyczq rzeczywistej plaszczyzny afinicznej. Prostg przechodzgcq przez dwa
punkty p © q oznaczamy pq

Zadanie 13 (twierdzenie Desargues’a o prostych na plaszczyznie). Dane sze$é réznych punktéw na
plaszczyznie. Pokaz, ze ze jesli proste aar, bby, ¢¢; przecinaja sie w jednym punkcie, to punkty przeciecia
prostych ab z a1by, bc z bycy, ac z aicy leza na jednej prostej.

Rozwigzanie: Wybraé afiniczne otoczenie, w ktérym jedna z prostych jest prosta w nieskonczonosci.
Zadanie 14 (twierdzenie Pascala o szeSciokacie na plaszczyZnie). Udowodnij, ze punkty przeciecia
przeciwleglych bokdéw szesciokata wpisanego w okrag leza na jednej proste;j.

Rozwigzanie: Wybra¢ mape afiniczna, w ktérej dwie pary przeciwlegltych bokéw szesciokata sg
rownolegle. Co prawda okrag jest wtedy przeksztalcony na elipsa, ale przeksztalceniem afinicznym mozna
go z powrotem zamieni¢ na okrag, co nie zmieni réwnoleglosci prostych. Uwaga: okrag mozna zastapié
dowolng stozkowa.

Zadanie 15 (twierdzenie Pappusa o szedciokacie na plaszczyznie). Udowodnié, ze punkty przeciecia
przeciwleglych bokéw szesciokata, ktorego wierzcholki znajduja sie kolejno na dwéch zadanych prostych
leza na jednej prostej.



GAL2*
Zadania na czternasty tydzien (13.06-15.06)
Seria ostatnia, na do widzenia

Zadan jest duzo i oczywiscie na ¢wiczeniach wszystkich nie zrobimy, ale zachecamy by sprébowaé zrobic
ile sie da, dodajac ewentualnie upraszczajace zalozenia, np. w zadaniach o Grassmanianach zaktadaé
k<2

W ponizszych zadaniach bedziemy rozwazaé¢ wielomiany o wspoétczynnikach w ciele K. Zaktadamy, ze
cialo ma charakterystyke réznag od 2 i w zadaniach o wielomianach Schura mozna zaktadaé, ze jest
nieskonczone.

Ustalmy n € N. Niech a = (a1 > a2 > ag > --- > a, > 0) bedzie ciagiem liczb naturalnych. Oznaczmy

. - ar s a .
przez W, antysymetryzacje jednomianu z7'z5* ... x%", czyli:

W, = Z sgn(o) Hx?”(i) = det [ zy? ] € Klz1,2z2,...,%y)
1<4

gES, i=1 <i,j<n

W szczegblnosci dla a = p, = (n — 1,n — 2,...0) wielomian W, jest réwny z dokladnoscia do znaku
wyznacznikowi Vandermonde’a

W, =i —=;).

>3]

Zadanie 16 Udowodni¢, ze wielomiany W, stanowia baze wielomianéw antysymetrych od n zmiennych,
czyli podprzestrzeni wielomianéw

An(K) ={f € K[z1,22,... 5] | f(21,.. @iy @, .. xn) = —f(@1,. .25, 24, x) dlad # )

Uwaga: stwierdzenie jest prawdziwe nad Z jesli wlasciwie interpretowac pojecie bazy.

Zadanie 17 Niech S,,(K) oznacza przestrzen liniowa wielomianéw symetrycznych. Udowodnié, ze prze-
ksztalcenie
Sn(K) — An(K)

f Han'f

jest izomorfizmem.

Definicja. Niech A = (A; > Ay > --- > \,;) bedzie ciagiem liczb naturalnych. Wielomianem Schura
sx € K(x1,x9,...,x,) nazywamy iloraz

S\ = W)\ern/Wn .

Na przyktad

xi mz 1 xi xry 1
83’2,0(.%1, T, 1'3) = W5’370/W271’0 = det .1?2 .’1,‘2 1 /det LIZ‘Q X9 1 =
¥y 23 1 ¥3 w3 1

3,2, 2,3 .3 2,.2 3 3,.2 2, .2 2,2, 3.2 23 3, .23
= T1%5 + T]TH + T7T2x3 + 272573 + T125%3 + T3 + 207 T2x5 + 2212523 + THT5 + T]T3 + T1T2x5 + T5T

Zadanie 18 Przedstawié¢ sj ¢ jako wielomian zmiennych x1, xo.

Zadanie 19 Wykazad, ze sy(x1,x2,...,x,) jest wielomianem, ponadto sy € S, (K).
Zadanie 20 Wykazaé, ze wielomiany Schura stanowia baze S, (K).

Zadanie 21 Wykazaé ze dla k < n mamy

salxy,xe, ..., x,0,...,0) =0

jesli Ag41 > 0, oraz
sa(xy, e, ... 2, 0,...,0) = sx(z1,22,...,Tk)



w przeciwnym przypadku.
Zadanie 22 Sprawdzié, ze jesli A = (1,1,1,..,1,0,0,0,...,0) to s jest elementarnym wielomianem
———

k

k
€k = E H Iij

i1 <dp < <iy j=1

symetrycznym

n

H(l +x;t) = z": ext”.
k=0

i=1

Zadanie 23 Grassmanian podprzestrzenmi wymiaru k w przestrzeni liniowej wymiaru n nad cialem K
oznaczamy Grassg (k,n) lub po prostu Grass(k,n). Niech V3 C Vo C --- C V,, = K" bedzie standardowg
flagq, tzn V; = lin{ey, ea,...,€6}. Niech 0 < a; < ag < --- < a < n bedzie ciagiem liczb naturalnych.
Zdefiniujmy

Qo (K) ={W € Grass(k,n) | dim(W NV,,) =i, dm(WNV,,_1) <i dlai=1,2,...k}

(przyjmujemy Vo = 0). Wskazaé bijekcje Q4 (K) = K% gdzie d, = Zle(ai —1).

Zadanie 24 Niech F; bedzie cialem o ¢ elementach. Ile jest podprzestrzeni k& wymiarowych w Fg?
Oznaczmy te liczbe przez (., (q). Udowodnié, ze (i, (q) zalezy od ¢ wielomianowo. Udowodnié, ze wspol-
czynnik przy ¢° jest réwny iloéci ciagéw rosnacych 0 < a; < ag < --- < ap < n takich, ze > (a; — i) = £.
Zadanie 25 Dualnosé Poincaré: Wykazaé¢ rownosé

"G (a7 = Gonl9)
Zadanie 26 Rozwazy¢ afiniczne otoczenie lin{e, €2} € U2 C Grass(2,4)
Ui = {W € Grasso(K*) | W N lin{es, 4} = 0}.
Wspbdlrzedne Pliickera zadaja bijekcje

~
(9313 Tia 23 124).U = A4
=13 =14 223 224 . — .
r12’ 12’ T12) T12 1,2 K

Opisaé przeciecia zbioréw Q, z U; o we wspolrzednych.
Zadanie 27 Rozwazmy podgrupe G C GL,(C) skladajaca sie z macierzy diagonalnych
g(t) = diag(t",t"*,...;t), teC\{0}.

Grupa G dziala na C”, a zatem i na zbiorze podprzestrzeni liniowych w C™, czyli na grassmanianie
Grassi(C™). Wykazaé, to dzialanie zachowuje standardowe otoczenia afiniczne. Opisa¢ punkty stale
dzialania.

Wskazowka: punkty stale sq postaci W, =lin{eq,, €any- -+, €ay }-

Zadanie 28 Dla W € Grass;(C™) wykazaé, ze granica lim;_, g(t) - W zawsze istnieje i jest punktem
stalym dzialania G. Niech V' € Grassi(C™) bedzie punktem stalym. Udowodnié, ze zbidr

X ={W € Grass;(C") | }irr(l)g(t) W =W,}

jest réwny €2, z zadania 12.

Wskazéwka: rozwazydé na poczgtku przypadek k =1, czyli Grass,(C™) = ngl, a potem Grassa(C*).



GAL2~*

Zadania domowe, pierwsza seria, do oddania 21.03, godz 14:30

Zadanie 1 Niech ¢ : V — W bedzie przeksztalceniem liniowym przestrzeni wektorowych z jadrem
t: K — Vikojadrem k : W — Q. Pokaz, ze jadro przeksztalcenia sprzezonego ¢* : W* — V* mozna
utozsami¢ z k* 1 Q* — W* a kojadro ¢* z ¢* : V* — K*: przedstaw izomorfizmy jako odwzorowania
przestrzeni funkcjonatow

ker(p*) ~ (cokerp)*, coker(p*) ~ (ker ¢)*

Zadanie 2

Niech V' bedzie przestrzenia skonczonego wymiaru nad Q i niech ¢ : V' — V bedzie endomorfizmem,
takim ze ¢° = id. Zalézmy, ze 1 nie jest wartoécia wtasna . Udowodnij, ze wymiar V jest podzielny
przez 4.

Zadanie 3 Zbadaj diagonalizowalno$é¢ (nad R i C) macierzy

1 0 2 -1
0 1 4 -2
2 -1 0 1
2 -1 -1 2

Zadanie 4 Niech ¢ : K% — K5 bedzie przeksztalceniem zadanym w bazie standardowej przez macierz

-2 1 1 0 0
1 2 -1 0 0
-2 2 1 0 0
-6 -6 5 -1 1
-2 2 2 0 -1

Znajdz baze Jordana dla ¢. Rozstrzygnij jak odpowiedz zalezy od charakterystyki ciala.

Zadanie 5 Korzystajac z formy Jordana pokaz, ze kazda macierz nad C jest produktem dwdch macierzy
symetrycznych.



GAL2~"
Zadania domowe, druga seria, do oddania 04.04, godz 14:30

Zadanie 1

Niech ¢ : V. — W bedzie niezerowym przeksztalceniem liniowym. Przypomnijmy, ze przeksztalceniu ¢
odpowiada tensor w ¢ € V* @ W.

a) Pokaz, ze rzad przeksztalcenia ¢ jest réwny rzedowi tensora @ czyli minimalnej liczbie tensoréw
prostych, ktérych suma jest réwna .

b) Zalézmy, ze przestrzen V ma wymiar 2 i baze a1, as a przestrzeh W ma wymiar n i baze (31, ..., .
Znajdz warunki, réwnania na wspoétczynniki a;;, ktére opisuja zbioér tensoréow prostych w V* ® W zapi-

sanych jako
> ai (o] @ 8)).
0,J

Zadanie 2
Niech V' bedzie przestrzenia liniowa skonczonego wymiaru. Niech

V: VeV — L(V,V)
bedzie indukowane przez przeksztalcenie dwuliniowe
9:V*xV — LWV, V), I(f,0)(w) = f(w)v.

Przypomnijmy, ze ¢ jest izomorfizmem. Rozwazy¢ zlozenie

T

0: K-S K "Ly L vV avtev VeV -5 L(V,V).
W powyzszym ciagu:
e « jest przeksztalceniem przeprowadzajacym 1 € K na funkcjonal f = id,
o tr: L(V,V) — K, jest odwzorowaniem $ladu, a tr* odwzorowaniem sprzezonym,

e T jest zloZzeniem przestawienia czynnikow i izomorfizmu V** ~ V.

Znajdz O(1).
Zadanie 3
Niech ¢;, i = 1,2,...,n bedzie standardowa baza K™. Dla ciagu I = {i; < iy < -+ < it} oznaczmy przez
g1 € NK™ iloczyn zewnetrzny wektoréw bazowych e;, Agg, A--- Ag;, . Wektory e stanowia baze \FK™.
Niech v; = (a;1, a2, ..., ain) € K™, i =1,2,... k. Oblicz wsp6lczynniki vy Avg A -+ A v w bazie ;.
Zadanie 4
Niech V' bedzie przestrzenia wymiaru n. Przeksztalcenie liniowe ¢ : V' — W indukuje przeksztalcenie
poteg zewnetrznych
N NV — NW,
Vi Ava A= Avg = () Ap(va) A Ap(ug) -

Wykaz, ze jesli ¢ jest rzedu k, to wymiar obrazu im(/A\f¢) C N'W jest réwny 1.
Zadanie 5
Niech (V,¢) bedzie dwuliniowa forma symetryczng. Rozwazmy podprzestrzen W C T(V) = @, V"
rozpieta przez tensory postaci
aRURURb—p(v,v)a®b,

gdzie v € V, a,b € T(V). Zakladajac, ze dim(V') = n oblicz dim(T'(V')/W).
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Zadania domowe, trzecia seria, do oddania 21.04, godz 14:30

Zadanie 1
Policz, w zaleznosci od parametréw ¢, s € R, rzad i sygnature dwuliniowej rzeczywistej formy symetrycz-
nej zadanej ponizsza macierzg :

0 0 O 0 t2
0 1 0 -1 0
0 0 1 s 0
0 -1 s 8241 0
2 0 0 0 0

Zadanie 2 W odpowiedziach na ponizsze pytania sformuluj twierdzenie (lub twierdzenia), z ktérego (z
ktorych) korzystasz

(a) Zalézmy, ze rzeczywista dwuliniowa forma symetryczna h : R? x R® — R jest zadana w bazie stan-
dardowej za pomoca macierzy symetrycznej A takiej, ze det A = —7. Zal6zmy dodatkowo, ze istnieje
wektor v € R3 spetniajacy warunek h(v,v) = 5. Znajdz macierz diagonalng, ktéra jest kongruentna z
A nad R.

(b) Zalézmy, ze h : R3 x R® — R jest niezerowa dwuliniowa forma symetryczna, ktéra jest osobliwa i ma
sygnature zero. Pokaz, ze istnieje wektor v € R3 taki, ze h(v,v) = 0 oraz lin(v)* # R3.

Zadanie 3 Niech V bedzie przestrzenia liniowa wymiaru n nad cialem K charakterystyki # 2. Na
przestrzeni liniowej W = {(v, f),v € V, f € V*} =V x V* nad cialem K rozwazamy symetryczna forme
dwuliniowa h : W x W — K postaci h((v, f), (w,g)) = f(w) + g(v). Znajdz rzad formy h. Rozstrzygnij
czy W jest suma prosta podprzestrzeni izotropowych dla formy h i jesli tak, to je wskaz.

Zadanie 4 Niech h bedzie forma dwuliniowa na przestrzeni liniowej Msy2(R) zadana wzorem

h(A,B) =2 -tr(AB) —tr(A) - tr(B)

dla dowolnej pary macierzy A, B € Mayo(R). Znajdz rzad i sygnature formy formy h oraz maksymalny
wymiar jej podprzestrzeni izotropowych. OdpowiedZ uzasadnij.

Zadanie 5 Wykorzystujac algorytm ortogonalizacji Grama-Schmidta udowodnij, ze kazda odwracalna
macierz A € GL,(R) mozna przedstawi¢ jako iloczyn macierzy ortogonalnej K € O,(R) i macierzy
gérnotrojkatne] M z wyrazami dodatnimi na przekatnej:

A=KM.

Wykaz, ze to przedstawienie jest jednoznaczne oraz znajdz je dla macierzy

A:

O = W
— 00 O
— = O
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Zadania domowe, czwarta seria, do oddania 05.05, godz 14:30

Zadanie 1
Niech (R?,(, )) bedzie przestrzenig euklidesowa z iloczynem skalarnym zadanym formuta

(x1,72,23), (Y1,Y2,Y3)) = 22191 + T2y1 + T1Yy2 + 2722 + T3Y2 + T2y3 + 273y3.

Rozstrzygnij, czy przeksztalcenie, ktére w bazie standardowej ma macierz:

1 00
0 2 0
0 0 3
jest samosprzezone; odpowiedz uzasadnij.
Zadanie 2
Przedstaw macierz
2 —64 25
M= 50 -25 40
14 2 =50

w postaci M = PA, gdzie P = PT oraz A € Og(3). Przedstaw kroki posrednie i stosowne obliczenia.

Zadanie 3
Rozpatrzmy macierz Z € My, (C). Pokaz, ze

det(I,, — Z - Z7) = det(I, — Z7 - Z)

gdzie Iy, jest jednostkowa macierza k x k.

Zadanie 4

Niech A bedzie macierza symetryczna, ktéra interpretujemy jednoczesnie jako przeksztalcenie samo-
sprzezone przestrzeni R™ ze standardowym iloczynem skalarnym. Niech A, (A) oraz Amaz(A4) beda
odpowiednio najmniejsza i najwieksza wartosciag wlasng macierzy A. Pokaz, ze:

Amin(A) = ”thill<vax>a >\7nax(A) = HInHa_X1<za AI>

Definicja. Przez macierz sasiedztwa grafu nieskierowanego G o zbiorze n wierzchotkow V = {1,2,...,n}
oraz zbiorze krawedzi E rozumiemy macierz symetryczna M (G) = (m;;) € Mpxn({0,1}) taka, ze m;; = 1
wtedy i tylko wtedy, gdy istnieje krawedz w G laczaca i oraz j.

Zadanie 5

Pokaz, ze jeSli G jest grafem prostym (nie ma petli i wielokrotnych krawedzi), to wartosci wlasne \;
macierzy sasiedztwa tego grafu speliaja réwnosci Y. \; = 0 oraz Y. A\? = 2¢(G), gdzie e(G) oznacza
liczbe krawedzi w G.



GAL2~"
Zadania domowe, piagta seria, do oddania 16.05, godz 14:30

Zadanie 1 Niech ¢, 1) beda samosprzezonymi przeksztalceniami liniowej przestrzeni euklidesowej. Zaldz-
my, ze endomorfizm ¢ jest dodatnio okredlony. Udowodni¢ ze wartosci wiasne zlozenia pot) sa rzeczywiste.
Uwaga: nie zaktadamy, ze ¢ o9 = 1) o ¢, wiec endomorfizm ¢ o 9 nie musi by¢ samosprzezony.

Zadanie 2 Niech A € M,,,,(C). Przypomnijmy, ze exp(A4) = >, Tll, A™,

(a) Udowodnij, ze jesli A = —A*, tr(A) =0, to exp(A) € SU(n).

(b) Wykaz, ze jedli B € SU(n), to istnieje macierz A = —A*, tr(A) = 0 taka, ze B = exp(A4).
(c) Pokaz, ze nie kazda macierz B € SL2(C) jest postaci exp(A) gdzie tr(4) =0

Zadanie 3 Zalézmy, ze ¢ € End(V) jest przeksztalceniem samosprzezonym przestrzeni unitarnej skoni-
czonego wymiaru. Udowodnij nastepujace wlasnosci

(a) endomorfizm ¢ — i - idy jest automorfizmem,
(

)
b) endomorfizm ¢ = (¢ — i -idy) ™' o (¢ +i-idy) jest przeksztalceniem unitarnym,
(¢) endomorfizm 9 — idy jest automorfizmem,

) ¢

(d i (Y —idy) "t o (¢ +idy).

Zadanie 4 Przeksztalcenie przestrzeni euklidesowej R3 zadane jest w standardowej bazie macierza:
3 -2 6
6 3 -2
-2 6 3

Znajdz baze ortogonalna, w ktérej to przeksztalcenie ma postaé klatkowo-diagonalna z klatkami nie

wiekszymi niz 2 x 2.
Zadanie 5 Przez &
skalarnym.

C H oznaczmy R-przestrzen czystych kwaternionéow ze standardowym iloczynem

(a) Znajdz wszystkie rozwiazania réwnania 22 =1 w S i w H.

(b) Pokaz, ze dla dowolnej bazy ortonormalnej o, o, ag przestrzeni § istnieje kwaternion u o normie 1,

taki ze
woap-u =1, uan-uTt =9, u-az-ut e {E —t}
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Zadania domowe, szdsta seria, do oddania 30.05, godz 14:30

Zadanie 1 W przestrzeni afinicznej R* dany jest punkt ¢ = [4, 5,2, 7] oraz dwie proste:

e L przechodzaca przez punkty a; = [1,1,1,1], as = [0,—1,0, 1],

e K przechodzaca przez punkty by = [2,2,3,1], by = [1,2,2,—2].

Cgzy istnieje prosta N przechodzaca przez punkt c i przecinajaca proste L i K7 Jedli tak, to znalezé punkty
przeciecia Lz N i K z N.

Zadanie 2 Dane szes¢ réznych punktow a, b, ¢, p, ¢ i r w przestrzeni afinicznej nad K. Przypusémy, ze
punkty p, ¢ i r leza odpowiednio na prostych L(b,c), L(c,a) i L(a,b):

p=Ab+(1-Ne, g=pc+ (1-pa, r=va+ (1—v)b.

Zalézmy, ze zadne dwie proste wystepujace w zadaniu nie sa réwnolegle. Znalez¢ warunek dla A, yu, v € K
na to, by proste L(a,p), L(b,q) i L(c,r) przecinaly sie w jednym punkcie. (Wskazéwka: Twierdzenie
Cevy.)

Zadanie 3 Niech f: A3 — A3 bedzie przeksztalceniem afinicznym takim, ze f(p;) = ¢;, gdzie

Po = (3’273)3 b1 = (47233), p2 = (373>3)7 p3 = (37274)a

qo = (25476)7 q1 = (178712)7 q2 = (_17_5a _1)7 q3 = (6a 12a 11)

Znalez¢ punkty state, proste i ptaszczyzny niezmiennicze przeksztalcenia f.

Zadanie 4 Cgzy istnieje przeksztalcenie afiniczne Aﬁi, ktore punkty a; przeksztalca na punkty b; odpo-
wiednio, za$ prosta P na prosta H. Jezeli takie przeksztalcenie istnieje to znalezé jego postaé¢ analityczna
i ustalié, czy jest ono wyznaczone jednoznacznie.

a = [1,1,1,1] bo = [~1,1,—1,1]
ap = [2,3,2,3] by = [0,4,0,4]
a2 = [372a352] b2 = [272a252]

P =1,2,2,2] +(0,1,0,1)

H=1[-1,2,0,3] + s(1,-5,1, —5)

Zadanie 5 Niech pg, p1,p2, ..., pn beda punktami przestrzeni euklidesowej, takimi. Zatézmy, ze wszyt-
kie odlegtosci sa jednostkowe: p(p;,p;) = 1 dla ¢ # j. Niech 0 < k < n. Znalezé odlegloé¢ pomiedzy
podprzestrzenia (po,p1,D2,---,Pk) & (Pk+1,D1,02; - - s Pn)
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Zadania domowe, sibdma seria, do oddania 13.06, godz 14:30

We wszystkich zadaniach zakladamy char K # 2.

Zadanie 1 W przestrzeni afinicznej H = AL z przestrzenia styczna V = T(H) = K", w pewnym
ukladzie bazowym z punktem bazowym pg, zadana jest niepusta kwadryka @ = V(F(pg+v)). Zaktadamy,
ze funkcja wielomianowa F' jest postaci

F(po+v)=qv)+L(v)+a

gdzie ¢ jest forma kwadratowa na V, £ jest formg liniowa na V oraz a € K. Udowodnij, ze jesli g9 =
po+w € A jest srodkiem symetrii kwadryki @, to 2h(w) = —¢ gdzie h : V' — V™ jest przeksztalceniem
liniowym odpowiadajacym symetrycznej formie dwuliniowej h, takiej ze ¢(v) = h(v,v).

Zadanie 2 Dla jakich parametrow a € R funkcja kwadratowa

F = x% +x§ +:E§ +2ax120 + 20123 + 20 2223 — 4a

opisuje elipsoide w A3? Okresl typ powierzchni V (F) w zaleznosci od parametru a € R.

Zadanie 3 W afinicznej przestrzeni euklidesowej R* ze standardowym, produktem skalarnym dane sa

proste L = {[0,7,1,2] +¢(0,1,—1,0)} oraz K = {[1,1,1,1] + ¢(1,0,0,—1)}. ZnajdZ plaszczyzne przecho-

dzaca przez punkt [4, 1,3, 1], ktéra jest prostopadla do L i nie przecina K.

Zadanie 4
W przestrzeni V = K* wybierzmy baze oy, . . ., s i odpowiadajace jej wspotrzedne jednorodne (g : -
r3) na przestrzeni rzutowej P3. = P(V). Na zbiorze afinicznym A3 = P(V) \ V(x) mamy wspéirzedne
Y = i—o Zalézmy, ze prosta L C A3 zadana jest parametrycznie w tych wspétrzednych [aq, az,as] +
t - (b1,b2,b3). Pokaz, ze prostej L odpowiada plaszczyzna w V, ktéra jako punkt na Grassmanianie
Grass(2,4) C P(A>V) jest reprezentowana przez tensor

<Oéo + a1 + agog + 1130[3> A (blal + b2a2 + bgOég)

Rozpatrzmy nastepujace cztery proste w A% zadane parametrycznie
Ly =10,0,0]+¢(1,1,1), L;=11,0,01+1¢(0,1,0), Lo =10,1,0]4+¢(0,0,1), L3=10,0,1]+1¢(1,0,0)

Pokaz, ze istnieja doktadnie dwie proste M7 i Ms spotykajace wszystkie proste L; i zapisz M; w postaci
parametrycznej p; +t - v;.

Wskazéwka: Korzystajac z poprzedniego punktu policz, ze wektory styczne to odpowiednio v = (1,e,e2) i vy = (1, €2, e),
gdzie e jest pierwiastkiem pierwotnym stopnia 3 z 1, czyli liczba zespolona spetniajaca réwnanie e? 4 e + 1 = 0, nastepnie
znajdz p; = M; N Lo.

Zadanie 5 Znajdz wszystkie proste lezace na kwadryce zadanej w R3 réwnaniem

m% + :v% + 5:1:% — 62122 + 22023 — 201203 = 12,

ktoére sa réwnolegte do plaszczyzny 1 — 2z = 0.



