Equivariant cohomology in algebraic geometry: notes 2023
Andrzej Weber

1.1 Prehistory: Poincaré-Hopf theorem. Suppose M is a manifold, v a vector field with isolated

zeros, then

X(M) = Z I?’Ldp(U),

pEZeros
where Ind,(v) is the index of the vector field, i.e. the degree of the map from a small sphere around p

S(p, €) to the unit sphere in T, M given by v(p)/||v(p)||-

1.2 Suppose a circle S' acts smoothly on M with isolated fixed points. Let v be the fundamental
field of the action, i.e.

o(@) = &t )0

Then if p € M5 the index Ind,(v) = 1. Hence
1
X(M) = [M7.
This statement is true in a much greater generality.

1.3 Let X be a simplicial complex (or any decent compact topological space, e.g. a manifold).
Suppose p is a prime number. Let P be a p-group acting on X. Then the Euler characteristic of fixed
points x(XT) = x(X) mod p.

Proof: We assume that P acts simplicially and the relation follows from the property of p groups acting

on finite sets: |X| =|X| mod p.

1.4 Exercise: give a proof for compact manifolds, not using triangulations.
[Soren Illman, Smooth equivariant triangulations of G-manifolds for G a finite group. Math. Ann.233(1978),
no.3, 199-220.]
See a far-reaching generalization: Dwyer—Wilkerson Smith theory revisited. Ann. of Math. (2) 127
(1988), no. 1, 191-198.

1.5 Corollary: no decent compact contractible space admits a finite group action without fixed points.

1.6 Theorem does not hold for infinite dimensional spaces, e.g. Zy acts on S*° ~ pt without fixed

points (action via antipodism).

1.7 Theorem: Let X be a compact (decent) compact topological space (e.g. a manifold). Suppose
T = (S')" acts on X. Then y(X) = x(XT).
Proof: X5 = X% = XZm for n >> 0.

Examples of the spaces with torus action.

1.8 X = §?"+1 ¢ C"*! with S! C C action via scalar multiplication. (No fixed points, y(X) = 0.)



1.9 The projective space P* = CP" = P*(C) = (C"*! \ {0})/C* can be presented as S2"+1 /51,
1.10 X = §?" C C" x R with S! C C acting on the factor C". ( x(X) = 2, two fixed points.)

1.11 Projective space P" (in particular P! = $?) admits the action of T¢ = (C*)"*!. There are n+1
fixed points. Also the small torus consisting of the sequences (1,t,¢2,...,#") has the same fixed points.
We check directly that x(P") =n + 1.

[For holomorphic actions does not matter whether we take compact torus S' or C*. The fixed points

are the same.]

Bialynicki-Birula decomposition by examples.

1.12 Let X =P,
T={(1,t,t%...,t") €T |t € C*}

acting as above. For p € X7 let
Xt = X|limt-z=p}.
S ={zeX|lmt-z=p)

The sets X;,t are homeomorphic (isomorphic as algebraic varieties) with affine spaces. We obtain the

well known decomposition of the projective space

Pr=CcrucCrtuyct2y...uqo.

Xt = {2, #0, zz=0for £ <k} ~C"*
[0:0:+++:1:0:---:0]

1.13 The quadric 2923 — 2122 = 0 in P? with the T'= C* action as above.

Q000 = {[1:21:22: 2120 | 21,22 € C} ~ C?
Q[0717070] = {[0 :1:0: Zg] | z23 € (C} ~C
Q[0707170] = {[0 :0:1: 23] | 23 € (C} ~C

Q0,00 =1{[0:0:0:1]} ~pt

1.14 Theorem [Bialynicki-Birula 1973] Let X be a complex projective algebraic variety with algebraic
T = C* action. For a component F C X7 let

_l’_ _ .
X, —{zeX]}g%t-zeF}.
(1) Then
X =||xf
F
(the sum over connected components) is a decomposition into locally closed algebraic subsets.
(2) The limit map
=lim: X = F
pbr tl—I>I(l) F
is an algebraic map. If X is smooth then pg is a Zariski-locally trivial fibration with the fiber isomorphic
to C"F.



(3) The number np is the rank of v} C v, the subbundle of the normal bundle on which T acts with
positive weights.

e The field C can be replaced by any algebraically closed field.

1.15 Note that existence of the limit lim;_,o ¢ - z follows from the fact that the closure of the orbit is

an algebraic curve. The map
a,:C* 5P x X
t (t,t-2)
extends to a map from P'. To see that one can note that the image of C* is a constructible algebraic
set (by Tarski-Seidenberg theorem), hence the closure is an algebraic curve, dominated by P!. Hence
we have a unique extension of a,
a PP x X5 X

and

%g%t -z :=7(a(0)).

e If the action is not algebraic, the above argument does not work: C* acts transitively on any elliptic

curve, there are no fixed points.

2 Basics about actions of compact groups
2.1 Let T = (SY)" € C" and t = iR" C C". The map exp coordinatewise induces the exact sequence
00—tz —t SRT 0,
where tz7 = 2miZ" C t{R" = t is the kernel, also denoted by N

2.2 Weights and characters. See [Anderson-Fulton, Ch. 3,§1]
e Homomorphisms Hom(T, S!) are called ,,characters”. This set is a group with respect to multipli-
cation pointwise. It is isomorphic to Z". In toric geometry denoted by M.

e any character in coordinates is of the form
(t1,t2, ... tp) > 15 T denoted by t*.
e the sequence (wi,ws,...,w,) € Z" is the called weight.

2.3 Without coordinates:
Weights = Hom(N,Z)

In toric geometry Hom(N,Z) is denoted by M, in representation theory t;.

t, N oz ~ 7
N N
t — iR

exp | 1

h t
T character Sl

For a weight w € tz the corresponding character is denoted by e®.



2.4 For the complex torus T¢ ~ (C*)" any polynomial map is determined by the values on T ~ (S1)”
Hom,,(Tc, C*) = Hom(T, S*).

2.5 Linear actions of T one a vector space C" can be diagonalized

(Commuting linear maps of finite order have a common diagonalization.)
2.6 Exercise: for any field F = F any linear action of Tp = (F*)” on F” can be diagonalized.

2.7 Up to an isomorphism any linear action of T on a complex vector space is determined by the
multi-set of weights.

e Let C,, be equal to C as a vector space with the action of T via e : T — S! ¢ C* = GL;(C)

e If T has fixed coordinates, i.e. it is identified with (S')" and w = (w1, w2, ..., w,) then for t € T

the linear map e“(t) : C,, — C,, is the multiplication by ¢"t52 ... t¥".

V= .,

weM
where V,, = {v e V |Vt € Tt -v = e“(t)v} ~ Homyp(C,, V) is the eigenspace (called weight space)

e We have a canonical decomposition

corresponding to the weight w.
e For a vector bundle £ — B, with torus action such that T acts on B trivially and on the fiber the
action is linear we have a decomposition into a direct sum of subbundles £ = @, Ey.

e The decomposition into weight subspaces can be noncannonically refined

dim V'
V=P Cu,.
k=1
(Note: If we have fixed coordinates of T, then each wy, is a sequence of numbers (w1, w2, - .., Wk,r)-)

e The element
dim V'

6(V) — H wy, = deime c SymdimV(t%)
k=1 w

does not depend on the above decomposition and it is called the Euler class of the representation.

e The product

dimV
c(V)= [T (0 +we) = [0 +w)P™ " € Sym(t;)
k=1 w

is also well defined. It is called the Chern class of the representation

e After tensoring with R (or Q) we can identify Sym(t;) ® R with polynomial functions on t.

2.8 Exercise: for a representation V of T consider an action of T =T x S on V =V, where S! acts
by the scalar multiplication. Denote by A the weight corresponding to the character T — S, which is
the projection. Show that

(V) = e(V) s
Action of a compact group (in particular torus) on a manifold

2.9 Exercise: (algebraic geometry) Let A be an algebra over a field F and X = Spec(A). Defining
an action of G,, = Spec(F[t,t"!]) on X is equivalent to defining a Z-gradation of A. Prove this

correspondence and generalize it to an action of the algebraic torus G7,.
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2.10 Let X be a manifold with a smooth action of T. Suppose € X7 is a fixed point. Then T
acts on T, X. If x is an isolated fixed point, then the weight space (7, X )g corresponding to the weight

w = 0 is trivial.

2.11 Proposition. There exists a neighbourhood x € U C T, X and an equivariant map f : U — X,
which is an isomorphism on the image.
Proof: Fix an S! invariant metric, take U to be the ball of a sufficiently small radius, f = exp in the

sense of the differential geometry.

2.12 Reminder: Orbit, stabilizer(=isotopy group): Suppose a group G acts on X, x € X
e the stabilizer = G, = {g € G | gz = z}.

o if y = gz then G, = 9Geg™!
e the orbit = G-z ~ G/G;.

e the isotropy group G, acts on the tangent space 7, X and the fiber of the normal bundle (vg.;)s

2.13 Construction of the associated bundle: Suppose V be a representation of a group H, and

suppose P be a H-principal bundle. Let us define
PxHV =P xV/{(ph,v) ~ (p,hv)}.

The projection P x V' — P/H =Y is a vector bundle.
For the definition and basic facts about principal bundles [Anderson-Fulton, Ch.2.1]

2.14 Slice theorem for manifolds: Assume that X is a smooth manifold, G a compact Lie group
(can assume a torus) acting smoothly. Let V = (vg.z)z. There exist an equivariant neighbourhood
of 0 € S C V, such that the map G x% S — X induced by exp : G x% V — X is an equivariant
diffeomorphism onto the image. This image is a neighbourhood of G' x%* {0} ~ G - z. The set S or its
image is called the slice, whole neighbourhood is called the tube. See [Anderson-Fulton, Ch.5 Th.1.4].

e In other words: any orbit has a neighbourhood isomorphic to the disk bundle of the associated
vector bundle over the orbit.

e Proof. The map exp: T x V — X induces

(9,v) — g -exp(v).

Exp isG,-invariant, i.e. exp(g-v) = g-exp(v) for g € G. Hence the above map factorizes G x %V — X.

e Exercise: Show that the above map is well defined.

2.15 Exercise: Let G be a group, H a subgroup, E — G/H be a vector bundle with G-action, such
that for any g € G, z € G/H the map g : E, — E,, is linear. Show that £ ~ G xX Ej. Here [¢]

denotes the coset eH.

2.16 There is a more general theorem for topological spaces:
— If X is a topological space (completely regular), G a compact Lie group, then a slice V' is a certain
subspace of X, invariant with respect to G,. [Bredon, Introduction to Compact Transformation Groups.

Section I1.5]



— In algebraic geometry [Luna slice theorem| we assume that G is reductive ((C*)" is fine, GL,(C)
too) X is an affine variety, and the orbit is closed. The neighbourhood is in the étal topology. [Luna,
Domingo (1973), Slices étales, Sur les groupes algébriques, Bull. Soc. Math. France, Paris, Mémoire,

vol. 33]

3 Classifying spaces

3.1 It is convenient to introduce a notion of G-CW-complex. By definition, we assume that X admits
a filtration
X_1:®CXOCX1C"'CXN

such that
X; = Xi-1 Uy (G xT D™,

where D™ is the unit disk of a linear orthogonal representation of H — Aut(R™),
¢:GxH gt 5 x; .
(with weak topology.)
3.2 Any smooth action of a compact Lie group G on a compact manifold admits a G-CW-decomposition.
3.3 Example: S? with the standard S' action has 3 cells 0, co and S* x D'.
3.4 Exercise: find a CW-decomposition of P" with the standard action of (S*)"*!
3.5 The topological spaces we study will be assumed to admit a G-CW-decomposition

3.6 Equivariant cohomology of a G space:

e topological model Hy(X) = H*(EG x% X)), where EG is a contractible free G-space (unfortunately
in almost all cases EG is of infinite dimension)

e differential model if X is a G-manifold H¢, ;z(X) = H*(Q2"(X, G))

e de Rham theorem H,(X;R) =~ H, ;5(X)

3.7 We will assume, that G is compact (or linear algebraic reductive, e.g. (C*)").

3.8 A G bundle P — B = E/G is universal if for any G bundle P’ — B’ there exist amap f : B’ - B
such that F*(P) = P’. Moreover f is unique up to homotopy.
e Hence
{G-bundles on X} = [X, B]

where [X, B] means homotopy classes of maps (X is assumed to be CW-complex).
3.9 We will show that a universal G-bundle exists.

e Notation EG — BG, should be understood as a homotopy type, which has various realizations.

e A G bundle P — B is universal if and only if F is contractible.



e Proof: Assume that P is contractible. Suppose P/ — B’ be an arbitrary G-bundle. We construct a
mapping by induction on skeleta. We assume that P’ is a CW-complex, glued from cells with trivial

stabilizers, i.e. each cell is of the form D" x G.

/_\

S 1l xG@—=D"xG-->EG

gn-1 D"- - -~ BG

it is enough to construct a mapping S"~! x {1} — P do D™ x {1} — EG and use G-action to spread

the definition on the whole tube D™ x G. Similarly we construct a homotopy between two maps.

Hence if P is contractible then it is universal. If we have another bundle P’ — B’ which is universal,
then there are G maps P’ — P and P — P’ and their compositions are homotopic to identities (this is

a general nonsens about universal objects).

3.10 Corollary: by the homotopy exact sequence for G C EG — BG we have homotopy group

isomorphism 7 (BG) ~ 7_1(G). In particular, if G is connected, then BG is 1-connected.

3.11 Since any nontrivial compact Lie group contains torus, hence elements of finite orders, the space

EG cannot be of finite dimension (by Euler characteristic argument).

3.12 Examples:
ES! = 8% — P> = BS! (of the type K(Z,2))
E(S'Y = (8%) = (P%) = B(S')
BU(n) = imy_,0 Gras,(CY)

3.13 For G = T or U(n) one can approximate BG by compact algebraic manifolds, which admit a

decomposition into algebraic cells (BB-decomposition’s).
3.14 For all linear algebraic groups G C GL,,(C) we can take EG =Steel manifold
St (CN) := Monomorphisms(C™, C) ¢ Hom(C™,CY)

See [Anderson-Fulton, Ch.2, Lemma 2.1]
e Exercise: Show that
A}im codim(Hom(C™,CN) \ St,,(CY)) = cc.
—00

e For any algebraic group Totaro constructs approximation of BG by algebraic varieties in a more

systematic way.

3.15 If H C G, then as a model for EH we can take EG. Hence we get a fibration G/H — BH —
BG.

3.16 If H <G is a normal subgroup, K = G/H then there is a fibration BH — BG — BK.
(Take EH := EG and E'G = EG x EK, taking the fibration E'G/G — EK/K we find that the fiber
is FG x% G/H = BH.)



3.17 Characteristic classes for G-bundles [see e.g. Guillemn-Sternberg §8] Consider two contravariant

functors:

Gbdl := {G — bundles}/ ~: hTop — sets

H:=H"(—Z): hTop — sets

MapFunctors(Gbdl, H) = H*(BG; Z)
e This is just Yoneda Lemma: if ), H : C — S|U[ and F' is representable by A € Ob(C), i.e.

F(X) = More(X,A),

then
Morpunctors(Fy H) = F(A).
Given a transformation of functors
a: More(—,A) — H(—)

We construct an element in H(A) setting X = A

a— a(ldy) € H(A).

Conversely: given f: X — A and o € H(A) define

3.18 Characteristic classes for n-dimensional vector bundles.
e Each vector bundle is determined by its associated principal bundle. Thus Vect,(X) = [X, BGL,(C)]
and BGL,(C) = BU,. Hence

characteristic classes of n-vector bundles = H*(BU (n))

e H*(BU(n),Z) ~ Z[c1,ca, - . ., Cn]
e The map H*(BU(n+ 1)) — H*(BU(n)) is surjective given by ¢,41 := 0.

3.19 For the torus we have

¢ G=C* EG=C>\{0}; BC*=P= = P"

e H*(BC*) ~ ZJt], it is convenient to take ¢ = ¢1(O(1)), where O(1) is the dual of the tautological
bundle.

e For S' we can take ES' = §>® =J, 52!

3.20 Corollary:
{topological vector bundles over X} ~ H*(X;Z)
{characteristic classes of line bundles} = H*(P*>) = Z[t]

3.21 For T = (SH)™
H*(BT) = Z[t1,ta, ..., ts]



3.22 The inclusion T — U(n) induces BT — BU(n) and H*(BU (n)) — H*(T) which is injective
H*(BU(TL)) = Z[Cl, C2y .., Cn] = Z[tl,tg, e ,tn]S" — Z[tl,tg, R ,tn] = H*(BT)
Compare [Anderson-Fulton, Ch2, Proposition 4.1]

3.23 The above statement and many others in this course follows from Leray-Hirsch theorem:
e Let FF — E — B be a fibration. Assume that H*(F) is free (in our case over Z). Suppose there is
a linear map ¢ : H*(F') — H*(E), a splitting of the restriction map H*(F) — H*(F'). Then H*(E) is

a free module over H*(B).

3.24 We have the bundle £ = BT — BU,, = B the fiber is F' = U, /T. The base and the fiber (
F =Flag manifold) admit a cell decompositions into even dimensional cells — see explanation below.
Hence we have a cell decomposition of ET which is compatible with the decomposition of the base.
(Note that here as a model of ET is not taken S*.)

e Hence H*(E) — H*(F) is split-surjective.

By the Leray-Hirsh theorem H*(BT) is a free H*(BU,)-module of the rank dim H*(F),

e H*(F)~ H*(E)/(H”"(B)) as algebras (also we can write H*(F) ~ Z ® g~ () H*(E) )

3.25 We look at the cell decomposition of the approximation Gras,(C") of BU(n) (see [Anderson-
Fulton, Ch. 4, §5]

e The cells are indexed by the sequences

O<ii<ta<...t:<n

1 = 0 =x* . .
<0 01 *> a=11i=3

Equivalently

(n—k>X >X2>--+> X >0) =number of * in the reduced form of the matrix.

3.26 Computation of H*(BU(n)). The map H*(BU(n)) — H*(BT) is injective. The image is
invariant with the symmetric group action S, since each permutation ¢ : T — T — U, is homotopic
to the inclusion.

e First we give an argument over Q. We show that in each gradation dim sz(BUn) = dim Q[ty, to, .. ., tn]S".
— dim H?*(BU(n)) = number of sequences A\; > Xg > --- > A, > 0 (no restriction on A1), such that
Zi Ai =k
— dim H?*(BT)% = Z[ty,ta, . .. ,tn]f": the number of monomials with non-increasing exponents.

e We conclude that H?*(BU(n); Q) = H?*(BT;Q)>»

e Moreover H*(Fl(n);Z) = Z[t1,ta,...,t,])/(H>Y(BU,;Z)) is torsion-free. Hence H*(BU,;Z) =
Zlt1,to, ... t,])"

3.27 Corollary: We have a description of the cohomology ring

H*(Fl(n)) =~ Zt1, ta, ..., ta) [(Zt1, ta, . .., ta] ) -



3.28 Exercise: Compute the cohomology ring H*(Gras(k,n)) using the fibration Grasg(C") —
B(Uy x Up—i) — BU,.

3.29 General theorem: if G is connected, T maximal torus, W = NT/T the Weyl group, then
H*(BG;Q) = H*(BT; Q)" is a polynomial ring in the variables of even degrees, e.g.

e H*(BSp(n); Q) = Q[ea, ¢4, - - ., c25), (valid also over Z),

e H*(BO2,;Q) = Q[p1,p2; - - -, pn,€]/(e? = pp), deg p; = 4i, dege = 2n (valid also over Z[%])

e BEy is he worst, one has to invert 2,3,5. The generators of H**(BFEg) are in the degrees 2x: 2, 8,
12, 14, 18, 20, 24, 30.
[Burt Totaro: The torsion index of Eg and other groups, Duke Math. J. 129 (2005), no. 2, 219-248]

4 Recollection on Chern classes
What you need to know about Chern classes

4.1 Let Vect; denote the functor hTop — Sets
Vect1(X) = Isomorphism classes of line bundles over X

e This functor factors through the category of abelian groups (tensor product of line bundles behaves
like addition).
e Vect(X) denotes isomorphism classes of vector bundles. This is a semi-ring. Here @ is the addition,

® is the multiplication.
4.2 The first Chern class
c1 € Morpunctors Vecty, H(—, 7)) = H*(K(Z,2)) = H*(BS') = H*(P*) = H*(P')

We chose the generator of H?(PP!) so that c;(O(1)) = [pt]. Here the bundle O(1) = ~* is the dual of
the tautological bundle.

e In other words: the Chern class ¢; is determined by the choice made for O(1).

4.3 Chern classes of vector bundles: ¢(E) =1+ c1(E) + -+ + ¢y (E).
— functoriality (c is a transformation of functors Vect(—) — H*(—,Z)
— for line bundles ¢(L) =1+ ¢ (L)
— Whitney formula ¢(E & F) = ¢(E) ¢(F)
e Note ¢ is not a group homomorphism. One can repair that, but has to use Q coefficients. The

resulting transformation is called Chern character. For line bundles
eh(L) = exp(ei(L)).
Chern character is additive and multiplicative
ch(E® F) =ch(E)+ ch(F),

ch(E ® F) = ch(E) ch(F).
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4.4 If L is a holomorphic line bundle over a complex manifold, with a meromorphic section s, then

c1(L) is equal to Poincaré dual of Zero(s) — Poles(s).

4.5 Projective bundle theorem. For a vector bundle E — B let P(E) — B be the projectivization!,
L = Op(g)(1) the tautological line bundle, then H*(P(E)) is a free module over H*(B)
h 4+ ah™™ "+ +ra, =0.

Then a; = ¢;(E).
e There are other conventions of signs, but let’s check: If F is a line bundle, then L = E*. We have

relation h 4+ a; = ¢1(L) + ¢1(E) = 0.
4.6 Corollary: Chern classes of E and the ring structure of H*(B) determine the ring structure
H*(P(E)) = H*(B)[h]/(h" 4+ cith" ' + -+ com1h + ¢).

4.7 Splitting principle: for any line bundle £ — B there exists f : B’ — B such that, f*E is a sum

of line bundles and f* is injective on cohomology. E.g.
B’ = Flags(E) = B Xy, BT,
where T is the maximal torus in U(n).
4.8 The generator of H?(BC*) is identified with ¢;(O(1)). Thus the generators of
HT(BT) = Z[t1, ta, ..., tn]
can be presented as
ti = c1(Lq),
where L; = ET xT Cy, is the line bundle associated to the representation of 7' in GL1(C) given by the
projection oh the i-th factor.

4.9 Let x : T — C* be a character, then ¢; (ET xT Cy) = x. Here we identify

Hom(T,C*) = * = H*(BT).

Borel’s definition of equivariant cohomology |[finally, see [Anderson-Fulton, Ch.2 §2]]
4.10 Borel construction Xg = EG x¢ X sometimes is called the mixing space.

4.11 Basic properties:

e It is a module over H}.(pt) = H*(BG)

e Contravariant functoriality with respect to X i G.

o If the action is free then X — X/G is a fibration with the contractible fiber EG, hence H (X)) =
H*(X/G). [Anderson-Fulton, Ch 3, §4]

e For K C G, X = G/H we have X¢ = EG x% G/K ~ EG/K = BK.

e More generally H}(G x& X) ~ H}(X) for any K-space X..

o If the action is trivial then X¢ = BG x X. If H*(BG) has no torsion (e.g. G =T, GL,(C), Sp,(C))
then H}(X) = H*(BG) @ H*(X). For coefficients in Q we do need the assumption about the torsion.
[Anderson-Fulton, Ch 3, §4]

this is the naive projectivization, i.e. the fiber over & € B consist of the lines in E,.
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4.12 Basic properties of equivariant cohomology of smooth compact algebraic varieties: (G connected,
coefficients of cohomology in Q)

o (*) H(X) is a free module over H*(BG) hence H}(BG) ~ H*(BG) ® H*(X), the information of
the action of G is hidden in the multiplication,

o HA(X) — Hi(X)T is injective.

4.13 Example: [Anderson-Fulton, Ch.2, §6] P" with the standard action of T = (C*)"*!. We identify
X1 with P(D;, Cy,). By the projective bundle theorem

Hi(P") = Zlto, ta, ... tn, b /([ (& + 1))
i=0
e It is a free module over H7.(pt) = H*(BT) = Zlto, ta, . .., tn]
e The map to H*(P"*) = Z[h]/(h"*1) is a surjection.

e We have an isomorphism of modules over H*(BT)
HE(PY) ~ H*(BT) @ H*(P").

We will see that for compact smooth algebraic varieties (or Kéhler) the above holds always over Q.

e The map
n n
Hi(P") — Hi(P")) = @ Hilpt) = P Zlto, t1, ., 1]
i=0 i=0

by
[f@&h)] = {fiti=o1,.n> fi(t) = f(t, —t;).

Exercise: this map is injective.

4.14 Example: T = C* acting on P! ~ 52 via [t’zq, t* 2]

Xt =P(OW¢) ® O(k))

Hi(PYY = Z[h, 1]/ ((h + kt)(h + £t)

e The elements 1 and h generate over Z[t]| = H*(BT). This is a free module
[We have h? = —(k+{)th— k¢t?, so any polynomial in ¢ and h can be written modulo the ideal (h?+ ht)

as fo(t) + fr(t)h.]

e The restriction to the fixed points

[F(&, h)] = (f(E, =L1), f(t, —kt)).

is injective.

[If f(t,—kt) =0, then f is divisible by h + kt ... ]

4.15 Let T = C* act on X = C* via the multiplication by z*
e We identify C* with the subset of P!

{[1,2] e P* | 2 # 0}
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the action of C* is as in 4.14 for £ = 0. To compute Hj(C*) use the Mayer-Vietoris exact sequence

[Anderson-Fulton, Ch. 3, §5]: for even degrees we have
0— HF ' (C*) — HF(P') % H'(C) ® HF¥(C) — H{'(C*) — 0
0 —? — Z[t,h]/(h(h + kt)) S Z[t] © Z[t] =7 — 0
at) = (t,1), a(h) = (kt,0).

The restriction map to the open C’s can be identified with the restriction to the fixed points. The one

but last map « is injective, thus H2'~(C*) = 0 and
HE'(C*) = coker(a) = (11, t5) /(a(t®h"))) = (11, t3) /{81 + ty, kt}) = Z/KL.

e Corollary:

Z ifi=0
HYBZy Z) = H& (CjZ) = { 7y, if i is even
0 if 4 is odd.

(Here Zj, denotes Z/kZ.)

4.16 In general, if G is a finite group H>Y(BG;Z) is torsion.
e p: EG — BG is a finite covering, thus p,p* € End(H*(BQG)) is the multiplication by |G|. Since for
i > 0 it factors through trivial group for we have |G|H*(BG) = 0.

e We will mainly perform computation over QQ, so will ignore finite groups.

5 Equivariant formality, localization I

5.1 The condition
(*) Hf(X) is a free module over Hy(pt)
Is called equivariant formality It can be reformulated
- HA(X) @120y Q =~ H* (X)
- H*(X)®H}(pt) ~ H3(X) (it is enough to know that there is an isomorphism of graded vector spaces)
— Hy(X) — H*(X) is surjective, compare [Anderson-Fulton, Ch. 6, §3].

5.2 The basic argument is analysis of the fibration X ¢ ET xT X — BT and Serre spectral sequence
EYY = H2(pt) © HI(X) = HZY(X).
5.3 If X is a sum of even dimensional cells then (*) holds. It is enough to assume H°%(X;Q) = 0.

5.4 Theorem: If X is smooth algebraic manifold with an algebraic torus T = (C*)" action, then X
is equivariantly formal.

e See [Anderson-Fulton, Ch. 5, Cor. 3.3]

e (Much more difficult result of McDuff is equivariant formality of X symplectic manifolds with

Hamiltonian torus action.)
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5.5 To show (5.4) we need some basic tools.

e Fundamental class of a subvariety Y C X: it is the Poincaré dual of the homology class. We denote it
[Y] € H2°dmY (X)) (We do not have to assume that X is compact.) e Equivariant fundamental class
of an equivariant subvariety. Let E, — B,, = (P")" be the approximation of the universal T-bundle.
He define [Y] € H:(X) as the fundamental class of E, xTY C E, xT X

(B, xTY] e g2cdmY (g T X) ~ g2eodimY'(x)  for sufficiently large n.

e Exercise: Show that the definition does not depend on n >> 0.
e Exercise: Define the equivariant fundamental class not passing through approximation, but using

the equivariant normal bundle on Yg,00th-

5.6 Correspondences: (for cohomology with rational coefficients). Suppose X and Y are compact
C*° manifolds. We have

Hom(H*(Y), H*(X)) =~ (H*(Y))* @ H*(X) "% 5*(v) @ B (X) """ (X x v).
Having a cohomology class a € H*(X x Y) we define ¢, : H*(Y) — H*(X)
HZ(Y) HZ(X % Y) Hi-i—k(X % Y) Hi—i—k—dimY(X)
a = Ty o — a-(mya) = 7x«(a- (15a)).

Here - is the product in cohomology. Puritans would denote it by U. The push-forward (a.k.a Gysin
homomorphism)mx, can be defined as the map in homology composed with Poincaré dualities. See
[Anderson-Fulton, Ch. 3, §6]

e If a is the class of a graph of f : X — YV, dimY = k i.e. a = [graph(f)] € H*(X xY). Then
¢a = f*. (Exercise.)

e Suppose X and Y smooth an compact algebraic varieties and Z C X x Y any subvariety. Take
a=[Z], ¢z := ¢q. Then ¢z : H(Y) — H*?¢(X) with ¢ = codimZ — dimY = dim X — dim Z.

e One can drop the assumption that X is compact. It is enough to assume that the projection Z — X
is proper:

a = Tya = (Tya)|z = Tx(Tya)z) .

5.7 Proof of 5.4. Let B, = (P")", X,, = (C""' —0)" xT X be the approximation of the Borel
construction. We show that H*(X,) — H*(X) surjective. It is enough, since H¥(X,,) ~ H:(X) for
large n.

The bundle (C"*! — 0)" — (P™)" is trivial over the set standard affine open set U ~ (C")":

UxXcCX,.
The projection p : U x X — X extends to the correspondence
oz Xn— X, Z = closure(graph(p)).

The map p* has a left inverse inverse i/ induced by ¢/ : X = {pt} x X = U x X, i.e. pi’ = idx

H*(X)
N
H*(X,) —  H*U x X)
6z N G2 uxx=p
H*(X)
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"¢z = idy-(x) because i”"p" = idp-(x).

e Exercise: show that all works for cohomology with Z coefficients.

5.8 Example of a space which is not equivariantly formal:
Let T=T; x Ty with T; = C*, X = T/Tl ~ Ty:

Hi(T/Ty) = H*(ET x* T/T,) = H*(BT,).
The map to H*(X) for *=1 is not surjective.

5.9 Example: T = S! acting on X = S? with the quotient S? (the Hopf fibration). Then Hz(S?) ~
H*(S?) cannot be surjective to H*(S?3).

5.10 If X is a free T space then X is not equivariantly formal (since H7(X) is of finite dimension,

cannot be a free module over a polynomial ring).

5.11 Localization 1.0: Let X be a finite T-CW complex. Then the kernel and the cokernel of the
restriction to the fixed point set H#(X) — Hi(XT) are torsion Hi(pt)-modules.
e Other formulation: Let A = H}.(pt) = Q[t1,t2,...,t3], and K = be the fraction field. Then the
restriction
K@) HA(X) - K @y Hi(XT).

is an isomorphism. e It will be clear from the proof what elements of A should be inverted.
e Proof in the case of the finite X, see [Anderson-Fulton, Ch. 5, Th. 1.8]. For nonsingular varieties
[Anderson-Fulton, Ch 5. Th. 1.13]

5.12 Let M be a A-module (it is enough to assume that A is a domain). Localization
m
KaxM={" a0}/ ~
m oM L g € A" bagmy = baims .
al a9
5.13 Lemma: The localization functor
A — modules — K — modules

is exact. (Exercise)

5.14 Proof of 5.11. Induction with respect to the number of cells: Assume that if X =Y UT xg D.

Then the sequence
— K@) HH(X,Y) 5= K ®p Hp(X) = K@) Hi(Y) —
is exact. Assume that G # T. We will show that Hj:(X,Y) is a torsion A-module.
Hi(X,Y)~ Hp(T xqg D, T xg S)~ H,(D,S),

(see (4.11)) The action of A on H} (D, S) factorizes through H3(T/G) = H.(pt) = A/(characters anihilating G),

hence H{ (pt) is a torsion A-module.
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5.15 Exercise: see what goes wrong for T replaced by a nonabelian groups. For tori the orbit

HE(T/G) turned out to be a torsion Hy(pt)-module. (Is Hg; (GLy/By) atorsion Hg,p (pt)-module?)
5.16 Example: P'with the standard T = (C*)? action
K ®@x H7(P') = K[h]/((to + h)(t1 + b)) — K @ K

fIR] = (f(=to), f(—t1)).

(Chinese reminder theorem.)

5.17 If X is equivariantly formal, then all mappings below are injective

Hiy(X)  —  Hy(X")
2 2
K®y Hi(X) — Ko Hi(XT)
If | X| < oo then
K @) Hi(XT) ~ KX

Therefore instead of computation in a possibly difficult ring H3(X) it is enough to make calculations

with rational functions.

5.18 Example: (exercise) X =P, T the standard one, the image

Hi(P") — PA = A"
k=0

consists of such sequences (fo, f1,. .., fn) € Qto, t1,. .., )", such that ¢; — ¢; divides fi — f;.

Plans for the future:

5.19 Assume that X is equivariantly formal, | XT| < oo.
Question: how to describe Hp(X) < @ cxr A?

(an answer for GKM-spaces is easy and handy to use).

5.20 Assume, that X is equivariantly formal and | X | < oo.
Question: how to reconstruct an element o € H:(X) knowing the restrictions /g,y € A?

Answer: Atiyah-Bott and Beline-Vergne theorem: assuming that X compact manifold

a= ) (i) <e(;§§)> € K @ Hi(X),

zeXT

where i, : {x} — X, and e(T;X) € A is the equivariant Euler class of T, X — {z}, see 2.7.
5.21 Corollary (with the assumptions as above):
(e
a= .
/X zg(:T (T X)
5.22 Corollary: X =P", a = (¢1(O(1))"

(=)t
=0 Hj;éi(tj —t)
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6 Localization and integration on manifolds
[Anderson-Fulton, Ch. 5]

6.1 Corollary: If X is equivariantly formal, then H®*"(X;Q) ~ H®*"(XT;Q) and H°¥(X;Q) ~
HoM(XT; Q)
e By elementary arguments we already new that x(X) = x(X7T).

6.2 Remark: From Biatynicki-Birula decomposition one can derive more: the correspondences
I; = closure(X} - F) C F x X

induce

H*(X;Z)~ @ H* > (F,Z),
FcXxT

where nIJS is the dimension of the fiber of the limit map X;C — F. [proof by Carrell].

6.3 Let f: X — Y be a map of compact oriented manifolds. Then the push-forward (or the Gysin
map [Anderson-Fulton, Ch.3, §6]) f. : H*(X) — H}(Y) may be defined by Poincaré duality

PDx : H*(X) = Hgim x—1(X)
a— an[X],

We define f, to be the composition

Hk(X) E} Hdimekz(X) — Hdimek(Y) (E HdimedimX+k(Y)
a — an[X] = filan[X]) fula)

6.4 Another construction for an embedding: Let U be a tubular neighbourhood of X in Y, ie. U
is diffeomorphic to the space of the normal bundle 7 : v — X, ¢ = codimX. Let 7 € H¢(U,U \ X)
be the Thom class. This means that 7 restricted to any fiber of U ~ v — X is the generator of
H¢(vg, vy \ {0}) >~ HE(R, R\ {0}) (i.e. we have a continuous choice of orientations in the fibers). We

define f:

HP(X) B geth(u, U\ X) SO getk(y v\ X) — HOR(Y).

The Thom isomorphism is given by H*(X) S HM*(U,U \ X), a — 7 - 7*(a), where 7 : U — X is the

projection in the bundle v ~ U — X.

6.5 Exercise: show that both constructions of f, are equivalent. Hint 7 N [U] = [X] € Hgim x(U) =~
Hgim x(X), where [U] € Hgimy (U, 0U) is the orientation class.

6.6 Key formula. Let e(v) € H°(X) be the Euler class, i : X < Y the inclusion. We have
iYis(a) =e(v) - a.

e Since

e(v) =i"(7), Te H(v,v\ X))~ HY(Y,Y \ X)

by the definition, we get i*i.(a) = i*(7 - 7*(a)) = i*(7) - i*7*(a) = e(v) a.
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6.7 If X C Y is a T-invariant. Let us define i, as in (6.4). The equivariant class of an invariant
submanifold is defined as i,(1x) € H3(Y).

6.8 Suppose, that X is a T-manifold, i : X7 — X is an embedding,
it K @) Hiy(X) 5 K @) Hiy(XT).

The composition i,i* by the Euler class of the normal bundle X7 (over each component F' C X7 the

normal bundle can have a different dimension.)

6.9 Fundamental Lemma: The Euler class e(v(XT in X) € H%(X) is invertible in K ®, H:(X).
e It has to be checked for every component of F' C X7 that the Euler class in invertible.
o If ' = {z} is a point,
e(vr) = [Jwi € Zltr, ta, ..., 1),
i

where w1, ..., w. are weights of the torus representation vp = T, X. The weights are non-zero, since x
is an isolated fixed point.

eEg ifz=[0:---:0:1:0:---:0] €P" (1 on k-th position), then e(vi,y) = [[; .4 (t:i — tx)-

6.10 Proof of the fundamental lemma in the general case: We decompose v = P, cyy Vw. We can
assume that v, is a complex bundle. (We do not assume that X is a complex manifold but the torus

action allows to define complex structure.) Each summand v, has a complement p,, such that
Ve D by = 1%  a trivial bundle of dimension d,,

The above isomorphism can be made equivariant, when we act on p,, with the character w Then

e(Vw @ pw) = wh. Let p =@, py. We have

e(vdpu) = H wh

weWw

hence

e(v) - (e(,u)/ H wdw> =1

weW

6.11 Localization formula (Atiyah-Bott, Berline-Vergne). Assume, that X is a compact T-manifold,

which is equivariantly formal. For a € Hf * X)) we have
o= tin- (ED) )
>\ )

summation over the connected components F' C XT. Here i : F — X is the inclusion.

e Proof. Let ¢ be the composition
" 1
K ox Hy(X) 5 @ K @x Hp(F) Y D K @1 H(F).
F F

Note, that i, o ¢ = Id. Since K ® H7(X) is of a finite dimension over K, thus ¢ o i, = Id. Hence we
have an equality (1) in K ® H7(X).
e Note that we have an expression in K ® H7(X), but the sum belongs to H}.(X), i.e. it is integral.
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e The above argument reoproves the statement that the restriction to X7 is an isomorphism after
tensoring with K.

e [t is enough to invert the weights appearing in the normal bundles vg.

e We do not have to assume that X is compact. It is enough to know that X' is compact and X is

formal.

6.12 [Anderson-Fulton, Ch. 5, §2] AB-BV integration formula: Let px : X — pt be the constant

map. With the assumption as above

=00 = Zon (R ) €

F

e The sum is in A although the summands belong to K.

o If [ XT| < 00
%p
-y
/X peXT e(1X)

6.13 Example [Anderson-Fulton, Ch 5, Ex. 2.5] P". Let h = ¢;(O(1)):
e Subexample, n =1
—t _—
h = =...=1.
/Pl t1—t0+to—t1

k+n _ - (_ti)kJrn
/n " a Zz:% Hj;éi(tj —ti)

k+n

- z
= (_]‘)k ReSZZ i n — ...
iz; ' Hj:l(z )

e In general

The result is:
o0 N
(_1)k5k2(t0>t17---7tn) = (—1)k Z tootll tfl
Lo+Ll14-+Lln=k
i.e. the complete symmetric function.

e Exercise: Check at least that fﬂm h" = 1.

Application to compute Euler characteristic of holomorphic bundles.

6.14 Riemann-Roch theorem: Let E be a holomorphic bundle over a compact complex manifold,

then
N(X:E) = /X td(TX)ch(E) .

e Remainder: the Todd class td is a multiplicative characteristic class i.e. td(E @ F) = td(E)td(F)
and for a line bundle td(L) = —t=, where t = ¢1(L).
e If a torus T acts on X with a finite number of fixed points, and E is a vector bundle admitting T
action, the td(T'X) and ch(F) naturally lift to equivariant cohomology (via Borel construction). Then
ripy - 3 )
zeXT

e For simplicity assume that £ = L is a line bundle. Each summand is equal to

Hn Wz i a
=1 1—e WYaz,i g (&

e pr
| J R [T (1 —emwmi)’
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where w,; are the weights of the T action on the tangent space 7, X and c, is the weight of T acting
on L.

e Exercise: compute from above x(P"; O(k)).

7 Flag variety and flag bundles
[Anderson-Fulton, Ch.4, §4]

7.1 Let E — B be a complex vector bundle of rank n, 7 : F¢(E) — B the associated bundle of
complete flag varieties. A point of F¢(F) mapping to = € B is a sequence

Ve={0=WwcWVicWcC.---CV,=E,;| dim(V;) =i}.
The quotients L; = V;/V;_1 with V4 varying form a line bundle. Let z; = ¢1(L;).
7.2 Theorem. Cohomology H*(F((E)) is generated by x; as a H*(B) algebra:
H*(FUE)) ~ H*(B)|z1,22,...,2s)/T,
where [ is the ideal generated by
oi(z1,z2,...,x,) — 7 ¢ (E) fori=1,2,...,n,

so that in H*(F((E))

7.3 The proof by induction.
e For n =1: FUE)= B, H*(B)[z1]/(z1 — c1(E)) = H*(B).
e Let B’ = P(F) with the projection to B denoted by p. The bundle p (F) fits to the exact sequence

0— O(-1) = p*(E) = E'.
By the projective bundle theorem
H*(B') ~ H*(B)[h]/ (Zn; hip*(cni(E))> :
Here h = ¢1(O(1)). By Whitney formula
c(E') = p*(c(B))(1 —h)~",

ie. i
cr(E) = hp*(er—i(E)).
=0
(The expression for 0 = ¢, (E’) is exactly the relation in the Projective Bundle Theorem,.) We identify
the flag bundle F4(E’) with F¢(E). The generators in cohomology of F¢(E) correspond to generators
for FU(E'):

/ /
r1=—h, xa=27, x3=2% ... Tp=x,_1.
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We have by the inductive assumption

H*(FUE")) ~ H (B)[h, 2, 2, ..., 2}, _4]/J

J = <7r’*(ci(E’)) — (2,2l ) fori=1,2,....,n—1, Zhiﬂ*cn_i(E)> .
i=0

It is enough to change the name of variables and conclude that J = 1.
e The inclusion I C J follows since (topologically) E ~ @;" | L;.
e Example: n = 4. The generator of J (we drop pull-backs in the notation)

c1(E') — o1(x), 23, 2%) = c1(E) — 1 — 01(22, 23, 24)

co(E') — oo(2), 2, 24) = co(E) — 21¢1(E) + 22 — 09(x0, 23, 24)

c3(E') — o3(2), 2, 25) = c3(E) — 21c2(E) + x%cl(E) — :U‘I’ — o3(x9, x3,14)
cy(E) — z1¢3(E) + 22¢2(E) — 23¢1(E) + ]

We perform computations in H*(B)[x1,z2,...,%,|/I. By induction show that the generators of J are

trivial. We abbreviate (x1,x2,...) by z

c1(E') —o1(2)) = c1(E) — 21 — 01(2)) = e1(E) — o1(2)

co(E') = oa(a’) = e2(E) — w101(2) + 2§ — 09(2) = c2(E) — 02(2)

c3(E') — o3(2') = e3(E) — z102(z) + zion(z) — 27 — o3(z') = e3(E) — o3(x)
ca(B) — z103(z) + afoa(z) — aio1(z) + 2] = ca(E) — ou(z)

We apply the formula

k
> (1) izioei(z) = op(a)
=0
and for the last row .
Z( 1 zion—i(z) =0
i=0

e Conceptually: the relations in J say that c¢(E)(1 + 21)~! lives in the gradations < n and ¢(E)(1 +
21)" 1 = [[}—5(1 + 2%). That follows from the identities of I.

7.4 Corollary: Let T be the maximal torus in GL,(C) acting on
FU(C™) = GL,(C)/(upper-triangular) ~ U(n)/(U(n) N'T).

Hp(FUC™) ~ Az, 22, ..., x,)/{0i(t) —oi(z)) | i =1,2,...,n).
HE(FUC™) ~ A®ps, A

e Note
HéL C )(fﬁ((C") ~A.
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7.5 [Anderson-Fulton, Ch. 4, §5] For Grassmannian Gr(C") the computation follows. The projec-
tion F¢(C") — Gri(C") induces the inclusion

Hp(Gri(C")) < Hp(FUC™)) =~ A ®@ps, A,
(as for any locally-Zariski trivial fibration). The image lies in
A @z, AZR¥En—k
By a dimension consideration there is an isomorphism
Hi(Gr(C™) o~ A @5, AZEXEn—k
e It follows that for any vector bundle £ — B of rank n
H3(E) ~ H*(B)[c1,¢2, -, Cky ), Cy ooy Co i) /T .
The ideal I is generated by the homogeneous components of the identity
QA4+e+-+e)l+d++ch i) =c(E).

7.6 We denote the group of invertible upper-triangular matrices by B,. The fixed points of T acting
on Fl, = GLy(C)/B,, are given by the permutation matrices. The identity corresponds to the standard
flag Vp. The quotient map GL,(C) — F¥,, is T equivariant with respect to the action of T on GL,,(C) by
conjugation. The tangent space of F¢(C") = GL,(C)/B,, at the point [id] is isomorphic to gl,,/b with
the adjoint action of the torus. The weights are t; —t; for ¢ < j. At the remaining points corresponding

to permutations the weights differ by the action of the permutation.

7.7 Let X = F¢(C"). We will apply AB-BV formula to integrate the class [[\"_; ¢1(L;)* for some
choice of exponents «; € N:

e The integration formula is of the form

910 o
tyt 19 .. g
| J B ton goz o gom

(
(%) = -
oezzn Hi<j (to(j) —tos)  Vandermonde(tq,ta,...,tn)
If a; is decreasing then we obtain the Schur function Sy indexed by the sequence \; obtained as below

aq > (6%) > a3 > .. > ap

| | | |
AM+n—1 Ao +n—2 A3+n—3 An

ar=A;+n—k

The Schur functions in n variables for A = (A > A2 > -+ > A, > 0) form an additive basis of symmetric

functions
tn_1+>\1 tn_2+>\2 t)\n
1 1 ... 1
n—1+X\1 n—2+MXa An
0 1 )
g tnltAL =2t e N Generalized Undermined
A= — — =
7 1 7 2 1 Vandermonde
|
[ L |
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n(n—1)

It is equal (—1)" 2 ().
7.8 Exercise (but maybe not for this course): Check that

S)\ = det (h)\H-j_i)i,jzl,...,length()\)

where h; is the complete symmetric function and h; = 0 for ¢ < 0.
e The fixed points of G(k,n) are the coordinate subspaces (exercise), they correspond to k-element
subsets of n = {1,2,...,n}. The weights at the point corresponding to Iy = {1,2,...,k} can be

computed from the isomorphism
T1,G(k,n) ~ gly/p
where. p = Lie(P), P is the stabilizer of lin{ej, €a, ..., €, }. This set is equal to
{tj—ti|’b'§k?<j}.

e At the point p; corresponding to the set I C {1,2,...,n} the set of weights is equal to{t; —t; }icr, jer-

7.9 Let a € Hi(G(k,n)) be given by a polynomial W (ci(7), c2(77), ... ck(7),c1(Q), c2(Q), - . ., cn—i(Q))

written as a polynomial in x1,x9, ..., x,, symmetric with respect to > x ¥,,_r. Then

/ L W(ts,trv)
G(k,n) ICn |T|=k Hie[ HjeIV (tj - ti)
where IV =n\ I.
7.10 Let L = A*y* be the top exterior power of the dual tautological bundle on G(k,n). (This

bundle is the pull-back of O(1) for the Pliicker embedding).
e Exercise: Compute the degree of G(k,n) under Pliicker embedding: let m = dim(G(k,n) = k(m—k)

(L™ = (—1)™ (ierti)”
/G(’“v”) (= ICn 1=k [Lier e (6 —ti)

e In particular
(t1 + t2)*

+ other 5 summands = 2.
(ts —t1)(ta — t1)(t3 — t2)(ta — t2)

Check it.

7.11 Tangent bundle of the Grassmannian Gry,(C") = G(k,n): let v < 1™ be the tautological bundle

and let @ = 1™/~ be the quotient bundle. There is an equivariant isomorphism
TG(k,n) ~ Hom(v, Q).
e Proof. We define a map of vector bundles
Hom(v,1") — TG(k,n)
constructing a curve: for V € G(k,n) let f € Hom(V, 1"). The cure x¢ : (—€,€) — G(k,n) is given by
xf(t) = image(v +tf) € G(k,n)
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(well defined for small t). The bundle map is given by

o(f) = 24(0).

This map invariant with respect to automorphisms of C". At a point V € G(k,n) decompose C" =
V @& W. In the affine neighbourhood of V'

{V' € G(k,n) | V' is transverse to W}

every element is a graph of a map V' — W. The kernel of ® is equal to Hom(y,~y) C Hom(y,1™) (i.e.
at the point V' the kernel is equal to Hom(V, V) C Hom(V,V @ W)). Thus we have (equivariant) short

exact sequence of bundles
0 — Hom(~,7) — Hom(~, 1) 2 TG(k,n) — 0
Hence

TG(k,n) ~ Hom(v,Q) .

8 Application of the integration formula

8.1 Let T € B C GL,(C) be the diagonal torus, B — the group of upper-triangular matrices. For
a character ¢* : T — C* define a line bundle £y = GL,(C) x® C_,. Here B acts on C_ via the

-
surjection B — T “= C*. If A = (A, Aa, ..., A\y), then the diagonal torus acts via the multiplication by
tTAgTAe A,

e If n =2, then for A = (1,0) the bundle £, is isomorphic to O(1).
e Borel-Weil-Bott theorem: Suppose A > Ag > --- > A, > 0, then V), = H°(G/B; L)) is an irreducible
representation of GL,,(C) and H*(G/B; Ly) = 0 for k > 0, [Fulton-Harris, p.392-394]

8.2 Character of a representation V is denoted by xy, it is the function from G = GL,, — C:
xvig)=tr(g:V=V).

e Since xv(g) = xv(hgh™!) the values of yy on the maximal torus determine yy .

e Let R(GL(n) be the representation ring. The map
X R(GL(n)) = CIAT 657, 7]
is an isomorphism after ®C.

8.3 The construction of the representation ring is generalized to the equivariant K-theory of an
algebraic variety (or to any category with exact sequences)

[ ]
Kg(X) = GB Z[ Isomorphism classes of equivariant vector bundles |/(short exact sequences)

0= FE,—FEy— E3—0 = [E2] = [E1] + [Es) .

e We take the algebraic version of the K-theory, but there is a variant for topological spaces.
e If complex algebraic group G is reductive (all representations split into a direct sum of irreducible

representations), then Kg(pt) = R(G). We will consider G reductive only, e.g. G = GL,,(C).
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8.4 Instead of vector bundles we can take the isomorphism classes of coherent sheaves. If X is

smooth, then we obtain isomorphic K-theory.

85 Let f : X — Y be a proper G-equivariant map of smooth algebraic G-varieties. We define

ﬁ : Kg(X) — Kg(Y)
dim X

AE) =Y (-D)FRFf(B)]

k=0
e The sheaf R*f,(E) is a coherent sheaf, should be replaced by its resolution by locally free sheaves,
i.e. by vector bundles. We take Y = pt, then
dim X

A(E) =Y (-D*H*(X; E) € R(G) =~ Ka(pt).
k=0

8.6 Equivariant Hirzebruch-Riemann-Roch theorem. Let G be an algebraic group acting on X.

td(X)ch(=)
Ka(X) —  HA(X)
fi 1 if*
R(G)~ Kg(pt) ——  Hglpt)
ch

Here ch : R(G) — Hg(pt) maps a representation V to ch(EG x© V). We need to take
H(pt) = [ HE (1)
k=0

since the Chern character lives in infinite gradations.
e If G = T the image of ch : R(T) — H*T(pt) = Z[[t1, 2, ..., t,]] lies in the ring of Laurent polynomial

ZleTh eFt2 . etin],

8.7 There is a coincidence of standard notations:
— x(X; £)=Euler characteristic of G/B with coefficients in the sheaf £
— if a group G acts on X, then naturally x(X; L) € R(G).
— x(V) = xv € R(G) character of a representation.

8.8 We will compute the character of the representation V) using localization theorem for T-equivariant

cohomology.

r td(TfEn)|p
MF L= D g, M)
pE(Ftn)T
Z ! - —Aito(i
p— e . o_(l) .
0ES, H¢<j(1 — 6_(t°<j)_t0(i))) E

With new variables z; = e %i:

1 no
(i £) = .
( gz:n [Ticj (1 = 2035 /%o(3)) E @
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We introduce the notation

n
S EANECORS | hE
j i=1
n n
2P = H xq;—i—i—l 7 P — H :C;\i'i‘n—i-i-l '
i=1

=1
Then
U(x’\ﬂ))

XV —X]:fn,ﬁ)\ :S)\(l'l,l‘g,...,xn).
UEZE [icj(@o) = To(5)

e This is Weyl character formula describing the character of the representation V)
Goresky-Kottwitz-MacPherson: GKM spaces

8.9 Lemma [Chang, Skjelbred]. Suppose a torus acts on a topological space. Let FF = X T and let
Y be the sum of F' and 1-dimensional orbits. Assume that X is equivariantly formal space. Then the
sequence

0— Hi(X) — Hi(F) — HPY(Y, F)

i1s exact.

e The lemma is equivalent to:
ker(H#(F) — H:tH(Y, F)) = ker(H#(F) — Hi ™ (X, F)).

e We do not prove CS Lemma in full generality (see Matthias Franz, Volker Puppe, Exact sequences
for equivariantly formal spaces, arXiv:math/0307112 ). The proof will be given for spaces, which are

of special interest for geometers.

8.10 Definition of GKM-space: The torus T = (C*)" acting algebraically on X — a compact algebraic
variety (there is a topological version as well). We assume ze |XT| < oo and there are only finitely

many 1-dimensional orbits. We assume that X is equivariantly formal, e.g. X is smooth.

8.11 Assume X is smooth |XT| < co. For any z € XT no two weights of 7, X are proportional if

and only if there are only finitely many 1-dimensional orbits orbits.

8.12 Graph GKM (V, E, w),
-V = XT vertices
- F edges = 1-dimensional orbits. After fixing an isomorphism of the orbit with C* we get an oriented
graph
- edges are labeled with weights w : T — C* of the action of T on C* ~orbit.

All cohomologies are with coefficients in Q.
8.13 Basic Lemma: suppose X = P!, T acts via w € t* ~ H3(pt). Then
Hi(X) = {(up, uoo) € A% | ug = tse  mod w}
e It follows from the long exact sequence of the pair (P!, {0, 00}), since
Hi(PY,{0,00}) ~ A/(w) with a shift of gradation by 1.
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8.14 Description of H}(X) for GKM-spaces:
0 Hiy(X) > PA— P A/(w)
zeF 1—orbits
8.15 GKM-algebra associated with a graph (V, E,w : E — t})
A(V,E,w) := ker (@A — @A/(wd)
veV eclk
{av}UEV — {at(e) - as(e)}eEE

(this description does not depend on the orientation of edges)
e The GKM-graph of Grassmannian Gry(C*)

The weight associated to the edge with numbers 7...j is equal to ¢; — t; or t; — t; depending on the

choice of the orientation.

8.16 Original reference: Goresky-Kottwitz-MacPherson Equivariant cohomology, Koszul duality, and
the localization theorem, Invent. math. 131, (1998). See [Anderson-Fulton, §7].

9 GKM spaces, differential model of equivariant cohomology

9.1 GKM graphs of Grassmannians Gry(C"):
e vertices V: fixed points are the coordinate subspaces; bijection with subsets I C {1..n}

e edges F if I differs from J by one element; say i € I is replaced by j € J, then let
W =lin{e; +ej,ex ke INJ}.

The stabilizer of W has the equation ¢; = t;. Hence the orbit of W is 1-dimensional, with the weight
equal to t; —t;.

e Exercise: there are no other edges.

n

9.2 Moment map: GKM-graph of the Grassmannian can be realized in R™. Let m = ( k), we identify
R™ with AFR™:
e We have a map:

Gry(C") TEET p(ARC) = P L R™,
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where

1 1
il ez, ] |‘Z||2(...,yzf\,...)HW(...,ZV,A?,...).
1>

This map is the composition of the standard moment map from P to m-dimensional simplex

[riz10.. ] HZ1”2(...,|Z[|2,...)

with a linear map R — R".
e The 1-dimensional orbits are mapped to intervals.
e The image is contained in {z1 + x2 + -+ + z,} = k.
e For P the GKM graph is the 1-skeleton of the standard n-simplex.

e For n =4, m = 2 we get octahedron in {z1 + z2 + x3 + x4 = 2}

E1N€Ey (1,170,0)
e1Nes — (1,0,1,0)
e1Neg — (1,0,0,1)
EgNeEg (0,1,1,0)
eaNeg +— (0,1,0,1)
esNeg +— (0,0,1,1)

o [t will follow from differential methods, that the GKM graph of a projective manifold is canonically

realized as a graph in t*.

9.3 If X is smooth of dimension n, then there are n edges at each vertex. For singular spaces can be
more edges from one vertex:
e GKM graph for the Schubert variety X; = {W € Gro(C*) | W Nlin{e, 2} # 0}. The point {1,2}

is singular.

{1,2}

{1, 4} 2. 3)

{3, 4}

9.4 GKM-graph for the flag variety F¢(n)

e The vertices V' are labeled by permutations

e Since F{(n) C Hz;ll Gri(C™) we see that one dimensional orbits join permutations if and only
permutations differ by a transposition 7; ;

e One can realize the GKM graph in {} " | z; = n(n;l)} C R™. The permutation o — (c(1),0(2),...,0(n)).

Note that there are internal edges.

e Forn=4
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Proof of Chang-Skjelbred lemma for smooth GKM spaces.

9.5 Notation:

o Hi(pt) = A=Qlt1,ta,...,t,]

e w: FEdges — A = Qt1,ta,...,t:], £ — wy

e ¢ € A the least common multiple of all weights appearing as in the stabilizers (up to a coefficient
in Q ). For each weight appearing in the product let v, := ¢/w.

o Let e1,e2,...,65 be a basis over A of the free module Hj(X). By the first localization theo-
rem Hi(XT) ~ @.cxrA. The isomorphism is induced by the inclusion ¢ : XT — X. The set
L*e1,L¥€g, . .., L¥es is a basis of K ®p Hi(XT) over the quotient field K = (A). Any element u € Hi(XT)
can be written as

Ti .

U= {ul‘}xGXT = Z ;L &

(2

i.e. a sum of the basis vectors with the coefficients presented as irreducible fractions 2 (it is unique up
to a Q-factor). The denominators s; are products of wy’s.
Goal: Show that the coeflicients ;—: are integral, i.e. s; = 1, provided that the divisibility condition is

satisfied.
9.6 Suppose u € Hi(XT) ~ @, yr A satisfies the divisibility condition

we | Ug(g) — Ug(e) 5

where s(¢) is the source, and t(¢) is the target of the edge in the GKM graph.
e Define
X, = XT U (sum of the orbits with T-action via kw, k € Q).

With our assumptions X, = X TU(disjoint union of P!’s)
We claim, that the product of ¢, u belongs to the image of H(X,,) in Hj(X).
e Proof of the claim:

— If no edges adjacent to x is proportional to w, then x is isolated in X,,. Then ,u, is equal to

(Lx)*(% ug),where e(x) is the Euler class at « and Z(’;) €A

— If x and y are connected by the edge £ i.e. an orbit with T-action having the weight w, = qw, q € Q,

then e(v,) = % e ANie(y) = % € A are the Euler classes of the normal bundle of the closure? of

the orbit~ P!
v=f(TX)-TP', fi:P'— X e)=f(e(TX))/e(TP).

2In fact one has to take the normalization of the orbit.
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Hence
e(vy) =e(vy) modw (2)

Let a, = eq&”c) €A oy = €(¢Tu) € A. We have age(vy) = aye(vy), and w is not proportional to any
factor of that. From (2) it follows

oy = oy mod w.
Since by the assumption

Uy = uy mod w
we have

Uy = oty mod w.

We deduce that {agu,, ayu,} defines an element of the cohomology of the closure of the orbit joining

with y. The push-forward to X restricted to x is equal to v, u, and restricted to y respectively 1,,1uy.

&

9.7 The end of the proof of CS Lemma: The coefficients of {y,u = > w;“—:"%*ai belong to A. The
weight w does not divide v, hence w does not divide s;. Since w was arbitrary, s; = 1. Finally we
conclude that u = v* (D> ri€;).

O

Differential model of equivariant cohomology — an overview of the next few lectures

9.8 A model of Q*(ET) : It should be a differential graded algebra A®

e a module over H*(BT) ~ Sym®(t*) = Polynomials(t)

e acyclic, i.e. H*(A®*) ~ H*(pt) ~ R

e an action of A € t lowering degree by one - an analogue of the contraction of a form with the vector
field generated by .

e Economic solution: the Weil algebra W*(t) := Sym®*t* @ A*t*. For £ € t* = A" = Sym!t*

loeeWht), 1 W?3(Y).
To define the differential let us fix a basis of t: o, a,...a, and the dual basis of t*: af, o3,...a;. For
feSymt, £ € At
(s
df®8)=> f-of Dia,é,
i=1

where ¢, is the contraction of the form £ with the vector «;

e Exercise: show that d?> = 0 and that the differential does not depend on the choice of a basis.

e Example n = 1. Let { = aoF:
W(t) ~ R[] © (R & RE)

dtt @& =t""1e1, dt*e1)=0
9.9 There is a map from W*(t) to the forms on approximations of ET:
Q°(ET) := lim Q°((C™\ {0})")

sending the generators of Sym?®(t*) to pull-backs of forms living on BT and the generators of A®(t*) to

connection forms. (It will be explained later.)
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9.10 Similarly to the model of Q*(EG) a model of Q*(ET x* X) is obtained. The exterior algebra
A*t* which serve as H*(T) = Q*(T)T is replaced by Q°*(X)T. The complex of twisted differential forms

is defined as
Sym*t* @ Q*(X)"

with the differential d, which is a map of Sym®t*-modules. For a form a € QF(X)T let
d1®a) e RAIFHX)Tat" 0 0 1(x)T

T
d(l@a)zl@da—i—Za;‘@Lwa,
i=1

where vy is the fundamental field generated by A € t.

9.11 If T = S! then we obtain the model constructed by Witten. The equivariant differential forms
are defined as Sym®t* ® Q*(X)T = Q*(X)T[h], i.e.polynomials in h with coefficients in Q°(X)T. The

standard differential is perturbed by the contraction
d(a) = do — huyar.

We think of h as something very small.

e From the Cartan formula expressing the Lie derivative £, = t,d 4 di,, we compute d = 0.

10 De Rham model of equivariant cohomology

Main reference:

Atiyah, M. F.; Bott, R. The moment map and equivariant cohomology, Topology 23 (1984), no. 1, 1-28.
Text-book: Guillemin, Victor W.; Sternberg, Shlomo. Supersymmetry and equivariant de Rham theory.
Springer, 1999

10.1 Basics about differential forms Q°(M) on a C'°° manifolds
o (Q*(M),d) is a CDGA i.e. a graded-commutative algebra with a differential satisfying the Leibniz
rule

e vector fields act on forms: for X € I'(T'M) there is a contraction operator:
vx 2 QF (M) — QF LM .
such that for a function f € Q°(M) = C>®(M)
uxdf = X f.
The contraction is an odd derivative
ix(aAb) = 1xa Ab+ (—1)38% A 1xb,

txotx =0.

e Lie derivative Lx:
Lxf=Xf,  for feQ (M),
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Ex(a/\b):EXa/\b—Fa/\ﬁxb,
doLx =Lxod.

[Lx,Ly] = £[X,Y] .

10.2 Cartan formula

‘ﬁX:dbx—l-Lxd.‘

e Proof: it is enough to check that it agrees for functions (YES) and both sides of equations commute

with the differential and satisfy the (even) Leibniz rule:
d(diex + txd) = d*ox +dixd = dixd = duxd + 1xd? = (dux + 1xd)d.

e Leibniz rule: this is a general phenomenon, that the super-commutator of two odd differentiations

is an even differentiation. Set U = tx, V = d. We skip A and write |a| for dega

U, V]=UV + VU,

UV (ab) = U((Va)b+ (—1)"a(Vb))
= (UVa)b+ (=Dl (Va)(Ub) + (=D (Ua)(Vb) + (=1)Ha(UV)

VU(ab) = V((Ua)b + (—1)lla(Ub))
= (VUa)b+ (-D)l=Y(Ua)(Vb) + (=Dl (Va)(Ub) + (=1)Ha(VUD)

Hence
(UV +VU)(ab) = (UV +VU)a)b+ a((UV +VU)b).

10.3 We study manifolds with an action of a compact, connected Lie group G. Each element \ €
g = Lie(G) generates a vector field, denoted vy. .
e Taking the fundamental field
g — {vector fields on M} .
is a map of Lie algebras, i.e.
[vr; vu] = vy -

e The contraction with vy will be denoted by ¢y.

10.4 The structure which will be relevant in what follows is:
— M a graded vector space or an algebra
— M is equipped with a differential d of degree 1 and operations Ly of degree 0 and ¢y of degree —1.
All together satisfy the commutative relations as described above.

e In other words M is a representation of the graded Lie algebra g ® g ® Rd

[L)\v L/L] = Oa [‘C)\a L,u] = L[)\,p,] ) [da L)\] = [’)\ y
[Lxs L] = La ) s [La,d] =0, [d,d] =0.

e Later we will assume that g = t is commutative, i.e. [, u] = 0.
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10.5 The group G acts on Q°*(M). If G is connected
QM) ={aecQ*(M)|Vyeg Lra=0}=Q°(M)°.

10.6 Assume G is connected. For all g € G and [a] € H*(M) the transported form has the same

cohomology class [g*a] = [a].

10.7 If G is compact, every form can be averaged. Hence

H*(Q°(M)®) = H*(Q"(X)).
Principal bundles

10.8 Let p : P —- B = M/G be a principal bundle. The group is assumed to be compact and

connected. Let us define basic forms [Guillemin-Sternberg §2.3.5]:
Q(P)pas ={a € Q*(P) |Vvg € g Lya =0, t,a=0} ={a € Q(P) |Vvg € g l,a =0, t,da =0}.
This is a subcomplex.

10.9 Theorem:
Q" (P)pes = p*Q*(B) ~ Q*(B).

10.10 For M with an action of T = S!. For short let ¢« = ¢y for a fixed A € t. Let us define a
differential in R[h] ® Q*(M)T
dp(w)=d—he.
This is called the Cartan construction, also appears in a Witten’s paper [Supersymmetry and Morse
theory, J. Differential Geometry 17 (1982), no. 4, 661-692]. The symbol h stands for an independent

variable, which lives in the gradation 2. If we specialize h to a number, then we obtain a Zs-graded

complex. (Sometimes it is more convenient to have +h¢, but we obtain an isomorphic complex).

10.11 The cohomology Hy j5(M) = H* (Q*(M)"[h], dy) is a module over the polynomial ring R[A].
If M = pt then Hy jz(M) = R[A].

10.12 We will show, that Hj ap(M) ~ Hp(M;R), first constructing a map on the level of differential
forms.

e There is a mapping R[h] — Q2(P"), h — w,, where w,, is the Fubini-Study form. (It is enough to
assume that [w,] generates H?(P") and (wp41)jpr = wy to get a map to Jim.)

e Define Mt , = S§2n+1 T M| an approximation of the Borel construction. The polynomial ring R[A]
acts on Q*(Mt,,), h acts as the pull back of wy,.

10.13 We will construct a map of R[h] modules
R[h] @ Q" (M)" = Q" (Mr,) = (S X M)pas
First approximation: For o € Q*(M)T
1a—pia,
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where p : S?"T1 x M — M is the projection.
e We check if the image is a basic form:

— p*a is T-invariant (YES)

— (p*a) =07 (NO)

Some correction needs to be done.

10.14 The principal bundle and its connection: Suppose P — P/T = B is a principal bundle.
The tangent space of the fiber at each point is canonically isomorphic to t. With fixed A € t, the vector
vy spans that fiber.

e The connection is a T-invariant 1-form 6, such that 6(vy) = 1. Such form can be constructed having

a T-invariant metric.

(U>\7 ’UJ)

(vx,vx)

This is just the orthogonal projection from T'P to the tangent space of the fiber, i.e. to ker(TP — T'B)

O(w) =

e In general a connection is a 1-form with values in g, which is G invariant, with G acting on g via

the adjoint representation..

10.15 Let 6 € Q'(S?"* 1T be the connection. This is equivalent to t§ = 1. Tt is elementary to check
that _
i
f=——01 2
o910 ||
is a good choice. When restricted to the points of the form (zo,0,...,0) it is equal to

1 Zodzo 1 dzg

Com |22 T 27z

For the parametrization of the orbit ~,(t) = €™z we compute

2 3 * H s 27t
0(3(0) = (— (L), $) = (— L Bigmzd 4 =1
The differential df is a basic form and it is the Kéahler form w,, on P".

e It follows that in general df is a basic form: [d§] € H?(P/T) is the first Chern class of the line

bundle associated to P (up to a scalar).

10.16 Correction: We identify 6, with its pull-back to S?"+1 x M.
e Let
o =pa—0, \Npha.
We have
o = wp*a — (0, ApFra) = pfa— 1A p*ra+ 60, Apfa=0.

e We check that the map ¢ : f(h) ® a — f(wn) A (p*a — 8 A p*(1er)) is a chain map. It is enough to
check for f(h) =1

d6(1® a) = d(pa — 6, A p*(10))
=dp*a —db, A p*(ta) + 0, N dp* (L) ,
ddrh(l®a)) =¢(l®da—h®a) =¢(1 ®da)— ¢(h® 1)
=p*da — 0, A p*(tda) — wy, A p* (L)
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Since « is T invariant

dp* (1) = p*(dear) = p* (~1da)

we obtain that do(1 ® a) = ¢(dp(1 ® «)).

10.17 Theorem: the map ¢ : R[h] @ Q*(M)T — @1(2'(5’2’”r1 X M )pgs is a quasiisomorphism, i.e. an
isomorphism of cohomologies.

e Proof:
— The complex R[h] ® Q°*(M) is filtered (a decreasing filtration) by the powers the ideal (h).
— The complex l'gﬂ)'(SQ”Jrl X M )pys is filtered by

ker(ylnsr(s?”“ X M)pas — (ST X M)pas) -

The map ¢ is a quasiisomorphism on the associated graded complexes. Hence it is a quasiisomorphism.

(This is an exercise in homological algebra.)

11 Models for higher dimensional Lie groups. Moment map M — t*

11.1 Reference to general theory of G* modules: Guillemin-Sternberg §2. We make the assump-
tion G = T simplifying radically the formulas.

11.2 Let p: P — B be a S'-principal bundle (i.e. S! acts freely on P and B = P/S'). We identify
S1 with the image
R— C, t s et

hence we have determined the choice of A € t ~ R.
o Let 0 € QL(P; )T ~ QY(P)T be a connection, i.e. 10 = 1.
e The form df is closed. We check that df is a basic form

wdf = L0 —dif=0—-dl =0.

Hence dfl defines an element of H?(B).
e Exercise: [df] = ¢i(L), where L is the associated line bundle L = P x5 C. In particular the

cohomology class does not depend on the choice of the connection. Hint for B = P™ we have df = —wpg.

11.3 The case of a higher dimensional torus T = (S*)" acting on a smooth manifold M:
e Set A =Q°(M). Let

A = Polynomial functions(t, A)T ~ Sym t* @ AT

Here
o
Symt" = @ Sym*t* = Polynomial functions on t.
k=0
e The constructions below are purely algebraic. Thus we consider a G* module A i.e a graded vector
space equipped with operations d, ¢y, £y for A € t satisfying the relations 10.3.
o We set

Apor ={a € A| VA € tya =0} horizontal submodule
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and
Abas:A}EOT:{aEA|V)\€’u>\a:0, txda =0} .

e The differential in A is Sym t*-linear and for o € A¥

d(1® a)(\) =da — 1\«
viewed as a function on t, which is linear with respect to A, i.e. it belongs to
R®Ak‘+l @t* ®Ak—l )

In a basis A1,... )\, of t

n
dl®a) = 1®da—z>\f®@\ia.

i=1
e We will use physicists notation. The vectors will have superscripts, and functionals subscripts. Also

the running index will be a instead if 4, which can easily confused with . We write

d(l@a)zl@doa—z/\a@)uaa

a=1
or according to the Einstein notation

dl®a)=1®da— A\ ® tyea.

11.4 [Guillemin-Sternberg §3.2] If A = Q*(T), then AT = At*. The resulting A is the Weil algebra of

W(t) = Sym(t*) @ At*.

e Theorem: H°(W (t)) = R and H*(W (t)) = 0 for k > 0.
Proof: Since W (t; & t2) = W(t1) ® W(t2) as dg-algebra, it is enough to compute cohomology for t of
dimension 1. This was an easy check.

e Since Q°(T)T = At*, if dim T = 1 an explicit map from W (t) = R[h] @ (R + t*) to
(Q°(S?™HEN 0) X At pas
was already given in the previous section:
f@&—= flwrs)(§ =0 ALE).
For higher dimensional tori we take the product of these maps and obtain a quasiisomorphism
qis

W) — QET xTT) ~ Q*(ET).

The right hand side is understood as the inverse limit of forms on finite dimensional representations.

Note that W(t) is a very economic model of forms on ET.

Mathai-Quillen twist See [Mathai-Quillen: Superconnections, Thom classes, and equivariant differ-
ential forms. Topology25(1986), no.1, 85-110], [Guillemin-Sternberg §7.2]
We construct an explicit map of complexes

A (WE) @ Apas © (Q(EG) @ Apas

which for A ~ Q®*(M) will provide a convenient model for the equivariant cohomology.
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11.5 [Guillemin-Sternberg §2.3.4] Let A be a T* module. We say that A is locally free if there exists

a connection, i.e. § € t® (AT, in a basis of t it can be written as

> A ®0,.
a=1

such that for
0, (\0) = o0

e Differential forms Q°(M) is a locally free T* module if the action of T is locally free, i.e. the

stabilizers of points are finite.

11.6 Mathai-Quillen twist: consider T*-algebras W and A, with W locally free (e.g. W = W (t). Let

Y= Z ea @ Lha,
¢ =exp(y) € Aut(W @A) =1+v+ 2yoy+...
It is well defined since v**! = 0 for n = dim(T).

11.7 The map -, hence also ¢, is T-invariant.
e Theorem. |[Guillemin-Sternberg , chapter 4, Theorem 4.1.1] For any \ € t

po(x®@1+1® )0 t=1®1

$po(d@1+10d)o¢ ' =([@dR1+1®d)~ > va®@ire+ Y 0.0 Lxa

where v, = df,
e This is a direct computation. See [W. Greub, S. Halperin, S, Vanstone: Curvature, Connections
and Cohomology, vol. III Academic Press New York. (1976)] Prop. V, p.286,, or better compute it

manually. This is an Exercise.

11.8 After the twist
¢((W ® A)hor) = Whor & A

For W = W(t)
(W @ A)pas) = S(H) © A

with the differential
d=10d-Y M®u,

That is exactly the Cartan model of equivariant cohomology. [Guillemin-Sternberg §4.2]

11.9 The construction can be carried out for noncommutative connected groups. The action of G on

g has to be taken into account. Then the cohomology of
(Symg* © Q°(M)“

with an appropriate differential serves, as a model for equivariant cohomology. Reference: Guillemin-
Sternberg §3-4

Moment map
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11.10 Assume T = S'. Let a € Q?(M)*. Suppose da = 0. An equivariant enhancement of « is a
function f € Q°(M), such that
di(l@a—h® f)=0,

l.e.

1®doa—h@a+h®df =0.

This reduces to
o= df .

11.11 Basic example: Moment map f : P! — R.
e Suppose T = S! acts on P! with the weights (Ao, A1). In the O-th affine standard chart the action

is linear and the weights are A\; — A\g. The fundamental field at the point z is equal to

d .
v = a(eW*M)?’”tz)lt:O = 2mi(A\1 — Ao)z = 2m(A1 — Ao)(—y + ix)

i.e.
v =21(A — o) (—y% + :1:%) .
Let @« = wprg. In the affine coordinate

i i dzANdZ 1 dx A\ dy
= —0dlog(1+ |2]?) = — ~ '
wrs = 5 001081+ 1) = o A T T s A s a1 2

We compute the contraction

dy + xdx
LyWES = 277'()\1 — )\0) (—nyWFS + xLyOJFS) = —271'()\1 — AO)(]_y—i—ny——{—yz)Q .
Let
f= Ao + >\1|Z|2 . Ao + )\1($2 + y2)
T4 22 14 x24y?
2zdz + 2ydy

df = (M — ) ——————+2 .

f ( 1 0)(1+x2+y2)2
The form

1Qwps —hnf

is a closed equivariant form.

e Globally f is defined by the formula

Xolzo]? + A1)z
| 2]|?

f([z0,21]) =

11.12 In general, if the action on P™ has weights (Ao, A1, ..., \n) we set

n 0|2
() =

Then 1 ® w, — h® 7 f is an equivariant dj-closed form.

e An element f € t* ® Q°(M) = Hom(t, C*°(M)) by adjunction is the same as a map pu: M — t*
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e For T = (S1)"*! acting on P" we obtain the map

u(l2)) = HjHQUzo?, a2 Jnl?).

Symplectic geometry [Guillemin-Sternberg §9], but before beginning see [V. I. Arnold, Mathematical
Methods Of Classical Mechanics. Graduate Texts in Mathematics 60. Springer 1989] chapter 8.

11.13 The most interesting case is when M is a symplectic manifold e.g. K&hler manifold and the
symplectic w has a lift to an equivariant form, then p: M — t* is defined.

e Of course 4 is constant on the components of XT.

11.14 Symplectic manifold (M, w) such that w is a nondegenerate 2-form, dw = 0
e basic examples:

— M complex Kéahler manifold,

— M =T*N, where N is a real smooth manifold, w = d(Liouville form
e w induces an isomorphism TM ~T*M: v > 1w

— a function f defines a vector field Xy. It is the field, such that ¢x,w = df

— the symplectic structure defines a structure of a Lie algebra of functions (Poisson bracket)
{f,9} = w(Xy, Xg) = (tx,w)(Xg) = df (Xg) = Xyf .
e Definition: Action of S! is Hamiltonian iff the fundamental field v is equal to X ¢ for some f
ww=df ie v=Xy.

If that is so then w + A f is a closed equivariant form.

12 Hamiltonian action and the moment map

[Dusa McDuff, Dietmar Salamon ; Introduction to Symplectic Topology (Oxford Mathematical Mono-
graphs) §5]

[ Anna Cannas da Silva Lectures on Symplectic Geometry.]

12.1 Physical motivation:

e Hamiltonian system ¢ position, p = mv momentum, H(p,q) a C*° function

- __ OH
s OH
p__Tq

e Motion of a particle in the constant gravitation field, H=energy, ¢ = h height:

s __ P
2 2 q—a—v
H(g,p) = "5~ +mgq = 4 +myq, {p—mg

e Conservation energy law: H is constant along trajectories
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12.2 Poisson bracket in local Darboux coordinates

n n
af o of o
W:§ dp; N dg; , {f,g}ZE aqfiagi_agiai'
i=1 =1

e The Hamiltonian equations take the form ¢ = {q,H}, p = {p, H}.

12.3 Let w be a symplectic form on M and f : M — R. Then w is invariant with respect to the

Hamiltonian flow generated by f

Lx,w=dix,w+ix,dw=dix,w=ddf =0.

f

We also note that ¢x Sw is closed.

12.4 The commutator of the Hamiltonian fields is related with the Poisson bracket

(X7, Xg] = —X{14y-
e We have to show that
Lx;x,w = d{g, f} which is by definition d(w(Xg, Xy)).
e We compute the Lie derivative
ﬁXf(Lng) = ULy, XgW = UxX X,V
since Lx,w = 0. By the Cartan formula
Lx,(tx,w) =dix,ix,w+tx,dix,w = dw(Xy, X))

12.5 Let C°°(M;TM) be the space of smooth vector fields. It is a Lie algebra with respect to the

Poisson bracket. The map
—X:C®(M)— C*(M;TM), f—= =Xy

is a map of Lie algebras. (Applying alternative conventions we can get rid of ,,—.)

e For an arbitrary Lie group: The G-action defines a map of Lie algebras
vig— C¥(M;TM).

We say that the action is Hamiltonian if there exists a linear map of Lie algebras fi : g — C°°(M)

making the following diagram commutative up to a sign
(M)
Vs W
g — C®(M;TM)

Existence of the map fi is equivalent to having a map u : M — t*, called the moment map.

12.6 From now on we assume that G = T = (S!)". The moment map is given in coordinates
= (p1,...,un) € t* = R" The Hamiltonian flows associated to u; commute, moreover we assume

{mi; i} =0, so that i : t = C°°(M) is a map of Lie algebras.
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12.7 The map p restricted to the fixed points is locally constant. The moment map pu € C*° (M, t*)

evaluated at A\ € t is a function whose differential vanishes at zeros of the fundamental vector field:
dp(N)(z) =0 iff wvy(z)=0.
12.8 The map p is constant on the orbits:
dpi(vy;) = (boy,w)(n;) = w(on;, va;) = {pa i} = 0.

12.9 Theorem [Atiyah, Guillemin-Sternberg]. If M is compact, then Ay = p(M) is a convex
polytope
Ayt = Conv(u(M7T)).

See [McDuff-Salamon §5.5, Theorem 5.47]
e Note that the image of the moment map u restricted to a 1-dimensional T¢ = T ® C orbit is an

interval.
12.10 Assume M C P™ is a smooth projective variety, w = (wrs)|n-

12.11 The most important example M = P*, T = (SH)n*t! ;4 = constﬁ(. o zil?, ) € R

The constant depends on the convention.

12.12 If M is a smooth projective variety with an algebraic action of T¢ ~ (C*)™ then it can be
equivariantly embedded into P(V') for some representation V' of a finite cover of T. Hence it admits a
moment map (possibly after a modification of w).

e If M is a smooth projective toric variety (i.e. M has a dense and open orbit of T¢), then M/T =

AM,’]I"

12.13 Suppose M is equivariantly embedded into P(V'), L = O(1)5; an equivariant vector bundle.
The form w = wpgy represents ¢1(L) € HF(M). Let x € MT™ be a fixed point. Then c1(L). €
HZ(pt) ~ Hom(T, S') is the character of the action of T on L,. We claim that

w(z) = c1(L) € Hom(T, S @ R = t*.
e That is true for M = P" with the action of (S1)"*1, since
p(O:--+:0:1:0:---:0]) =(0,...,0,1,0,...,0) with the preferred normalization.

In general chose coordinates of V' = C™*! such that T action is diagonal. Consider the embedding

T — Tpig = (S')™*! and the natural maps

M oy
3 T
Hbi *

The claim follows from the commutativity of the diagram.
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12.14 (!!) Note that the moment polytope does not depend on the C*° consideration with the
symplectic form. It only depends on the action of T on L. It can be defined purely in the realm of
algebraic geometry as

Ayt = Conv{x(L,) |z € M"}.

12.15 Example. Let M = F¥(n) be the flag manifold. We have an equivariant embedding

n—=k n—k
Fi(n) = [ Gri(C") = [ P(A*C™).

Let p; : F4(n) — P(A*C") be the projection and let wj, be the Fubini-Study form on P(A*C™). For a

sequence of positive numbers a; € R" let

n—1
wa = Y axpi(wi) -
k=1

This is a symplectic form and the T action admits a moment map
n—1

,U@:Zakﬂk ° Pk
k=1

where p, is the moment map for P(AFC™).

12.16 Suppose
(Vi € CViy) € Fl(n)"

Such a point corresponds to a permutation o € X,
V1 = lin{eg(l)} 5 VQ = lin{eg(l), 60(2)} 5 ceey Vn—l = lin{ég(l), 60(2), ey ég(nfl)} .
Denote it by V,
12.17 The value of the map Gry(C") — P(AFC™) 25 R™ restricted at the point
lin{ea(i) | 7 S ]f}
is equal to
k
=)o)
=1

e For n = 4 the moment polytopes for Gr1(C*) and Gr3(C*) are tetrahedra, and Gra(C*) is the

octahedron.

12.18 Take a = (1,1,...,1) then

n—1 k n—1
ZZ €o(i) = — Z n—k)eq(k) ;
k=1 i=1 k=1

which is equal up to the shift by n )} | e to D )| keg(r)-
e This way we obtain the permutohedron in R™ which can also be defined as the convex hull of X,

orbit of (1,2,...,n).
12.19 Taking various values of a; we obtain deformations of the permutohedron
Conv(Xy(ai,a1 + ag,...,a1 +az+---+a,)) up to a shift.

The extreme values with some a;’s equal to 0, the images are moment polytopes for partial flag varieties.
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S 4

a={1, 0, 0} a={0, 1, O

L 4

a={1, 0, 1} a={0, 1, =1, 1,

a=(0.5, 1, 4 a=(3, 1, 4 a=(3, 4,

a={0, 0, 1




13 Moment map and quotients

13.1 Suppose a compact group G acts on a symplectic manifold (M,w) with a moment map p: M —
g*. Recall that w is G invariant Lyw = 0 and p is G invariant with respect to the coadjoint action on

*

g .

13.2 Symplectic reduction [Guillemin-Sternberg §9.6], [McDuff,Salamon §5.4]

e Assume that a € g* is an invariant element with respect to the coadjoint action. Then pu~!(a) is
G-invariant manifold.

e Furthermore assume that G action on p~!(a) is free. Then the quotient X = p~!(a)/G is denoted
by M//,«G. Often a is assumed to be 0 and we write M //,G. This is called the symplectic quotient.

We will assume that a = 0.

13.3 Let # € u~1(0). The tangent space TG is coisotropic and (T,Gx)* = T,u~*(0).

e For A\ € g, v € T,u 1 (0) compute w(Xy,v) = dux(v), where uy(x) = p(x)(A). But since u~1(0)
is mapped by u to 0, the tangent vectors are mapped to 0 as well. Hence (T,Gz)*~ C T,u~'(0).
Since dim((T,Gz)**) = dim G and T,x~*(0) = dim M — dim G and w is nondegenerate, the opposite

inclusion holds.

13.4 The manifold X has a canonical symplectic structure induced from M: For v, w € T, X find the
lifts 0, w € T, M (with x mapping to y) and apply w. It is well defined because w is G-invariant and
the orbits lie in the kernel of w. Moreover the induced form is nondegenerate (it is an exercise in the

linear algebra).

13.5 Example 1. M = C" with the standard form, G = S! acting by scalar multiplication, u(z) =
|22, @ € 1. Then
Cn//y,asl — ]P)n—l

with the Fubini-Study form.

13.6 Example 2 (slightly more general): M = Hom(CF,C"), k < n with the action of U(k). Let
A* =A". Note that u(k) ={X € gl | X* = —X}. The moment map is defined by

u(A) =iA*A e u(k) ~u(k)*.

a = il. Then p~'(a) is equal to unitary k-tuples of vectors in C", and X//, .U (k) is equal to the
Grassmannian Gr(C").

e Exercise: Compute that this is a moment map.

13.7 Kirwan [Cohomology of Quotients in Symplectic and Algebraic Geometry| compared symplectic
quotients with GIT quotients in algebraic geometry. They basically coincide: the symplectic quotient
by a compact group G is equal to the GIT quotient by the complexification G¢ (as C*° manifolds).
The symplectic quotients depends on the choice of the moment map (and a € g) and GIT quotient

depends on the linearization and stability condition. These notions can be translated one to another.
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13.8 Example 3 (still more general): We want to obtain F¢, = GL,/B, as a symplectic quotient.
The Borel group is not a complexification of a compact group. Thus we take a presentation of the flag
manifold in terms of a quiver:

1-2—=-=n—-1-=[n]

o Let M = [[}Z] Hom(C¥,CF+1), G = [[7Z] U(k). The moment map is given by
(Al, AQ, - ,An—l) — (ATAl, A;AQ, C. >A2_1An—1)

and a is the sequence of ¢ times the identity matrices.
e 1~ !(a) is a sequence of isometric embeddings C* < C*+1, the quotient is the flag variety. Taking

the quotient we forget about the particular coordinates on V;, C C™.

13.9 [Kirwan| If M is a compact symplectic manifold with a G action admitting a moment map p,
X = M//,.q, then the map
K HE(M) = HE(n™(a) = H*(X)

is surjective.
[D. Mumford, J. Fogarty, and F. Kirwan. Geometric Invariant Theory, volume 34 of Results in Math-
ematics and Related Areas (2). Springer-Verlag, third edition, 1994. §8|, compare [Megumi Harada,
Gregory D. Landweber, Surjectivity for Hamiltonian G-spaces in K-theory, Trans. Amer. Math. Soc.
359 (2007), 6001-6025]

e The assumptions of the theorem can be relaxed. Just assume that p is proper.

e A double-equivariant version: Assume that a group T acts on M, and T action commutes with
G-action, then

ko Hig(M) = Hiyg(p™'(a) = H(X)
is surjective.
13.10 Back to Example 1:
ko Hg- (C") = Q[h] — H*(P"™") =~ Q[h]/(h")
Kt Hior(C") = Q[t1, e, . . . tn, h] — HE(P" 1) =~ Q[ty, ta, . .. ,tn.h]/(H(h +t;))
13.11 Back to Example 2:
K Hz,(k)(Hom((Ck,(C”)) ~ Qlc1, e, ..., ] » H*(Gri(C™))
K HiixU(k)(Hom((Ck, C")) ~ Qlt1,t2,...tn,c1,C2,...,cx] > H3(Gri(C"))

13.12 Projective toric varieties (without fans, but via polytopes), compare [Anderson-Fulton, Ch 8§].

e Let X be a smooth compact algebraic manifold with a torus action. Assume that dim X = dim T¢
and T¢ has an open orbit and dense. We can assume that T¢ action is free on the open orbit. Then X
is determined by a certain combinatorial data involving characters.

e Assume that the action of T admits a moment map to t* ~ R". If the moment map is the restriction

of the standard moment map X — PV — tyy — t*, then the moment polytope A x has integral vertices.
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e Since we assume that X is smooth, thus locally, around any fixed point X looks like C" with the
standard action of (C*)™, so the moment polytope locally is linearly isomorphic to a neighbourhood of
0eC"/(S")" ~RL,.

e Each facet F; (a codimension 1 face) of Ax C t* we set v; € (t*)* = t, the normal vector (integral,

minimal length). Let T; be the 1-dimensional subtorus corresponding to v;

13.13 Forp e F;, NEF,N---NE;, let T, =Ty Ty, ... Ty, ~ (SH)E. Topologically X = Ax x (S1)*/ ~.
The pairs (p,t) and (p,t') are identified if and only if 't~ € T,,.

13.14 The inverse images u~!(x;) are divisors (=codimension 1 subvarieties) in X.

13.15 Theorem [Danilov, Jurkiewicz, Davis-Januszkiewicz] The cohomology ring is generated by
the classes of [D;] € H?(X). Assume that Ay has d facets:

HY(X) =2Z[x1,...,zq)/(I+ J),

I = (xyziy.. .2 | Fiy N Fi, N --- N Fj, is not a codimension ¢ face of Ax).

J =0 (uvi)zi |ucty).

Here the left hand side is written in the additive notation, but it concerns the monomials.
e The quotient Z[x1,...,z4]/I is called the Stanley Reisner ring. [Anderson-Fulton, §8.3] e Similarly
the equivariant cohomology. Let A = Sym(t};) = Hy(pt)

Hi(X) = Az, ..., zq)/(I' +J),
I'=A®I.

J=(u=> (uv)r; |ucty).
e Note that
Z[ml,...,xd]/l ~ A[.%'l,. . ,xd]/(fl—i- Jl)

and
Zlzy,...,xq)/(I+J) = Az1,...,2q]/(I' + J) @A Z.

13.16 Connection with the Kirwan map: any toric variety can be obtained by the Cox construction

X=U/T,
Where U C C¢,
U=Cc\Jw
I
where sum runs over the sequences i1, 79, ..., such that ﬂ§:1 F;; is not a face and
VI:{xil = Tip = 0 = Ty :0}’

T'=some subtorus of (C*)?. Decomposing (C*)? = T’ x T we obtain an action of T on U/T’.
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13.17 Example P* = C"*!\ {0}/(diagonal torus). Let T = {t € (C*)"*! | ¢, = 1}.
Hi(P") = Zzo, 1, . .., xn) /(o1 - - - Ty )

The A-module structure is given by the relations in J': the vectors v; consists of the standard basis

vectors €;, vg = — »_ €;. For the generator t; € A, i > 0
—0;; forj>0
(tiﬂvj> = " .
1 for j =0
hence

t; — x; — X9 fori>0.

13.18 The ranks of H7(X) can be easily computed inductively from the exact sequence of a pair: for

a smooth closed invariant submanifold N € M we have
N H’E—QcodimN(N) — H’E(M) N H:IT*(M\N) — H’E—QcodimN-I-l(N) .

Note that if X is a sum of T orbits, then each H{fdd(orbit) = 0 and the sequence splits.
[ ]

H’E(X) ~ @ H’E—QcodimO(BTO) 7 TO ~ (C*)codim(’)
O orbit

e Let us compute the equivariant Poincaré polynomial: set g = t2

P']T(X) _ Z qcodimO(l o q)—codimO
(@]

e The nonequivariant Poincaré polynomial can be computed due to equivariant formality:
Pr(X) = P(X)P(BT),
hence

P(X) _ PT(X)P(BT)fl _ (Z qcodimO(l _ q)codim0> (1 _ q)n _ chodimO(l _ q>dimO
o o

13.19 Example: X = P?
3 fixed points — 3¢>
3 lines = 3¢(1—q)
1 open orbit — (1 — ¢)?

3 +3¢1—q)+(1—¢)? =32 +3¢-3+1-2¢+ P = +q+1

14 Equivariant Schubert Calculus on Grassmannians

This section contains mainly the example of the calculus on Grassmannian Gry(C?). See [Anderson-

Fulton, Chapter 9] for the explanation.
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14.1 The Grassmannian Gry(C™) = GL,, /B, is the union of Schubert cells Q3, A = (A1 > A2 > Xy >0
with ¢; < n—d. For convenience we set A\g11 = 0. Set e = n —d. We fix the standard flag F, preserved

by the Borel group and define
OS(Ee) ={V cC" | dm(E,NV) =k forgee+k— A, e+k— Ngg1]},
i.e. the sets €15 are defined by the strict Schubert conditions. e Forn =4, d = 2,

0 (E)_{VC€4 S dim(E,NV) =1 forq€[3—0,3—0]}
00 e) — . .

dim(E,NV)=2 forqge[4—-0,4—0]

(The dimensions of the intersections are generic.)

o B 4 dim(E,NnV)=1 forqge[3-2,3-2]
22(E')_{VC(C Cdim(E,NV)=2 forqge[4—2,4-2]["

(The dimensions are the maximal possible, i.e. 5, = {Ez}.)

O(E)_{Vccz;‘dlm(E NV)=1 forqE[S—l,S—O]}
10 o) — : .

dim(E,NV)=2 forge[4—0,4—0]
(The only nontrivial condition is dim(E2NV)=1but Ey ¢ V, V ¢ Ej)

O(E){VC©4_d1mE NV)= forq€[3—1,3—1]}
11 o) — . .

(
dim(E,NV) = 2 forge[4—1,4—-0]
(This means, that V' C Ej3.)

o (E)—{VCC4 Cdim(E,NV) =1 forq€[32,30]}
20\-~e) — : .

dim(E,NV)=2 forqge[4—-0,4-0]
(This means E; C V, V # Ej.)

o (E)—{VCC4 dim(E,NV) =1 forq€[3—2,3—1]}
21 o) — . .

dim(E,NV)=2 forge[4—1,4-0]
(1 CcVand V C E3.)

14.2 For the standard flag the Schubert cells are the B,, orbits of the torus-fixed points. Let z;; =

lin{e;, €5}
V0o (Est) = Baw3a, open cell
Q39(Est) = Bamia, a point
090(Est) = Bawaa, divisor
09, (Est) = Baxas, dim=2, closure ~ P?
Q50 (Est) = Byw14 dim=2, closure ~ P?

08, (Est) = Byx13,dim=1, closure ~ P!

14.3 If we reverse the reference flag, then the Schubert cells are the orbits of the opposite Borel group

B, consisting of the lower triangular matrices.

Q50(Eop) = By x12, open cell

Q59 (Eop) = By w34, a point
QS(Eop) = By x13 divisor

091 (Eop) = By x93, dim=2, closure ~ P?
Q50(Eop) = By x14, dim=2, closure ~ P?
05, (Eyp) = By waq, dim=1, closure ~ P!

(we replace z; ; by T5_j5_;).

e Let us work with the opposite flag. We set oy = [Q5(Eop)].
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14.4 The main statements of nonequivariant Schubert calculus are the following:
e The Giambelli formula says, that the classes of Schubert varieties can be expressed by the Chern

classes of the (dual) tautological bundle V*
(2] = Sx (V7).
e The rules how to multiply o,[2)]’s: Pieri rule and more general Littlewood-Richardson rule.
14.5 For example for d = 1, Gr1(C") = P*~ 1, V* = O(1) and [Q;] = [P" 17 = ¢1(O(1))".

14.6 Nonequivariant multiplication for Gro(C*)

000 010 011 020 021 092
g00 | 000 J10 011 020 021 022
010 | 010 011 +020 021 021 022 O
o11 | 011 021 o2 0 0 O
020 | 020 021 0 o2 0 O
021 | 021 09292 O 0 O 0
099 | 099 0 0 0 0 0

14.7 The product oy - 0, can be written as ), 5, 0v- The coefficients are called the Littlewood-

Richardson coefficients. They are nonnegative integers:

CK,LL = ’ngA(FSt) N gQQ,u(Fst) N g3QVV (Fst)‘ 5

where 1V is the opposite partition vV = Reverse((n — k)¥ —v), g; are general elements of GL,,. In the

equivariant calculus the coefficients CKM are polynomials in t1,to, ..., t,.

14.8 In the nonequivariant case the reference flag is irrelevant for computing cohomology classes.

Instead of B,, orbits one can take the orbits of the opposite Borel group B,, .

14.9 Equivariant cohomology contains more information. There are at least three important bases
of Hi(Grq(C™):

e The basis on [o)] — the natural choice;

e The bases of Schur classes of V* — convenient for functorial reasoning;

e The basis of the fixed point classes (this is a basis after the localization in S = (t; —t; | i # j)) —

here the multiplication is easy.
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14.10 The analogues of the Giambelli formulas are the Kempf-Laksov formulas. In [Anderson-Fulton,
9.2] given for B, orbit closures.

14.11 Table of the restrictions of Schubert classes at the fixed points

T34 T24 T23 T1a Ti3  T12

00 1 1 1 1 1 1
o010 t1+t2—t3—ta t1 —ta to —t4 t1 —t3 to—tz3 O
o11 (t1 —t3) (t1 — ta) (tr = t2) (t1 — ta) 0 (t1 —t2) (t1 — t3) 0 0
020 (t1 — ta) (t2 — ta) (t1 — ta) (t3 — ta) (ta —ta) (t3 — ta) 0 0 0
021 (tl — tg) (tl — t4) (tQ - t4) (tl - tz) (tl — t4) (t3 - t4) 0 0 0 0
g22 (tl — tg) (tz — tg) (t1 — t4) (tz — t4) 0 0 0 0 0

14.12 The formula for oj¢: in nonequivariant cohomology o1 = ¢1(V*) = ¢1(O(1)) (the bundle O(1)

comes from the Pliicker embedding).

e The equivariant formula is of the form
010 = Cl(V*) + linear fOI‘Hl(tl, to, 13, t4) .

The form is chosen in such way that (o10) = 0, i.e. it is equal t; 4 t2. This reasoning works in

|z1,2

general.

14.13 Equivariant multiplication table.
e Multiplication by o1g

010022 = (t1 +1t2 —t3 —t4) 022
010021 = (t1 —t4) 091 + 022
010020 = (t2 —t4) 020 + 021
oo = (t1 —t3)o1n + o2

oy = (t2—t3)o10+ 011 +02%

According to the equivariant Monk formula

0100\ = g Ox+ + (010) |2y OX 5

b
where x is the fixed point in Q5 (E,p).
e The remaining multiplications

o3y = (t1—t3)(ta —t3) (t1 —ta) ( o —t4) 02
o109 = (1 —t3) (L1 — t4) (t2 — t4) 02
o002 = (t1 —t4) (ta —t4) 022
o11092 = (t1 —t3) (t1 —t4) 022

03, = (t1 —ts) %090+ (t1 — t2) (t1 — ta) (t3 — ta) o0
020021 = (t1 —ta) ooo+ (t1 — ta) (t3 —ta) 021
o091 = (t1 —t2) (t1 —ta) 091 + (t1 — t4) 022

03 = (to—ta)(ts —ta) oo + (t3 — ta) o021 + 022
011090 = (t1 —t4) o2

o = (t1—ta) (t1 —t3) o + (t1 — t2) 091 + 022

14.14 Knutson-Tao puzzles: we draw a triangle with all edges of length n and fill them with pieces
of the following shapes

e Three nonequivariant puzzles and one equivariant:




The last one is not rotatable.
e We change the coding of Schubert varieties. Instead of partitions we use 0-1 sequences of length n.

We walk along the edges of Young diagram NFE — SW: the sequence has 1 if we go S, 0 if we go W.

00 — 0011
10 — 0101
11 — 0110
20 — 0110
21 — 1010
22 — 1100
We label the edges of the triangle with the codes
[ ]
AN
[ ] — [ ]
v
14.15 Multiplication in P* = Gr{(C?)
o 1

opo1 =01 o101 = (t1 —ta)o1  0pog = 0y .

14.16 Multiplication in Grs(C*)

0 /4

Three coefficients of the expansion of o19o10 in Hi(Gra(C?)

10 _ 11 _ 20
Clo0 =l2 —t3, Cip0 = 1, €10,10 = 1.

14.17 [Anderson-Fulton, §9, Theorem 8.4] The equivariant Littlewood-Richardson coefficient is equal

to

CK# = Z H (tleft leg — tright leg) .

puzzle fillings special pieces

e In [Anderson-Fulton, §9] the signs of the variables are reversed, due to a different convention.

o1



1 Ciagi spektralne

Przyktadowe zrédlo: C. Weibel - An Introduction to Homological Algebra, roz. 5

1.1 Homologiczny ciag spektralny, to rodzina modutéw (lub innych obiektéw kategorii abelowej) £y,
wraz z rézniczkami

1 .
—r,q+r—1» E;,-Z = ker(d;,q)/zm(d;—i—r,q—r—&—l)

&y By
Napis £, , = Hpiq oznacza, ze w H, jest filtracja malejaca taka, ze
FpHpyq/Fp1Hprq >~ EJ .
1.2 Homologiczny ciag spektralny zwiazany z filtracja kompleksu tancuchowego. Definiujemy
Ay e ={z € F,Cs | d(7) € Fp—rCa},
Z;. = obraz A;. w FCe/Fp—_1C,,
B, , = obraz (AT ) w FyCo/Fy_1C,,

p+r—1e
o e ApetHaCe Ape .
P Bp. d(A) )+ F,aCe d(A AT

Gradacja na wspolrzednej ¢ jest tak dobrana, ze
Bg,q C Z;,q C FyCpiq/Fp-1Cpiq-

R}(’)Zni(jzk& w Co indukuje rézniczke By, — Ep . 0y (Cw). Jest spemiony warunek H.(EL,) = E[{!
(Cw). Zatem Ej , jest podilorazem (ilorazem podobiektu) F,Cpq-

1.3 Ciag spektralny przestrzeni topologicznej z filtracja

Eg,q = p+q(XPa prl)a E;,q = p+q(Xp>Xp71) = Herq(X) .

Rézniczka
1 1
Ep,q - Ep—l,q
czyli
Hpq(Xp, Xp-1) = Hp-14q(Xp-1, Xp-2)

jest rézniczka z dlugiego ciagu dokladnego homologii tréjki
(Xm Xp-1, Xp72) :
1.4 Kohomologiczny ciag spetralny, struktura multiplikatywna
d9 . BP9 — priramrtl o gt = ker(dy ) fim(dl . gie1)
EPA x Ef/’q, s E717+p’,q+q"

1.5 Ciag spektralny Serre’a rozwldknienia F©' — X — B pochodzi od filtracji bazy szkieletami

rozkltadu komoérkowego
BycBiC---CB,C....

Bierzemy przeciwobraz tej filtracji w X
XoCX1C"'CXpC....

Mamy
E;,q = Hpiq(Xp, Xp—1) = Cp(B; Hy(F)) (fanicuchy komérkowe).
Sprawdzamy, ze rézniczka w tablicy El, jest réwna rézniczce w kompleksie liczacym kohomologie B,
zatem
Eﬁ,q = Hy(B; Hy(F')) = Hpi4(X).

Dualny ciag kohomologiczny:
EPY = HP(B; HY(F)) = HPT(X)



1.6 szczegllne przypadki: ciag Wanga, ciag Gysina

1.7 Przyktad: obliczenie kohomologii 25™
Odp: jako grupa abelowa: Z w gradacjach podzielnych przez n — 1. Mnozenie: agyay = (k;gg) Aty

2 Ciagi spektralne a teoria Hodge’a

2.1 Ciag spektralny Frolichera dla rozmaitosci zespolonej
EP? = HY(M; Q) = HPT(X;C)

zwiazany z filtracja Hodge'a w A% (M ). (Dla ciagéw spektralnych kohomologicznych rozwazamy filtracje
malejace.)

— gdy M Kébhlera, to F}'? = E&!

— gdy M jest afiniczna to E"? = 0 dla ¢ > 0, wiec EY'? = ELY, zatem H*(M;C) = H*(Q*(M)).

2.2 Degeneracja ciagu spektralnego rozwldknienia F© C X — B, ktérego wlokna sa kahlerowskie, a
forma Kéhlera rozszerza sie do X, ponadto zakladamy, ze systemy wspoélczynnikéw H?(F') na B sa
trywialne. Wniosek: H*(X) ~ H*(B) ® H*(F') addytywnie (!!).

2.3 Ciag spektralny Deligne’a obliczjacy kohomologie dopelienia dywizora z normalnymi przecieciami
X =M\ D, D= J;c; D;. Twierdzenie: ciag degeneruje sie na E»
— Filtracja wagowa kompleksu A® (M, log(D))

EI—P(I — Hq—QP(Xp) .

- Dla multindeksu I = {iy,is,...,4} mamy X; = D;; N D;, N---ND;, i X¢ = L j7j=¢ X1 (przyjmujemy
X% = M). Dla ¢ =0,1,...m mamy reziduum

dz; dz; dz;

Zill AT;/\/\TJ[/\W’—}OJLXI,
ktore indukuje izomorfizm na kohomologiach

resg : H¥(WpA®(M,log(D))/Wy_1.A*(M,log(D))) — H"*(A*(X"Y)

(Patrz Zadanie 10 lub Shabat, Introduction to complex analysis §18 roz. 54, Thm. 1)
— Tablica Fj:

0 — HYX? — H>X') — HYX° — 0 ¢
0 - HYXY — H3XY) — 0 =
0 - HY(XY) — H*XY%) — 0 2
0 - HYXY%) — 0 !
0 - HY(X% — o0 o
-3 -2 -1 0 1

— Rézniczka d; jest alternujaca suma odwzorowan Gysina
H*(XT) — H (X I\,

Aby bra¢ pod uwage strukture Hodge’a piszemy V' (k) dla oznaczenia twistu Tate’a (przesuniecie in-
dekséw: V(k)P? := Vp—k,q—k):

0 — HYX?)(-2) — H*XY)(-1) — HYX° — 0 ¢
0 — HYXYH(-1) — H3X% — 0 3

0 — HY(XYHY(-1) — H*X% — 0 2

0 - HYX% — o0t

0 - H%(X% — 0 o

— Ciag Deligne’a degeneruje sie: E,, = FEo, bo rézniczka w ciagu spektralnym zachowuje strukture
Hodge’a. Dostajemy:
GriV H™(X) = H¢ (- H"H(X?)(=2) > H"2(X)(=1) » H'(X°) -0 ).
————

-2 -1 0




2.4 Moje notatki o mieszanych strukturach Hodge’a http: //www.mimuw.edu.pl/~aweber/ps/mhs.pdf
2.5 P. Griffiths, W. Schmid Recent developments in Hodge theory, o mieszanych strukturach Hodge’a.

2.6 Abstrakcyjna definicja mieszanej struktury Hodge’a jest w §ksiazki Marka A. de Cataldo: Lec-
tures on the Hodge theory of projective manifolds http://arxiv.org/abs/math/0504561



Some problems at the beginning

1 [Done] Let St act on a smooth manifold M, and let p € M be an isolated fixed point. Let v be the
fundamental vector field, e.g.
v(x) = %m‘tzo.

Compute the index of v at p.

(You can assume that M = R" and the action is linear.)

2 [Done] Let p be a prime number. Let M be a compact smooth manifold with Z, = Z/pZ smooth

action. Show that y(M) =, x(M?%») not using triangulations. Generalize the result for p-groups and
St

3 [Done] Show that if Z, acts without fixed points on a contractible spaces X, then X cannot be a
compact manifold nor simplicial complex.
(*) Also, X cannot be a finite dimensional CW-complex (not not necessarily compact).

4 Let X be an algebraic variety over C, Y a subvariety. Show that x(X) = x(Y) + x(X \ Y).
(Assume that X and Y are smooth, eventually generalize. See Sullivan, D. Combinatorial invariants of
analytic spaces, Lecture Notes in Math., Vol. 192 Springer-Verlag, Berlin-New York, 1971, pp. 165—168.

)

5 Describe Bialynicki-Birula decomposition of the quadrics:
a) Q = {2025 + 2124 + 2223 = 0} C P® with the action of C*
i)
t[Zo 212212324 2’5] = [ZQ ttzy t222 : t323 : t4Z4 : t52’5]
(ii)
t[Z[) 2112912324 25] = [Z() itz itz tZg ttzy t225]

b) Q = {2024 + 2123 + 25 = 0} C P* with the action of C*

t-lz0:21:29:23: 24] = |20 : t21: 229 323 t424]
6 Fix integers wg, w1, ..., wy,. Let C* act on the projective space P" by the formula
tolz0: 21t ,2n) = [t020 1t 21 oL 1 2.

What are the fixed points? Describe Biatynicki-Birula cells. What are their dimensions.
7 Let (C*)™*! act on the projective space P" by the formula
(tostiy. . ytn) (20210 o0y 2n) = [tozo s t1z1 ..o tnzn)].
Consider the compact torus Ty = (S1)"*! defined by |t;| = 1. Show that the map
PP = R

w(lzo 21t ..., 20)) = D (l2o% [211%, - - lzal)

-1
T
k=0 ‘ZkIQ

is well defined and the fibers are exactly the orbits of Tj.



List 2 — 17 October

1 [Done ??7] For a representation V of T consider an action of T =T x S* on V = V, where S* acts
by the scalar multiplication. Denote by & the weight corresponding to the character T — S*, which is
the projection. Show that

(V) = e(V)jper

2 Let! G,, = Spec(F[t,t7']) (simply meaning F* as an algebraic group). Show that for any field
F =T any linear action of Tp = (G,,)" on the vector space F" can be diagonalized.

3 Let A be an algebra over a field F and X = Spec(A). Defining an action of G,, on X is equivalent
to defining a Z-gradation of A. Prove this correspondence and generalize it to an action of the algebraic
torus Gj,.

4 Let G be a group, H a subgroup, E — G/H be a vector bundle with G-action, such that for any
g€ G,z €G/H the map g : B, — E,, is linear. Show that E ~ G x Ej,). Here [e] denotes the coset
eH (i.e. any equivariant bundle over a homogeneous space G/H is induced from a H-representation).

5 Let G be a topological group, H a subgroup. Conastruct a honeomorphism
Gx"G/H~G/HxG/H .

Is it G-equivariant with respect to a suitable G-actions?

'The multiplicative group



Problem list 3 — 24 October
1 Let
Yr(n,m)={f € Hom(C",C™) : dim(ker(f))=r}.

Compute the dimension of ¥, (n,m).
Deduce that for any fixed i € N and sufficiently large m the homotopy groups 7;(3¢(n, m)) is trivial.

2 Find a CW-decomposition of P" with the standard action of (S1)"! (at least with n = 2.)

3 Find a presentation of the cohomology ring H*(G(k,n)) using the fibration Grasg(C") — B(Uj X
Upn—1) — BU,.
Hint: use a corollary from Leray-Hirsh theorem, sayin that the fibration F — E — B satisfying the
appropriate assumptions H*(F; Q) = Q @p+(p,p) H*(£; Q).

4 Suppose H <G is a normal subgroup, K = G/H. Construct a fibration BH — BG — BK.
(Take EH := EG and E'G = EG x EK, taking the fibration E'G/G — EK/K we find that the fiber
is EG x¢ G/H = BH.)

5 Milnor construction of EG.
For topological spaces X and Y let X %Y denote its join, i.e.

CX xY Uxxy X xCY,

where C'X denotes the cone over X. Let G be a topological group, show that n-fold join X % X %---x X
has homotopy groups m; trivial for ¢ < n — 1 and G acts freely on that space. Taking the infinite join
we obtain a model of EG.

6 Simplicial model of EG using bar-construction.
Let X; = G and d; xk : X; — X;_1 is the projection, forgetting about the k-th component k =
0,1,...4. (This is a presimplicial topological space.) The geometric realization is defined as

| Xo| = (|_| X; % N) /N

120

(dix(a),b) ~ (a,0i_11(b)) for ac X; be A™?

where 0;_1 j, : Aj—1 — A; is the inclusion of the k-th facet in the standard symplex. Show that F = | X,|
is contractible and the diagonal action of G is free.

Present E/G as a geometric realization of a (pre-)simplicial set Y,, such that Y; = G.



Problem list 4 — 31 October
1 Find a CW-decomposition of P" with the standard action of (S1)"*! (at least with n = 2.)
2 Show that for a finite group G and a G-space X
H5(X;Q) ~ HY(X/G; Q).
3 a) Find a presentation of the cohomology ring H*(Grasy(C™)) using the fibration
Grasi(C") — B(Ux x U,_j) — BU, .

Hint: use a corollary from Leray-Hirsh theorem, sayin that the fibration /' — E — B satisfying the
appropriate assumptions H*(F;Q) = Q ® y+(p,g) H*(E;Q).

b) Show that the Chern classes of the tautological bundle generate H*(Grasy(C™)).
4 Let T = (C*)? act on P? by the formula
(to,tl) . [Z() 121290 23] = [toZo N AVAR t1_122 : talzﬂ .

Let X be the quadric zpz3 = 2122. compute H}(X). It is an algebra over Z[to, t1]. Find generators and
their relations. Check that it is free as a module.

Hint: X ~ P! x P!,

5 Simplicial model of EG using bar-construction [mini-talk KP]
Let X; = G*t! and d; xk : X; — X;_1 is the projection, forgetting about the k-th component k =
0,1,...4. (This is a presimplicial topological space.) The geometric realization is defined as

1 X| = (|_| X; % N’) /.

120

(dik(a),b) ~ (a,0;_1 (b)) for aeX; be AL

where 0;_1 j, : Aj—1 — A; is the inclusion of the k-th facet in the standard symplex. Show that E = | X,
is contractible and the diagonal action of G is free.

Present E/G as a geometric realization of a (pre-)simplicial set Y,, such that ¥; = G'.



Problem list 5 — 7 November

1 Let NT C U(n) be the normalizer of the maximal torus. Compute H*(U(n)/NT;Q).
Hint: Use the fact! that H*(X/G; Q) = H*(X;Q)% for a finite group G acting on a topological space.
Apply it to X = BT, G = the permutation group.
BTW: What is it U(2)/NT?

2 Compute cohomology of BSU(n). (Or equivalently BSL,(C).)

3 Cohomology of Grassmannians:
e Show that the Chern classes of the tautological bundle generate H*(Grasi(C™)). Find the relations.

e Let E — B be a complex vector bundle, 0 < k < rank(FE). By Gri(E) we denote the associated
Grassmann bundle (we replace the fibers E, by the Grassmannians of k-dimensional subspaces in E;).
Let 7 be the tautological bundle over Gry(E). Show that H*(Gry(F)) is generated over H*(B) by the
Chern classes ¢;(v), i =1,2,...,k.

e As a corrolary compute H7(Gri(C")), where T is the maximal torus in GL,(C).
e Compare the answer with Projective Bundle Theorem H*(P(E)) ~ H*(B)[h]/(well known relation).

4 Let G be a Lie group of dimension d. Suppose P — B is a principal bundle. Assume that P is
n-connected, i.e. its homotopy groups are trivial in degrees < n. Show that H*(B) ~ H*(BG) for
kE<n.

!Glen E. Bredon - Sheaf Theory-Springer-Verlag New York (Graduate Texts in Mathematics 170), Theorem 19.2.



Problem list 6 — 14 November

1 Define the equivariant fundamental class not passing throug approximation of FG, but using the
equivariant normal bundle on Y,,00tn Which gives rise to a bundle on EG XC Yamooth-

2 Show that the localization functor
A — modules — K — modules

is exact.

3 See what goes wrong with the proof of localization theorem for T replaced by a nonabelian groups.
In the torus case for any proper subgroup K C T the orbit H{(T/K) turned out to be a torsion
Hi(pt)-module. What happens for noncommutative groups?

4 Let X = P" with the standard action of T = (C*)"*!. Show that the image
Hi(P") — A =A™
k=0

consists of such sequences (fo, f1,---,fn) € Q[to,t1,...,tn)" "L, such that ¢; — ¢; divides f; — fj. (Of
course not using the general theorem, but by a direct computation.)

5 Cohomology of Grassmannians —N.C.:
e Show that the Chern classes of the tautological bundle generate H*(Grasi(C™)). Find the relations.

e Let E — B be a complex vector bundle, 0 < k < rank(E). By Gri(E) we denote the associated
Grassmann bundle (we replace the fibers F, by the Grassmannians of k-dimensional subspaces in E,).
Let 7 be the tautological bundle over Gry(F). Show that H*(Gry(F)) is generated over H*(B) by the
Chern classes ¢;(v), 1 =1,2,..., k.

e As a corollary compute H7(Gry(C")), where T is the maximal torus in GL,(C).

e Compare the answer with Projective Bundle Theorem H*(P(E)) ~ H*(B)[h]/(well known relation).



Problem list 7— 21 November

1 Show that the localization functor
A — modules — K — modules
is exact.

2 See what goes wrong with the proof of localization theorem for T replaced by a nonabelian groups.
In the torus case for any proper subgroup K C T the orbit Hf(T/K) turned out to be a torsion
H7(pt)-module. What happens for noncommutative groups?

3 Let X = P" with the standard action of T = (C*)"*!. Show that the image
n
Hi(P") — P A=A
k=0
consists of such sequences (fo, f1,...,fn) € Q[to,t1,...,tn)" ", such that t; — ¢; divides f; — fj. (Of

course not using the general theorem, but by a direct computation.)

4 The torus T = (C*)"*! acts in the standard way on P™. Let h = ¢1(O(1)) € H3(P"). Using AB-BV
localization fromula compute

p«(K"T™) € Hi(pt) = Zlto, t1,. . . tn] .

(The restriction of h at the standard fixed point py € P" is equal h),, = —tg.)

5 Let L = O(m), m > 0. Using Riemann-Roch theorem and the localization theorem compute
X(P™; L). Check if it agrees with the formula well known for algebraic geometers:

x(P"; L) = dim H°(P"; O(m)) = Clto, t1, - - - , tn)deg=m -

(The restriction of L at the standard fixed point py € P" is equal to C_,,¢,, i.e. C with T acting with
the weight —m ty.)



Problem list 8 — 28 November

1 Let L = O(m), m > 0. Using Riemann-Roch theorem and the localization theorem compute
X(P™; L). Check if it agrees with the formula well known for algebraic geometers:

x(P"; L) = dim HO(IP"; O(m)) = Clto, t1, .- tnldeg=m -
(The restriction of L at the standard fixed point py € P" is equal to C_,,4,, i.e. C with T acting with
the weight —m ty.)

2 Suppose FF — X — B is a fibration, and F' is a sphere. Write how the EP-? table looks like for
r 4+ 1 < dim F' and deduce the Gysin long exactsequence.

3 Suppose ' — X — B is a fibration, and B is a sphere. Write how the EP-? table looks like for
r < dim B and deduce the resulting long exact sequence (called Wang sequence).

4 Write all the entries of the spectral sequence F5? = HP(BT, HY(X)) = HE Y(X) for T = S' acting
on 5% C C? as the scalar multiplication.

5 Write all the entries of the Serre spectral sequence of the fibration ET x X — ET xT X for X = P!
or §3 (with the usual torus actions).

6 Show that if a a topological T-space has no odd cohomology (i.e. H°¥(X) = 0), then X is
equivariantly formal.



Problem list 9— 5 December

1 Write all the entries of the Serre spectral sequence of the fibration ET x X — ET xT X for X = P!
or S (with the usual torus actions).

2 Consider the spectral sequence from the previous problem for X arbitrary, and T = S'. Show that
do' : HE(X) = ER' — ERT®0 — HPF?(X) can be identified with the multiplication by the generator
of H2(pt). What happens when X is equivariantly formal?

3 Write all the entries of the spectral sequence E5? = HP(BT, HY(X)) = H2YY(X) for T = S' acting
on S3 C C? as the scalar multiplication.

4 Consider the spectral sequence from the previous problem for X arbitrary, and T = S'. Assuming
that T = S! recognize the differential

HY(X) = Ey! — By = H*(BT) ® H™'(X) ~ H'(T) ® H*(X)
as a map induced by the multiplication S x X — X.
(Taking X = T the differential H(T) = EY' — E2° = H2(BT) is an isomorphism. )

5 Let v be the tautological bundle over the Grassmannian Gro(C*). Compute the push-forward to

the point
[ el
Gro(C4)

Show that the result is equal to the Schur function for A = (n — 2,n — 2,0,0) if n > 2. If possible —
generalize this calculus.

Hint co(L1 @ La)™ = Sx(c1(L1),c1(L2)) for A = (n,n). Use Laplace block-expansion.

6 The space C?" is equipped with the canonical non-degenerate antisymmetric 2-form
n
w= Z dx; NdTp—iv1
i=1

(i.e. the symplectic form). Let LG,, C Gr,(C™) be the Lagrangian Grassmannian, i.e. the set of isotropic
n-subspaces. The torus
diag(ty,ta, ...ttty Y

acts on C?" preserving w, hence it acts on LG,,. Find the fixed points and the GKM-graph.



Problem list 10— 12 December

The space C?" is equipped with the canonical non-degenerate antisymmetric 2-form

n
w = Z dx; N dxp—it1

=1

(i.e. the symplectic form). Let LG, C Gr,(C?*") be the Lagrangian Grassmannian, i.e. the set of
isotropic n-subspaces. The torus

diag(ty,ta, ... to,ty bt Y

acts on C?" preserving w, hence it acts on LG,,. Let e1,ea,...,€n, fa,---, f2, f1 be the Darboux basis.
We have found that the fixed points correspond to the choices of subsets I C {1,2,...,n}

pr=lin{e;, fj:iel, j&I}
1 Compute the GKM-graph of LG(n).
2 Let C* ~ Ty C T = (C*)*" be the 1-dimensional subtorus
To = {(t",t" 1, ... t,t7L, .. t7 ) |t € C*}.
Compute the dimension of the Bialtynicki-Birula cell attached to p; € LG(n).

3 Finish the proof, that the only 1-dimensional orbits in Gri(C™) correspond to exchanging one
element in the subset I C {1,2,...,n}, [I| = k.

4 Using AB-BV formula compute the equivariant [ LG(2) €1 (v*)¥ for k = 3, 4, where ~ is the tautological
bundle on LG(2).

5 Let v be the tautological bundle over the Grassmannian Gro(C*). Compute the equivariant push-

fOI‘W&I‘d to the pOiDt
c *\ 1 .
/Gm((c‘l) 2(7 )

Show that the result is equal to the Schur function for A = (n — 2,n — 2,0,0) if n > 2. If possible —
generalize this calculus.

Hint ca(L1 @ La)™ = Sx(c1(L1), c1(L2)) for A = (n,n). Use Laplace block-expansion.
6 Let X7 C Gra(C™) be (the Schubert variety) defined by
X, = {W € Gry(CYH | W N lin{ey,ea} # 0} .

Compute an equation of X in neighbourhoods of the fixed points lin{e;, e;}. Compute the restriction
of the fundamental class [X1] to the fixed points.

Hint: to compute the restriction of [X1] at lin{e;,e;} one can use the divisibility relations or the fact
that [q,., (C*)[X1] = 0.



Problem list 11— 19 December

1 Let v be the tautological bundle over the Grassmannian Gr(C™). Compute

/ cr (") Rk
Gra(C4)

using the AB-BV formula.

Hint: Install Wolfram Mathematica on your laptop and execute for a fixed n and k
Sum [
(-Sum[t[al, {a, J}])"(k (n - k))/Product[t[b] - tlal, {a, J}, {b, Complement[Rangel[n], JI1}],
{J, Subsets[Range[n], {k}1}]
Factor [%]
How far can you go?

2 Let 7 be the tautological bundle and Q be the quotient bundle over the Grassmannian Gry(C").
We consider generalized Schur classes for arbitrary sequences Ai, A, ..., Aq for a vector bundle of rank
d: if the E bundle splits into direct sum of line bundles L;, and t; = ¢1(L;) then

gl ghatd=2 g
Ao+d—1 Ao+d—2 Ad
t t R 7
det | 2 2 2
A ~|:d71 Ao+d—2 )'\d
ot t5? R 7
S\E) = s d—1 dd—2 0 ‘
R
4=t a2 49
dot | 2 2 2
d—1  ,d—2 0
e
Show that
L )8 =€)
GTk((C")
for some v.

3 Let X7 C Gro(C™) be (the Schubert variety) defined by
X1 ={W € Gry(C*) | Wnlin{er,e2} # 0}

Compute an equation of X in neighbourhoods of the fixed points lin{e;, e;}. Compute the restriction
of the fundamental class [X1] to the fixed points.

Hint: to compute the restriction of [X;] at lin{e;,e;} one can use the divisibility relations or the fact
that [g,, (C*)[X1] = 0.

4 Define the equivariant intersection form
Hy(M) x Hy(M) — Hry(pt)
(a,b) / ab € Hi(pt) -
M
Compute the intersection form in the basis [PY], [P!], [P?], where P* = P(lin{eo, ..., &}).

5 Let G be a compact connected Lie group. Prove that
H*(G;R) ~ (Akg")<.

BTW: H2*(BG;R) ~ (SymFg*)C.



Problem list 11 — 9 January
1 Let g be a graded vector space with a binary operation [—, —] which is graded-antisymmetric, i.e.
o) = —(—1)ste) sy ).
We say that [z, —| satisfies the graded Leibniz formula if
[, [y, 2]] = [[z,y], 2] + (=1 dsWy, [, 2],

Show, that in the classical case (i.e. g lives only in even gradations) the above identity is equivalent to
the Jacobi identity.

2 Let g be a Lie algebra (in the usual sense). Show that g = g_1 @® go @ g1 with
we€g-1=9, Lyx€go=9g demn=R
with the commutation relations
[l/>\7 LM] = 07 [£>\7 Lu} = L[)\,;L] 3 [da L)\] = ‘C)\ )
[Lxs Lo = Ly s [Lx,d] =0, [d,d] =0,
is a graded Lie algebra.
3 Mathai-Quillen twist: Assume that P — B is a T-principal bundle with a connection
6 € Hom(TP,t) ~ t® QY(P).
That is:
1. 6 is T-invariant
2. for A € t, x € P the value of 0 at z in the fundamental vector field vy is equal to A.
In a basis of {\*} C t we write
0=> A®0b,.
Let X be a T manifold.
Y= 0,® 1 € End(Q°(P) ® Q*(X)).
Show, that v does not depend on the choice of a basis.
4 Assume that dim7 = 1 or 2. Consider T*-algebras W and A, with W locally free (e.g. W = W (t).
Let
¢ =exp(y) € Aut(W @A) =1+y+2yoy+...
Check that for any A € t
po(ta@1+1®@u\)op =101

po(d®1+1Rd)od ' =(dR1+1Rd) =) va@ire + Y 0a ® Lya

where v, = df,

5 Let G = SU(2), g = suy = lin{i, j, k} with the well known commutation relations [i, j] = 2k, etc.
Write down explicitly the Chevalley complex computing H*(SU(2)). Compare it with H*(BSU(2)),
check that indeed H*(BG) ~ (Sym g*)¢ ~ (Sym t)W.

6 Define the equivariant intersection form
Hp(M) x Hy(M) — Hry(pt)
(a,b) — / ab € Hy(pt) .
M

Compute the intersection form in the basis [PY], [P!], [P?], where P* = P(lin{eo, ..., &}).
[Use Wolfram Mathematica or your favourite formal algebra software for higher dimension P™’s.]



Problem list 13 — 16 January

1 Let G = SU(2), g = sug = lin{i, j, k} with the well known commutation relations [i, j| = 2k, etc.
Write down explicitly the Chevalley complex computing H*(SU(2)). Compare it with H*(BSU(2)),
check that indeed H*(BG) ~ (Sym g*)¢ ~ (Sym t)W.

2 Define the equivariant intersection form

Hy(M) x Hp(M) — Hry(pt)

(a,b) /M ab € Hix(pt) .

Compute the intersection form in the basis [PY], [P!], [P?], where P* = P(lin{eo, ..., &}).
[Use Wolfram Mathematica or your favourite formal algebra software for higher dimension P™’s.]

3 Describe the moment polytopes of homogeneous spaces for SO(5) and Sp(3), in particular for
the Lagrangian Grassmannian LG(3) C Gr3(C%) and for the generalized flag manifold Sp(3)/B =~
p Y (LG(3)), where p : Fly23(C% — Gr3(C°). Here Fly23(C%) denotes the partial flags V4 C Vo C
V3 C C5. Make some colourful pictures!

4 Let G be a Lie group acting on a symplectic manifold M with a moment map p : M — g*. Show
that p is G invariant, i.e. u(gr) = Adj(u(z)).

5 Let (M,w) be a symplectic manifold with a Hamiltonian S! action. Let H : M — t* ~ R be the
moment map. Prove the Duistermaat-Heckman formula

eI (P)

/ R 3
M n! , e(TpM) '

€St



Problem list 14 — 23 January

1 Describe the moment polytopes of homogeneous spaces for SO(5) and Sp(3), in particular for
the Lagrangian Grassmannian LG(3) C Gr3(C%) and for the generalized flag manifold Sp(3)/B =~
p Y (LG(3)), where p : Fly23(C% — Gr3(C°). Here Fly23(C%) denotes the partial flags V4 C Vo C
V3 C C8. Make some colourful pictures!

2 Let G be a Lie group acting on a symplectic manifold M with a moment map p : M — g*. Show
that p is G invariant, i.e. u(gr) = Adj(u(z)).

3 (Angular momentum) Consider the natural action of G = SO(3) on R = T*R? (with the standard
symplectic structure). Find the moment map.

Here we can identify so3 with R? with the vector product x, moreover we identify so3 with so} via the
scalar product trace(XTY) (for X,Y € so03) which becomes 2 times the standard scalar product in R3.

(Read more about the moment map see: Dusa McDuff, Dietmar Salamon - Introduction to symplectic
topology-Ozford University Press, 1999, Section 5.2)

4 Let U(k) act on Hom(C*, C") (assuming k < n). Show that u(A) =iA“ is a moment map.
5 Suppose T = (C*)? acting of C? in the standard way. We extend this action to P2. Let X be

the blow-up at 0. Pick an equivariant embedding of X into a projective space, and find the resulting
moment polytope for a choice of T action on L = O(1) x.
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Oral exam questions

10 Topological Euler characteristic and torus actions, p-group actions.

J& Linear representation of tori, weights, characters

Q@ Topological properties of group actions on smooth manifolds, slice theorem.

K& Classifying spaces. Examples.

A& Cohomology of Grassmannians and BU (n).

10& Borel construction and equivariant cohomology. Examples of computations.

Jé& Equivariant formality of compact, smooth algebraic manifolds

Q& Localization theorem for torus action (about the restriction HA(X) — Hi(XT)).

K& Localization (Atiyah-Bott, Berline-Vergne formula)

10 A& GKM spaces and their equivariant cohomology

11

12

10 Examples of application of the integration formula

J<¢& Computations of characters via integration on flag manifold.

13 Q¢ Differential model of the equivariant cohomology.

14

15

16

K< Algebraic model of forms on ET .
A The role of the connection in the differential model, and Mathai-Quillena twist.

100© Symplectic manifolds, hamiltonian actions, the moment map.

17 JO Examples of moment polytopes. Permutohedron.

18

19

20

QO Quotients and the Kirwan map.
K© Toric varieties associated to convex polytopes.

AQ Equivariant Schubert calculus on Grassmannians.
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in algebraic geometry. [B] Section IL.5, [D]

Torus localization for generalized cohomology theories [tD]

Todd genus of toric varieties [BV]

A proof of Borel-Bott-Weil character formula via equivariant cohomology [FH, section 24-25]
Mathai-Quillen twist [MQ]

Moment polytopes for homogeneous varieties, the compact quotients of SO(5) and Sp(3)
Equivariant Schubert calculus: basic identities and examples. [KT]

Chang-Skjelbred Lemma. [F]
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