

Equivariant cohomology in algebraic geometry: notes 2023

Andrzej Weber

1

1.1 Prehistory: Poincaré-Hopf theorem. Suppose M is a manifold, v a vector field with isolated zeros, then

$$\chi(M) = \sum_{p \in \text{Zeros}} \text{Ind}_p(v),$$

where $\text{Ind}_p(v)$ is the index of the vector field, i.e. the degree of the map from a small sphere around p $S(p, \epsilon)$ to the unit sphere in $T_p M$ given by $v(p)/\|v(p)\|$.

1.2 Suppose a circle S^1 acts smoothly on M with isolated fixed points. Let v be the fundamental field of the action, i.e.

$$v(x) = \frac{d}{dt}(t \cdot x)|_{t=0}.$$

Then if $p \in M^{S^1}$ the index $\text{Ind}_p(v) = 1$. Hence

$$\chi(M) = |M^{S^1}|.$$

This statement is true in a much greater generality.

1.3 Let X be a simplicial complex (or any decent compact topological space, e.g. a manifold). Suppose p is a prime number. Let P be a p -group acting on X . Then the Euler characteristic of fixed points $\chi(X^P) \equiv \chi(X) \pmod{p}$.

Proof: We assume that P acts simplicially and the relation follows from the property of p groups acting on finite sets: $|X^P| \equiv |X| \pmod{p}$.

1.4 Exercise: give a proof for compact manifolds, not using triangulations.

[Sören Illman, Smooth equivariant triangulations of G -manifolds for G a finite group. Math. Ann. 233 (1978), no. 3, 199–220.]

See a far-reaching generalization: Dwyer–Wilkerson Smith theory revisited. Ann. of Math. (2) 127 (1988), no. 1, 191–198.

1.5 Corollary: no decent compact contractible space admits a finite group action without fixed points.

1.6 Theorem does not hold for infinite dimensional spaces, e.g. \mathbb{Z}_2 acts on $S^\infty \sim pt$ without fixed points (action via antipodism).

1.7 Theorem: Let X be a compact (decent) compact topological space (e.g. a manifold). Suppose $\mathbb{T} = (S^1)^r$ acts on X . Then $\chi(X) = \chi(X^\mathbb{T})$.

Proof: $X^{S^1} = X^{\mathbb{Z}_{p^\infty}} = X^{\mathbb{Z}_{p^n}}$ for $n \gg 0$.

Examples of the spaces with torus action.

1.8 $X = S^{2n+1} \subset \mathbb{C}^{n+1}$ with $S^1 \subset \mathbb{C}$ action via scalar multiplication. (No fixed points, $\chi(X) = 0$.)

1.9 The projective space $\mathbb{P}^n = \mathbb{CP}^n = \mathbb{P}^n(\mathbb{C}) = (\mathbb{C}^{n+1} \setminus \{0\})/\mathbb{C}^*$ can be presented as S^{2n+1}/S^1 .

1.10 $X = S^{2n} \subset \mathbb{C}^n \times \mathbb{R}$ with $S^1 \subset \mathbb{C}$ acting on the factor \mathbb{C}^n . ($\chi(X) = 2$, two fixed points.)

1.11 Projective space \mathbb{P}^n (in particular $\mathbb{P}^1 = S^2$) admits the action of $\mathbb{T}_{\mathbb{C}} = (\mathbb{C}^*)^{n+1}$. There are $n+1$ fixed points. Also the small torus consisting of the sequences $(1, t, t^2, \dots, t^n)$ has the same fixed points. We check directly that $\chi(\mathbb{P}^n) = n+1$.

[For holomorphic actions does not matter whether we take compact torus S^1 or \mathbb{C}^* . The fixed points are the same.]

Białynicki-Birula decomposition by examples.

1.12 Let $X = \mathbb{P}^n$,

$$T = \{(1, t, t^2, \dots, t^n) \in \mathbb{T}_{\mathbb{C}} \mid t \in \mathbb{C}^*\}$$

acting as above. For $p \in X^T$ let

$$X_p^+ = \{z \in X \mid \lim_{t \rightarrow 0} t \cdot z = p\}.$$

The sets X_p^\pm are homeomorphic (isomorphic as algebraic varieties) with affine spaces. We obtain the well known decomposition of the projective space

$$\mathbb{P}^n = \mathbb{C}^n \sqcup \mathbb{C}^{n-1} \sqcup \mathbb{C}^{n-2} \sqcup \dots \sqcup \mathbb{C}^0.$$

$$X_{[0:0:\dots:1:0:\dots:0]}^+ = \{z_k \neq 0, z_\ell = 0 \text{ for } \ell < k\} \simeq \mathbb{C}^{n-k}$$

1.13 The quadric $z_0z_3 - z_1z_2 = 0$ in \mathbb{P}^3 with the $T = \mathbb{C}^*$ action as above.

$$Q_{[1,0,0,0]} = \{[1 : z_1 : z_2 : z_1z_2] \mid z_1, z_2 \in \mathbb{C}\} \simeq \mathbb{C}^2$$

$$Q_{[0,1,0,0]} = \{[0 : 1 : 0 : z_3] \mid z_3 \in \mathbb{C}\} \simeq \mathbb{C}$$

$$Q_{[0,0,1,0]} = \{[0 : 0 : 1 : z_3] \mid z_3 \in \mathbb{C}\} \simeq \mathbb{C}$$

$$Q_{[0,0,0,1]} = \{[0 : 0 : 0 : 1]\} \simeq pt$$

1.14 Theorem [Białynicki-Birula 1973] Let X be a complex projective algebraic variety with algebraic $T = \mathbb{C}^*$ action. For a component $F \subset X^T$ let

$$X_p^+ = \{z \in X \mid \lim_{t \rightarrow 0} t \cdot z \in F\}.$$

(1) Then

$$X = \bigsqcup_F X_F^+$$

(the sum over connected components) is a decomposition into locally closed algebraic subsets.

(2) The limit map

$$p_F = \lim_{t \rightarrow 0} : X_F^+ \rightarrow F$$

is an algebraic map. If X is smooth then p_F is a Zariski-locally trivial fibration with the fiber isomorphic to \mathbb{C}^{n_F} .

(3) The number n_F is the rank of $\nu_F^+ \subset \nu_F$, the subbundle of the normal bundle on which T acts with positive weights.

- The field \mathbb{C} can be replaced by any algebraically closed field.

1.15 Note that existence of the limit $\lim_{t \rightarrow 0} t \cdot z$ follows from the fact that the closure of the orbit is an algebraic curve. The map

$$\alpha_z : \mathbb{C}^* \rightarrow \mathbb{P}^1 \times X$$

$$t \mapsto (t, t \cdot z)$$

extends to a map from \mathbb{P}^1 . To see that one can note that the image of \mathbb{C}^* is a constructible algebraic set (by Tarski-Seidenberg theorem), hence the closure is an algebraic curve, dominated by \mathbb{P}^1 . Hence we have a unique extension of α_z

$$\bar{\alpha}_z : \mathbb{P}^1 \rightarrow \mathbb{P}^1 \times X \xrightarrow{\pi} X$$

and

$$\lim_{t \rightarrow 0} t \cdot z := \pi(\bar{\alpha}_z(0)).$$

- If the action is not algebraic, the above argument does not work: \mathbb{C}^* acts transitively on any elliptic curve, there are no fixed points.

2 Basics about actions of compact groups

2.1 Let $\mathbb{T} = (S^1)^r \subset \mathbb{C}^r$ and $\mathfrak{t} = i\mathbb{R}^r \subset \mathbb{C}^r$. The map \exp coordinatewise induces the exact sequence

$$0 \longrightarrow \mathfrak{t}_{\mathbb{Z}} \longrightarrow \mathfrak{t} \xrightarrow{\exp} \mathbb{T} \longrightarrow 0,$$

where $\mathfrak{t}_{\mathbb{Z}} = 2\pi i\mathbb{Z}^r \subset i\mathbb{R}^r = \mathfrak{t}$ is the kernel, also denoted by N

2.2 Weights and characters. See [Anderson-Fulton, Ch. 3,§1]

- Homomorphisms $\text{Hom}(\mathbb{T}, S^1)$ are called „characters”. This set is a group with respect to multiplication pointwise. It is isomorphic to \mathbb{Z}^r . In toric geometry denoted by M .
- any character in coordinates is of the form

$$(t_1, t_2, \dots, t_r) \mapsto t_1^{w_1} t_2^{w_2} \dots t_r^{w_r} \quad \text{denoted by } t^w.$$

- the sequence $(w_1, w_2, \dots, w_r) \in \mathbb{Z}^r$ is the called weight.

2.3 Without coordinates:

$$\text{Weights} = \text{Hom}(N, \mathbb{Z})$$

In toric geometry $\text{Hom}(N, \mathbb{Z})$ is denoted by M , in representation theory $\mathfrak{t}_{\mathbb{Z}}^*$.

$$\begin{array}{ccc} \mathfrak{t}_{\mathbb{Z}} & \xrightarrow{\text{weight}} & 2\pi i\mathbb{Z} \simeq \mathbb{Z} \\ \cap & & \cap \\ \mathfrak{t} & \longrightarrow & i\mathbb{R} \\ \exp & \downarrow & \downarrow \\ \mathbb{T} & \xrightarrow{\text{character}} & S^1 \end{array}$$

For a weight $w \in \mathfrak{t}_{\mathbb{Z}}$ the corresponding character is denoted by e^w .

2.4 For the complex torus $\mathbb{T}_{\mathbb{C}} \simeq (\mathbb{C}^*)^r$ any polynomial map is determined by the values on $\mathbb{T} \simeq (S^1)^r$

$$\text{Hom}_{alg}(\mathbb{T}_{\mathbb{C}}, \mathbb{C}^*) = \text{Hom}(\mathbb{T}, S^1).$$

2.5 Linear actions of \mathbb{T} on a vector space \mathbb{C}^n can be diagonalized

(Commuting linear maps of finite order have a common diagonalization.)

2.6 Exercise: for any field $\mathbb{F} = \overline{\mathbb{F}}$ any linear action of $\mathbb{T}_{\mathbb{F}} = (\mathbb{F}^*)^r$ on \mathbb{F}^n can be diagonalized.

2.7 Up to an isomorphism any linear action of \mathbb{T} on a complex vector space is determined by the multi-set of weights.

- Let \mathbb{C}_w be equal to \mathbb{C} as a vector space with the action of \mathbb{T} via $e^w : \mathbb{T} \rightarrow S^1 \subset \mathbb{C}^* = \text{GL}_1(\mathbb{C})$
- If \mathbb{T} has fixed coordinates, i.e. it is identified with $(S^1)^r$ and $w = (w_1, w_2, \dots, w_r)$ then for $t \in \mathbb{T}$ the linear map $e^w(t) : \mathbb{C}_w \rightarrow \mathbb{C}_w$ is the multiplication by $t_1^{w_1} t_2^{w_2} \dots t_r^{w_r}$.
- We have a canonical decomposition

$$V = \bigoplus_{w \in M} V_w,$$

where $V_w = \{v \in V \mid \forall t \in \mathbb{T} t \cdot v = e^w(t)v\} \simeq \text{Hom}_{\mathbb{T}}(\mathbb{C}_w, V)$ is the eigenspace (called *weight space*) corresponding to the weight w .

- For a vector bundle $E \rightarrow B$, with torus action such that \mathbb{T} acts on B trivially and on the fiber the action is linear we have a decomposition into a direct sum of subbundles $E = \bigoplus_w E_w$.
- The decomposition into weight subspaces can be noncannonically refined

$$V = \bigoplus_{k=1}^{\dim V} \mathbb{C}_{w_k}.$$

(Note: If we have fixed coordinates of \mathbb{T} , then each w_k is a sequence of numbers $(w_{k,1}, w_{k,2}, \dots, w_{k,r})$.)

- The element

$$e(V) = \prod_{k=1}^{\dim V} w_k = \prod_w w^{\dim V_w} \in \text{Sym}^{\dim V}(\mathfrak{t}_{\mathbb{Z}}^*)$$

does not depend on the above decomposition and it is called the Euler class of the representation.

- The product

$$c(V) = \prod_{k=1}^{\dim V} (1 + w_k) = \prod_w (1 + w)^{\dim V_w} \in \text{Sym}(\mathfrak{t}_{\mathbb{Z}}^*)$$

is also well defined. It is called the Chern class of the representation

- After tensoring with \mathbb{R} (or \mathbb{Q}) we can identify $\text{Sym}(\mathfrak{t}_{\mathbb{Z}}^*) \otimes \mathbb{R}$ with polynomial functions on \mathfrak{t} .

2.8 Exercise: for a representation V of \mathbb{T} consider an action of $\tilde{\mathbb{T}} = \mathbb{T} \times S^1$ on $\tilde{V} = V$, where S^1 acts by the scalar multiplication. Denote by \hbar the weight corresponding to the character $\tilde{T} \rightarrow S^1$, which is the projection. Show that

$$c(V) = e(\tilde{V})|_{\hbar=1}.$$

Action of a compact group (in particular torus) on a manifold

2.9 Exercise: (algebraic geometry) Let A be an algebra over a field \mathbb{F} and $X = \text{Spec}(A)$. Defining an action of $\mathbb{G}_m = \text{Spec}(\mathbb{F}[t, t^{-1}])$ on X is equivalent to defining a \mathbb{Z} -gradation of A . Prove this correspondence and generalize it to an action of the algebraic torus \mathbb{G}_m^r .

2.10 Let X be a manifold with a smooth action of \mathbb{T} . Suppose $x \in X^{\mathbb{T}}$ is a fixed point. Then \mathbb{T} acts on $T_x X$. If x is an isolated fixed point, then the weight space $(T_x X)_0$ corresponding to the weight $w = 0$ is trivial.

2.11 Proposition. There exists a neighbourhood $x \in U \subset T_x X$ and an equivariant map $f : U \rightarrow X$, which is an isomorphism on the image.

Proof: Fix an S^1 invariant metric, take U to be the ball of a sufficiently small radius, $f = \exp$ in the sense of the differential geometry.

2.12 Reminder: Orbit, stabilizer(=isotopy group): Suppose a group G acts on X , $x \in X$

- the stabilizer $= G_x = \{g \in G \mid gx = x\}$.
- if $y = gx$ then $G_y = gG_xg^{-1}$
- the orbit $= G \cdot x \simeq G/G_x$.
- the isotropy group G_x acts on the tangent space $T_x X$ and the fiber of the normal bundle $(\nu_{G \cdot x})_x$

2.13 Construction of the associated bundle: Suppose V be a representation of a group H , and suppose P be a H -principal bundle. Let us define

$$P \times^H V = P \times V / \{(ph, v) \sim (p, hv)\}.$$

The projection $P \times^H V \rightarrow P/H = Y$ is a vector bundle.

For the definition and basic facts about principal bundles [Anderson-Fulton, Ch.2.1]

2.14 Slice theorem for manifolds: Assume that X is a smooth manifold, G a compact Lie group (can assume a torus) acting smoothly. Let $V = (\nu_{G \cdot x})_x$. There exist an equivariant neighbourhood of $0 \in S \subset V$, such that the map $G \times^{G_x} S \rightarrow X$ induced by $\exp : G \times^{G_x} V \rightarrow X$ is an equivariant diffeomorphism onto the image. This image is a neighbourhood of $G \times^{G_x} \{0\} \simeq G \cdot x$. The set S or its image is called the slice, whole neighbourhood is called the tube. See [Anderson-Fulton, Ch.5 Th.1.4].

- In other words: any orbit has a neighbourhood isomorphic to the disk bundle of the associated vector bundle over the orbit.
- Proof. The map $\exp : \mathbb{T} \times V \rightarrow X$ induces

$$(g, v) \mapsto g \cdot \exp(v).$$

\exp is G_x -invariant, i.e. $\exp(g \cdot v) = g \cdot \exp(v)$ for $g \in G_x$. Hence the above map factorizes $G \times^{G_x} V \rightarrow X$.

- Exercise: Show that the above map is well defined.

2.15 Exercise: Let G be a group, H a subgroup, $E \rightarrow G/H$ be a vector bundle with G -action, such that for any $g \in G$, $x \in G/H$ the map $g : E_x \rightarrow E_{gx}$ is linear. Show that $E \simeq G \times^H E_{[e]}$. Here $[e]$ denotes the coset eH .

2.16 There is a more general theorem for topological spaces:

- If X is a topological space (completely regular), G a compact Lie group, then a slice V is a certain subspace of X , invariant with respect to G_x . [Bredon, Introduction to Compact Transformation Groups. Section II.5]

- In algebraic geometry [Luna slice theorem] we assume that G is reductive ($(\mathbb{C}^*)^r$ is fine, $\mathrm{GL}_n(\mathbb{C})$ too) X is an affine variety, and the orbit is closed. The neighbourhood is in the étal topology. [Luna, Domingo (1973), *Slices étales*, Sur les groupes algébriques, Bull. Soc. Math. France, Paris, Mémoire, vol. 33]

3 Classifying spaces

3.1 It is convenient to introduce a notion of G -CW-complex. By definition, we assume that X admits a filtration

$$X_{-1} = \emptyset \subset X_0 \subset X_1 \subset \cdots \subset X_N$$

such that

$$X_i = X_{i-1} \cup_{\phi} (G \times^H D^{n_i}),$$

where D^{n_i} is the unit disk of a linear orthogonal representation of $H \rightarrow \mathrm{Aut}(\mathbb{R}^{n_i})$,

$$\phi : G \times^H S^{n_i-1} \rightarrow X_{i-1}.$$

(with weak topology.)

3.2 Any smooth action of a compact Lie group G on a compact manifold admits a G -CW-decomposition.

3.3 Example: S^2 with the standard S^1 action has 3 cells 0, ∞ and $S^1 \times D^1$.

3.4 Exercise: find a CW-decomposition of \mathbb{P}^n with the standard action of $(S^1)^{n+1}$

3.5 The topological spaces we study will be assumed to admit a G -CW-decomposition

3.6 Equivariant cohomology of a G space:

- topological model $H_G^*(X) = H^*(EG \times^G X)$, where EG is a contractible free G -space (unfortunately in almost all cases EG is of infinite dimension)
- differential model if X is a G -manifold $H_{G,dR}^*(X) = H^*(\Omega^*(X, G))$
- de Rham theorem $H_G^*(X; \mathbb{R}) \simeq H_{G,dR}^*(X)$

3.7 We will assume, that G is compact (or linear algebraic reductive, e.g. $(\mathbb{C}^*)^r$).

3.8 A G bundle $P \rightarrow B = E/G$ is universal if for any G bundle $P' \rightarrow B'$ there exist a map $f : B' \rightarrow B$ such that $F^*(P) = P'$. Moreover f is unique up to homotopy.

- Hence

$$\{G\text{-bundles on } X\} = [X, B]$$

where $[X, B]$ means homotopy classes of maps (X is assumed to be CW-complex).

3.9 We will show that a universal G -bundle exists.

- Notation $EG \rightarrow BG$, should be understood as a homotopy type, which has various realizations.
- A G bundle $P \rightarrow B$ is universal if and only if E is contractible.

- Proof: Assume that P is contractible. Suppose $P' \rightarrow B'$ be an arbitrary G -bundle. We construct a mapping by induction on skeleta. We assume that P' is a CW-complex, glued from cells with trivial stabilizers, i.e. each cell is of the form $D^n \times G$.

$$\begin{array}{ccccc}
 & S^{n-1} \times G & \xrightarrow{\quad} & D^n \times G & \xrightarrow{\quad} EG \\
 \downarrow & \nearrow & & \downarrow & \nearrow \\
 S^{n-1} & \xrightarrow{\quad} & D^n & \xrightarrow{\quad} & BG
 \end{array}$$

it is enough to construct a mapping $S^{n-1} \times \{1\} \rightarrow P$ do $D^n \times \{1\} \rightarrow EG$ and use G -action to spread the definition on the whole tube $D^n \times G$. Similarly we construct a homotopy between two maps.

Hence if P is contractible then it is universal. If we have another bundle $P' \rightarrow B'$ which is universal, then there are G maps $P' \rightarrow P$ and $P \rightarrow P'$ and their compositions are homotopic to identities (this is a general nonsens about universal objects).

3.10 Corollary: by the homotopy exact sequence for $G \subset EG \rightarrow BG$ we have homotopy group isomorphism $\pi_k(BG) \simeq \pi_{k-1}(G)$. In particular, if G is connected, then BG is 1-connected.

3.11 Since any nontrivial compact Lie group contains torus, hence elements of finite orders, the space EG cannot be of finite dimension (by Euler characteristic argument).

3.12 Examples:

$$ES^1 = S^\infty \rightarrow \mathbb{P}^\infty = BS^1 \text{ (of the type } K(\mathbb{Z}, 2))$$

$$E(S^1)^r = (S^\infty)^r \rightarrow (\mathbb{P}^\infty)^r = B(S^1)^r$$

$$BU(n) = \lim_{N \rightarrow \infty} Gras_n(\mathbb{C}^N)$$

3.13 For $G = \mathbb{T}$ or $U(n)$ one can approximate BG by compact algebraic manifolds, which admit a decomposition into algebraic cells (BB-decomposition's).

3.14 For all linear algebraic groups $G \subset \mathrm{GL}_m(\mathbb{C})$ we can take $EG = \mathrm{Steel}$ manifold

$$St_m(\mathbb{C}^N) := \mathrm{Monomorphisms}(\mathbb{C}^m, \mathbb{C}^N) \subset \mathrm{Hom}(\mathbb{C}^m, \mathbb{C}^N)$$

See [Anderson-Fulton, Ch.2, Lemma 2.1]

• Exercise: Show that

$$\lim_{N \rightarrow \infty} \mathrm{codim}(\mathrm{Hom}(\mathbb{C}^m, \mathbb{C}^N) \setminus St_m(\mathbb{C}^N)) = \infty.$$

• For any algebraic group Totaro constructs approximation of BG by algebraic varieties in a more systematic way.

3.15 If $H \subset G$, then as a model for EH we can take EG . Hence we get a fibration $G/H \rightarrow BH \rightarrow BG$.

3.16 If $H \triangleleft G$ is a normal subgroup, $K = G/H$ then there is a fibration $BH \rightarrow BG \rightarrow BK$.

(Take $EH := EG$ and $E'G = EG \times EK$, taking the fibration $E'G/G \rightarrow EK/K$ we find that the fiber is $EG \times^G G/H = BH$.)

3.17 Characteristic classes for G -bundles [see e.g. Guillemin-Sternberg §8] Consider two contravariant functors:

$$Gbdl := \{G - bundles\} / \sim : hTop \rightarrow sets$$

$$H := H^*(-\mathbb{Z}) : hTop \rightarrow sets$$

$$Map_{Functors}(Gbdl, H) = H^*(BG; \mathbb{Z})$$

- This is just Yoneda Lemma: if $F, H : \mathcal{C} \rightarrow \mathcal{S}$ and F is representable by $A \in Ob(\mathcal{C})$, i.e.

$$F(X) = Mor_{\mathcal{C}}(X, A),$$

then

$$Mor_{Functors}(F, H) = F(A).$$

Given a transformation of functors

$$\alpha : Mor_{\mathcal{C}}(-, A) \rightarrow H(-)$$

We construct an element in $H(A)$ setting $X = A$

$$\alpha \mapsto \alpha(Id_A) \in H(A).$$

Conversely: given $f : X \rightarrow A$ and $\alpha \in H(A)$ define

$$\alpha(f) = f^*(\alpha).$$

3.18 Characteristic classes for n -dimensional vector bundles.

- Each vector bundle is determined by its associated principal bundle. Thus $Vect_n(X) = [X, BGL_n(\mathbb{C})]$ and $BGL_n(\mathbb{C}) = BU_n$. Hence

$$\text{characteristic classes of } n\text{-vector bundles} = H^*(BU(n))$$

- $H^*(BU(n), \mathbb{Z}) \simeq \mathbb{Z}[c_1, c_2, \dots, c_n]$
- The map $H^*(BU(n+1)) \rightarrow H^*(BU(n))$ is surjective given by $c_{n+1} := 0$.

3.19 For the torus we have

- $G = \mathbb{C}^*$, $EG = \mathbb{C}^\infty \setminus \{0\}$; $B\mathbb{C}^* = \mathbb{P}^\infty = \bigcup_n \mathbb{P}^n$
- $H^*(B\mathbb{C}^*) \simeq \mathbb{Z}[t]$, it is convenient to take $t = c_1(\mathcal{O}(1))$, where $\mathcal{O}(1)$ is the dual of the tautological bundle.
- For S^1 we can take $ES^1 = S^\infty = \bigcup_n S^{2n-1}$

3.20 Corollary:

$$\{\text{topological vector bundles over } X\} \simeq H^2(X; \mathbb{Z})$$

$$\{\text{characteristic classes of line bundles}\} = H^*(\mathbb{P}^\infty) = \mathbb{Z}[t]$$

3.21 For $\mathbb{T} = (S^1)^n$:

$$H^*(B\mathbb{T}) = \mathbb{Z}[t_1, t_2, \dots, t_n]$$

3.22 The inclusion $\mathbb{T} \rightarrow U(n)$ induces $B\mathbb{T} \rightarrow BU(n)$ and $H^*(BU(n)) \rightarrow H^*(\mathbb{T})$ which is injective

$$H^*(BU(n)) = \mathbb{Z}[c_1, c_2, \dots, c_n] = \mathbb{Z}[t_1, t_2, \dots, t_n]^{S_n} \hookrightarrow \mathbb{Z}[t_1, t_2, \dots, t_n] = H^*(B\mathbb{T})$$

Compare [Anderson-Fulton, Ch2, Proposition 4.1]

3.23 The above statement and many others in this course follows from **Leray-Hirsch theorem**:

- Let $F \rightarrow E \rightarrow B$ be a fibration. Assume that $H^*(F)$ is free (in our case over \mathbb{Z}). Suppose there is a linear map $\phi : H^*(F) \rightarrow H^*(E)$, a splitting of the restriction map $H^*(E) \rightarrow H^*(F)$. Then $H^*(E)$ is a free module over $H^*(B)$.

3.24 We have the bundle $E = B\mathbb{T} \rightarrow BU_n = B$ the fiber is $F = U_n/\mathbb{T}$. The base and the fiber ($F =$ Flag manifold) admit a cell decompositions into even dimensional cells — see explanation below. Hence we have a cell decomposition of $E\mathbb{T}$ which is compatible with the decomposition of the base. (Note that here as a model of $E\mathbb{T}$ is not taken S^∞ .)

- Hence $H^*(E) \rightarrow H^*(F)$ is split-surjective.

By the Leray-Hirsh theorem $H^*(B\mathbb{T})$ is a free $H^*(BU_n)$ -module of the rank $\dim H^*(F)$,

- $H^*(F) \simeq H^*(E)/(H^{>0}(B))$ as algebras (also we can write $H^*(F) \simeq \mathbb{Z} \otimes_{H^*(B)} H^*(E)$)

3.25 We look at the cell decomposition of the approximation $Gras_n(\mathbb{C}^n)$ of $BU(n)$ (see [Anderson-Fulton, Ch. 4, §5]

- The cells are indexed by the sequences

$$0 < i_1 < i_2 < \dots < i_k \leq n$$

$$\begin{pmatrix} 1 & * & 0 & * \\ 0 & 0 & 1 & * \end{pmatrix} \quad i_1 = 1, i_2 = 3$$

Equivalently

$$(n - k \geq \lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_k \geq 0) = \text{number of } * \text{ in the reduced form of the matrix.}$$

3.26 Computation of $H^*(BU(n))$. The map $H^*(BU(n)) \rightarrow H^*(B\mathbb{T})$ is injective. The image is invariant with the symmetric group action S_n , since each permutation $\sigma : \mathbb{T} \rightarrow \mathbb{T} \rightarrow U_n$ is homotopic to the inclusion.

- First we give an argument over \mathbb{Q} . We show that in each gradation $\dim H^{2k}(BU_n) = \dim \mathbb{Q}[t_1, t_2, \dots, t_n]^{S_n}$.
– $\dim H^{2k}(BU(n)) =$ number of sequences $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_k \geq 0$ (no restriction on λ_1), such that $\sum_i \lambda_i = k$
– $\dim H^{2k}(B\mathbb{T})^{S_n} = \mathbb{Z}[t_1, t_2, \dots, t_n]_k^{S_n} =$ the number of monomials with non-increasing exponents.
- We conclude that $H^{2k}(BU(n); \mathbb{Q}) = H^{2k}(B\mathbb{T}; \mathbb{Q})^{S_n}$
- Moreover $H^*(Fl(n); \mathbb{Z}) = \mathbb{Z}[t_1, t_2, \dots, t_n]/(H^{>0}(BU_n; \mathbb{Z}))$ is torsion-free. Hence $H^*(BU_n; \mathbb{Z}) = \mathbb{Z}[t_1, t_2, \dots, t_n]^{S_n}$

3.27 Corollary: We have a description of the cohomology ring

$$H^*(Fl(n)) \simeq \mathbb{Z}[t_1, t_2, \dots, t_n]/(\mathbb{Z}[t_1, t_2, \dots, t_n]_{>0}^{S_n}).$$

3.28 Exercise: Compute the cohomology ring $H^*(Gras(k, n))$ using the fibration $Gras_k(\mathbb{C}^n) \rightarrow B(U_k \times U_{n-k}) \rightarrow BU_n$.

3.29 General theorem: if G is connected, \mathbb{T} maximal torus, $W = N\mathbb{T}/\mathbb{T}$ the Weyl group, then $H^*(BG; \mathbb{Q}) = H^*(B\mathbb{T}; \mathbb{Q})^W$ is a polynomial ring in the variables of even degrees, e.g.

- $H^*(BSp(n); \mathbb{Q}) = \mathbb{Q}[c_2, c_4, \dots, c_{2n}]$, (valid also over \mathbb{Z}),
- $H^*(BO_{2n}; \mathbb{Q}) = \mathbb{Q}[p_1, p_2, \dots, p_n, e]/(e^2 = p_n)$, $\deg p_i = 4i$, $\deg e = 2n$ (valid also over $\mathbb{Z}[\frac{1}{2}]$)
- BE_8 is the worst, one has to invert 2, 3, 5. The generators of $H^{2*}(BE_8)$ are in the degrees $2 \times$: 2, 8, 12, 14, 18, 20, 24, 30.

[Burt Totaro: The torsion index of E_8 and other groups, Duke Math. J. 129 (2005), no. 2, 219–248]

4 Recollection on Chern classes

What you need to know about Chern classes

4.1 Let $Vect_1$ denote the functor $hTop \rightarrow Sets$

$$Vect_1(X) = \text{Isomorphism classes of line bundles over } X$$

- This functor factors through the category of abelian groups (tensor product of line bundles behaves like addition).
- $Vect(X)$ denotes isomorphism classes of vector bundles. This is a semi-ring. Here \oplus is the addition, \otimes is the multiplication.

4.2 The first Chern class

$$c_1 \in Mor_{Functors}(Vect_1, H^2(-, \mathbb{Z})) = H^2(K(\mathbb{Z}, 2)) = H^2(BS^1) = H^2(\mathbb{P}^\infty) = H^2(\mathbb{P}^1)$$

We chose the generator of $H^2(\mathbb{P}^1)$ so that $c_1(\mathcal{O}(1)) = [pt]$. Here the bundle $\mathcal{O}(1) = \gamma^*$ is the dual of the tautological bundle.

- In other words: the Chern class c_1 is determined by the choice made for $\mathcal{O}(1)$.

4.3 Chern classes of vector bundles: $c(E) = 1 + c_1(E) + \dots + c_{rk(E)}(E)$.

- functoriality (c is a transformation of functors $Vect(-) \rightarrow H^*(-, \mathbb{Z})$)
- for line bundles $c(L) = 1 + c_1(L)$
- Whitney formula $c(E \oplus F) = c(E)c(F)$

• Note c is not a group homomorphism. One can repair that, but has to use \mathbb{Q} coefficients. The resulting transformation is called Chern character. For line bundles

$$ch(L) = \exp(c_1(L)).$$

Chern character is additive and multiplicative

$$ch(E \oplus F) = ch(E) + ch(F),$$

$$ch(E \otimes F) = ch(E)ch(F).$$

4.4 If L is a holomorphic line bundle over a complex manifold, with a meromorphic section s , then $c_1(L)$ is equal to Poincaré dual of $\text{Zero}(s) - \text{Poles}(s)$.

4.5 Projective bundle theorem. For a vector bundle $E \rightarrow B$ let $\mathbb{P}(E) \rightarrow B$ be the projectivization¹, $L = \mathcal{O}_{\mathbb{P}(E)}(1)$ the tautological line bundle, then $H^*(\mathbb{P}(E))$ is a free module over $H^*(B)$

$$h^r + a_1 h^{r-1} + \cdots + r a_r = 0.$$

Then $a_i = c_i(E)$.

- There are other conventions of signs, but let's check: If E is a line bundle, then $L = E^*$. We have relation $h + a_1 = c_1(L) + c_1(E) = 0$.

4.6 Corollary: Chern classes of E and the ring structure of $H^*(B)$ determine the ring structure

$$H^*(\mathbb{P}(E)) = H^*(B)[h]/(h^r + c_1 h^{r-1} + \cdots + c_{r-1} h + c_r).$$

4.7 Splitting principle: for any line bundle $E \rightarrow B$ there exists $f : B' \rightarrow B$ such that, f^*E is a sum of line bundles and f^* is injective on cohomology. E.g.

$$B' = \text{Flags}(E) = B \times_{BU(n)} B\mathbb{T},$$

where \mathbb{T} is the maximal torus in $U(n)$.

4.8 The generator of $H^2(B\mathbb{C}^*)$ is identified with $c_1(\mathcal{O}(1))$. Thus the generators of

$$H_T^*(B\mathbb{T}) = \mathbb{Z}[t_1, t_2, \dots, t_n]$$

can be presented as

$$t_i = c_1(L_i),$$

where $L_i = E\mathbb{T} \times^{\mathbb{T}} \mathbb{C}_{t_i}$ is the line bundle associated to the representation of T in $\text{GL}_1(\mathbb{C})$ given by the projection on the i -th factor.

4.9 Let $\chi : \mathbb{T} \rightarrow \mathbb{C}^*$ be a character, then $c_1(ET \times^{\mathbb{T}} \mathbb{C}_\chi) = \chi$. Here we identify

$$\text{Hom}(\mathbb{T}, \mathbb{C}^*) = \mathfrak{t}^* = H^2(B\mathbb{T}).$$

Borel's definition of equivariant cohomology [finally, see [Anderson-Fulton, Ch.2 §2]]

4.10 Borel construction $X_G = EG \times^G X$ sometimes is called the mixing space.

4.11 Basic properties:

- It is a module over $H_G^*(pt) = H^*(BG)$
- Contravariant functoriality with respect to X in G .
- If the action is free then $X_G \rightarrow X/G$ is a fibration with the contractible fiber EG , hence $H_G^*(X) = H^*(X/G)$. [Anderson-Fulton, Ch 3, §4]
- For $K \subset G$, $X = G/H$ we have $X_G = EG \times^G G/K \simeq EG/K = BK$.
- More generally $H_G^*(G \times^K X) \simeq H_K^*(X)$ for any K -space X .
- If the action is trivial then $X_G = BG \times X$. If $H^*(BG)$ has no torsion (e.g. $G = T, \text{GL}_n(\mathbb{C}), \text{Sp}_n(\mathbb{C})$) then $H_G^*(X) = H^*(BG) \otimes H^*(X)$. For coefficients in \mathbb{Q} we do need the assumption about the torsion. [Anderson-Fulton, Ch 3, §4]

¹this is the naive projectivization, i.e. the fiber over $x \in B$ consist of the lines in E_x .

4.12 Basic properties of equivariant cohomology of smooth compact algebraic varieties: (G connected, coefficients of cohomology in \mathbb{Q})

- (*) $H_G^*(X)$ is a free module over $H^*(BG)$ hence $H_G^*(BG) \simeq H^*(BG) \otimes H^*(X)$, the information of the action of G is hidden in the multiplication,
- $H_{\mathbb{T}}^*(X) \rightarrow H_{\mathbb{T}}^*(X)^T$ is injective.

4.13 Example: [Anderson-Fulton, Ch.2, §6] \mathbb{P}^n with the standard action of $\mathbb{T} = (\mathbb{C}^*)^{n+1}$. We identify $X_{\mathbb{T}}$ with $\mathbb{P}(\bigoplus_{i=0}^n \mathbb{C}t_i)$. By the projective bundle theorem

$$H_{\mathbb{T}}^*(\mathbb{P}^n) = \mathbb{Z}[t_0, t_1, \dots, t_n, h]/(\prod_{i=0}^n (t_i + h)).$$

- It is a free module over $H_T^*(pt) = H^*(B\mathbb{T}) = \mathbb{Z}[t_0, t_1, \dots, t_n]$
- The map to $H^*(\mathbb{P}^n) = \mathbb{Z}[h]/(h^{n+1})$ is a surjection.
- We have an isomorphism of modules over $H^*(B\mathbb{T})$

$$H_{\mathbb{T}}^*(\mathbb{P}^n) \simeq H^*(B\mathbb{T}) \otimes H^*(\mathbb{P}^n).$$

We will see that for compact smooth algebraic varieties (or Kähler) the above holds always over \mathbb{Q} .

- The map

$$H_{\mathbb{T}}^*(\mathbb{P}^n) \rightarrow H_{\mathbb{T}}^*((\mathbb{P}^n)^{\mathbb{T}}) = \bigoplus_{i=0}^n H_{\mathbb{T}}^*(pt) = \bigoplus_{i=0}^n \mathbb{Z}[t_0, t_1, \dots, t_n]$$

by

$$[f(\underline{t}, h)] \mapsto \{f_i\}_{i=0,1,\dots,n}, \quad f_i(\underline{t}) = f(\underline{t}, -t_i).$$

Exercise: this map is injective.

4.14 Example: $\mathbb{T} = \mathbb{C}^*$ acting on $\mathbb{P}^1 \simeq S^2$ via $[t^\ell z_0, t^k z_1]$

$$X_{\mathbb{T}} = \mathbb{P}(\mathcal{O}(\ell) \oplus \mathcal{O}(k))$$

,

$$H_{\mathbb{T}}^*(\mathbb{P}^1) = \mathbb{Z}[h, t]/((h + kt)(h + \ell t))$$

- The elements 1 and h generate over $\mathbb{Z}[t] = H^*(BT)$. This is a free module
[We have $h^2 = -(k + \ell)th - k\ell t^2$, so any polynomial in t and h can be written modulo the ideal $(h^2 + ht)$ as $f_0(t) + f_1(t)h$.]
- The restriction to the fixed points

$$[f(t, h)] \mapsto (f(t, -\ell t), f(t, -kt)).$$

is injective.

[If $f(t, -kt) = 0$, then f is divisible by $h + kt \dots$]

4.15 Let $\mathbb{T} = \mathbb{C}^*$ act on $X = \mathbb{C}^*$ via the multiplication by z^k

- We identify \mathbb{C}^* with the subset of \mathbb{P}^1

$$\{[1, z] \in \mathbb{P}^1 \mid z \neq 0\}$$

the action of \mathbb{C}^* is as in 4.14 for $\ell = 0$. To compute $H_{\mathbb{T}}^*(\mathbb{C}^*)$ use the Mayer-Vietoris exact sequence [Anderson-Fulton, Ch. 3, §5]: for even degrees we have

$$0 \rightarrow H_{\mathbb{T}}^{2i-1}(\mathbb{C}^*) \rightarrow H_{\mathbb{T}}^{2i}(\mathbb{P}^1) \xrightarrow{\alpha} H_{\mathbb{T}}^{2i}(\mathbb{C}) \oplus H_{\mathbb{T}}^{2i}(\mathbb{C}) \rightarrow H_{\mathbb{T}}^{2i}(\mathbb{C}^*) \rightarrow 0$$

$$0 \rightarrow ? \rightarrow \mathbb{Z}[t, h]/(h(h + kt)) \xrightarrow{\alpha} \mathbb{Z}[t] \oplus \mathbb{Z}[t] \rightarrow ? \rightarrow 0$$

$$\alpha(t) = (t, t), \quad \alpha(h) = (kt, 0).$$

The restriction map to the open \mathbb{C} 's can be identified with the restriction to the fixed points. The one but last map α is injective, thus $H_{\mathbb{T}}^{2i-1}(\mathbb{C}^*) = 0$ and

$$H_{\mathbb{T}}^{2i}(\mathbb{C}^*) = \text{coker}(\alpha) = \langle t_1^i, t_2^i \rangle / \langle \alpha(t^a h^b) \rangle = \langle t_1^i, t_2^i \rangle / \langle t_1^i + t_2^i, kt_1^i \rangle = \mathbb{Z}/k\mathbb{Z}.$$

- Corollary:

$$H^i(B\mathbb{Z}_k \mathbb{Z}) = H_{\mathbb{C}^*}^i(\mathbb{C}_k^*; \mathbb{Z}) = \begin{cases} \mathbb{Z} & \text{if } i = 0 \\ \mathbb{Z}_k & \text{if } i \text{ is even} \\ 0 & \text{if } i \text{ is odd.} \end{cases}$$

(Here \mathbb{Z}_k denotes $\mathbb{Z}/k\mathbb{Z}$.)

4.16 In general, if G is a finite group $H^{>0}(BG; \mathbb{Z})$ is torsion.

- $p : EG \rightarrow BG$ is a finite covering, thus $p_* p^* \in \text{End}(H^i(BG))$ is the multiplication by $|G|$. Since for $i > 0$ it factors through trivial group for we have $|G|H^i(BG) = 0$.
- We will mainly perform computation over \mathbb{Q} , so will ignore finite groups.

5 Equivariant formality, localization I

5.1 The condition

(*) $H_{\mathbb{T}}^*(X)$ is a free module over $H_{\mathbb{T}}^*(pt)$

Is called *equivariant formality* It can be reformulated

- $H_{\mathbb{T}}^*(X) \otimes_{H_{\mathbb{T}}^*(pt)} \mathbb{Q} \simeq H^*(X)$
- $H^*(X) \otimes H_{\mathbb{T}}^*(pt) \simeq H_{\mathbb{T}}^*(X)$ (it is enough to know that there is an isomorphism of graded vector spaces)
- $H_{\mathbb{T}}^*(X) \rightarrow H^*(X)$ is surjective, compare [Anderson-Fulton, Ch. 6, §3].

5.2 The basic argument is analysis of the fibration $X \subset E\mathbb{T} \times^{\mathbb{T}} X \rightarrow B\mathbb{T}$ and Serre spectral sequence

$$E_2^{p,q} = H_{\mathbb{T}}^p(pt) \otimes H^q(X) \Rightarrow H_{\mathbb{T}}^{p+q}(X).$$

5.3 If X is a sum of even dimensional cells then (*) holds. It is enough to assume $H^{odd}(X; \mathbb{Q}) = 0$.

5.4 Theorem: If X is smooth algebraic manifold with an algebraic torus $\mathbb{T} = (\mathbb{C}^*)^r$ action, then X is equivariantly formal.

- See [Anderson-Fulton, Ch. 5, Cor. 3.3]
- (Much more difficult result of McDuff is equivariant formality of X symplectic manifolds with Hamiltonian torus action.)

5.5 To show (5.4) we need some basic tools.

- Fundamental class of a subvariety $Y \subset X$: it is the Poincaré dual of the homology class. We denote it $[Y] \in H^{2\text{codim}Y}(X)$. (We do not have to assume that X is compact.)
- Equivariant fundamental class of an equivariant subvariety. Let $E_n \rightarrow B_n = (\mathbb{P}^n)^r$ be the approximation of the universal \mathbb{T} -bundle. He define $[Y] \in H_{\mathbb{T}}^*(X)$ as the fundamental class of $E_n \times^{\mathbb{T}} Y \subset E_n \times^{\mathbb{T}} X$

$$[E_n \times^{\mathbb{T}} Y] \in H^{2\text{codim}Y}(E_n \times^{\mathbb{T}} X) \simeq H_{\mathbb{T}}^{2\text{codim}Y}(X) \quad \text{for sufficiently large } n.$$

- Exercise: Show that the definition does not depend on $n \gg 0$.
- Exercise: Define the equivariant fundamental class not passing through approximation, but using the equivariant normal bundle on Y_{smooth} .

5.6 Correspondences: (for cohomology with rational coefficients). Suppose X and Y are compact C^∞ manifolds. We have

$$\text{Hom}(H^*(Y), H^*(X)) \simeq (H^*(Y))^* \otimes H^*(X) \xrightarrow{\text{Poincaré}} H^*(Y) \otimes H^*(X) \xrightarrow{\text{Künneth}} H^*(X \times Y).$$

Having a cohomology class $a \in H^k(X \times Y)$ we define $\phi_a : H^*(Y) \rightarrow H^*(X)$

$$\begin{array}{cccc} H^i(Y) & H^i(X \times Y) & H^{i+k}(X \times Y) & H^{i+k-\dim Y}(X) \\ \alpha & \mapsto & \pi_Y^* \alpha & \mapsto a \cdot (\pi_Y^* \alpha) & \mapsto \pi_{X*}(a \cdot (\pi_Y^* \alpha)). \end{array}$$

Here \cdot is the product in cohomology. Puritans would denote it by \cup . The push-forward (a.k.a Gysin homomorphism) π_{X*} can be defined as the map in homology composed with Poincaré dualities. See [Anderson-Fulton, Ch. 3, §6]

- If a is the class of a graph of $f : X \rightarrow Y$, $\dim Y = k$ i.e. $a = [\text{graph}(f)] \in H^k(X \times Y)$. Then $\phi_a = f^*$. (Exercise.)
- Suppose X and Y smooth an compact algebraic varieties and $Z \subset X \times Y$ any subvariety. Take $a = [Z]$, $\phi_Z := \phi_a$. Then $\phi_Z : H^i(Y) \rightarrow H^{i+2c}(X)$ with $c = \text{codim}Z - \dim Y = \dim X - \dim Z$.
- One can drop the assumption that X is compact. It is enough to assume that the projection $Z \rightarrow X$ is proper:

$$\alpha \mapsto \pi_Y^* \alpha \mapsto (\pi_Y^* \alpha)|_Z \mapsto \pi_{X*}(\pi_Y^* \alpha)|_Z.$$

5.7 Proof of 5.4. Let $B_n = (\mathbb{P}^n)^r$, $X_n = (\mathbb{C}^{n+1} - 0)^r \times^{\mathbb{T}} X$ be the approximation of the Borel construction. We show that $H^*(X_n) \rightarrow H^*(X)$ surjective. It is enough, since $H^k(X_n) \simeq H_{\mathbb{T}}^k(X)$ for large n .

The bundle $(\mathbb{C}^{n+1} - 0)^r \rightarrow (\mathbb{P}^n)^r$ is trivial over the set standard affine open set $U \simeq (\mathbb{C}^n)^r$:

$$U \times X \subset X_n.$$

The projection $p : U \times X \rightarrow X$ extends to the correspondence

$$\phi_Z : X_n \rightarrow X, \quad Z = \text{closure}(\text{graph}(p)).$$

The map p^* has a left inverse inverse i'^* induced by $i' : X = \{pt\} \times X \rightarrow U \times X$, i.e. $pi' = id_X$

$$\begin{array}{ccc} & H^*(X) & \\ i^* & \nearrow & \nwarrow & i'^* \\ H^*(X_n) & \longrightarrow & H^*(U \times X) \\ \phi_Z & \nwarrow & \nearrow & (\phi_Z)|_{U \times X} = p^* \\ & H^*(X) & \end{array}$$

$i^*\phi_Z = id_{H^*(X)}$ because $i'^*p^* = id_{H^*(X)}$.

- Exercise: show that all works for cohomology with \mathbb{Z} coefficients.

5.8 Example of a space which is not equivariantly formal:

Let $\mathbb{T} = \mathbb{T}_1 \times \mathbb{T}_2$ with $\mathbb{T}_i = \mathbb{C}^*$, $X = \mathbb{T}/\mathbb{T}_1 \simeq \mathbb{T}_2$:

$$H_{\mathbb{T}}^*(\mathbb{T}/\mathbb{T}_1) = H^*(E\mathbb{T} \times^{\mathbb{T}} \mathbb{T}/\mathbb{T}_1) = H^*(B\mathbb{T}_1).$$

The map to $H^*(X)$ for $^*=1$ is not surjective.

5.9 Example: $\mathbb{T} = S^1$ acting on $X = S^3$ with the quotient S^2 (the Hopf fibration). Then $H_{\mathbb{T}}^*(S^3) \simeq H^*(S^2)$ cannot be surjective to $H^*(S^3)$.

5.10 If X is a free \mathbb{T} space then X is not equivariantly formal (since $H_{\mathbb{T}}^*(X)$ is of finite dimension, cannot be a free module over a polynomial ring).

5.11 Localization 1.0: Let X be a finite \mathbb{T} -CW complex. Then the kernel and the cokernel of the restriction to the fixed point set $H_{\mathbb{T}}^*(X) \rightarrow H_{\mathbb{T}}^*(X^T)$ are torsion $H_T^*(pt)$ -modules.

- Other formulation: Let $\Lambda = H_T^*(pt) = \mathbb{Q}[t_1, t_2, \dots, t_3]$, and K be the fraction field. Then the restriction

$$K \otimes_{\Lambda} H_{\mathbb{T}}^*(X) \rightarrow K \otimes_{\Lambda} H_{\mathbb{T}}^*(X^T).$$

is an isomorphism. • It will be clear from the proof what elements of Λ should be inverted.

- Proof in the case of the finite $X^{\mathbb{T}}$, see [Anderson-Fulton, Ch. 5, Th. 1.8]. For nonsingular varieties [Anderson-Fulton, Ch 5. Th. 1.13]

5.12 Let M be a Λ -module (it is enough to assume that Λ is a domain). Localization

$$\begin{aligned} K \otimes_{\Lambda} M &= \left\{ \frac{m}{a} \mid a \neq 0 \right\} / \sim \\ \frac{m_1}{a_1} \sim \frac{m_2}{a_2} &\Leftrightarrow \exists b \in \Lambda^* \quad ba_2m_1 = ba_1m_2. \end{aligned}$$

5.13 Lemma: The localization functor

$$\Lambda\text{-modules} \longrightarrow K\text{-modules}$$

is exact. (Exercise)

5.14 Proof of 5.11. Induction with respect to the number of cells: Assume that if $X = Y \cup \mathbb{T} \times_G D$. Then the sequence

$$\rightarrow K \otimes_{\Lambda} H_{\mathbb{T}}^*(X, Y) \rightarrow K \otimes_{\Lambda} H_{\mathbb{T}}^*(X) \rightarrow K \otimes_{\Lambda} H_{\mathbb{T}}^*(Y) \rightarrow$$

is exact. Assume that $G \neq \mathbb{T}$. We will show that $H_{\mathbb{T}}^*(X, Y)$ is a torsion Λ -module.

$$H_{\mathbb{T}}^*(X, Y) \simeq H_{\mathbb{T}}^*(\mathbb{T} \times_G D, T \times_G S) \simeq H_G^*(D, S),$$

(see (4.11)) The action of Λ on $H_G^*(D, S)$ factorizes through $H_{\mathbb{T}}^*(\mathbb{T}/G) = H_G^*(pt) = \Lambda/(\text{characters annihilating } G)$, hence $H_G^*(pt)$ is a torsion Λ -module.

5.15 Exercise: see what goes wrong for \mathbb{T} replaced by a nonabelian group. For tori the orbit $H_{\mathbb{T}}^*(\mathbb{T}/G)$ turned out to be a torsion $H_{\mathbb{T}}^*(pt)$ -module. (Is $H_{GL_n}^*(GL_n/B_n)$ a torsion $H_{GL_n}^*(pt)$ -module?)

5.16 Example: \mathbb{P}^1 with the standard $\mathbb{T} = (\mathbb{C}^*)^2$ action

$$K \otimes_{\Lambda} H_{\mathbb{T}}^*(\mathbb{P}^1) = K[h]/((t_0 + h)(t_1 + h)) \xrightarrow{\cong} K \oplus K$$

$$f[h] \mapsto (f(-t_0), f(-t_1)).$$

(Chinese remainder theorem.)

5.17 If X is equivariantly formal, then all mappings below are injective

$$\begin{array}{ccc} H_{\mathbb{T}}^*(X) & \longrightarrow & H_{\mathbb{T}}^*(X^{\mathbb{T}}) \\ \downarrow & & \downarrow \\ K \otimes_{\Lambda} H_{\mathbb{T}}^*(X) & \xrightarrow{\cong} & K \otimes_{\Lambda} H_{\mathbb{T}}^*(X^{\mathbb{T}}) \end{array}$$

If $|X| < \infty$ then

$$K \otimes_{\Lambda} H_{\mathbb{T}}^*(X^{\mathbb{T}}) \simeq K^{|X^{\mathbb{T}}|}$$

Therefore instead of computation in a possibly difficult ring $H_{\mathbb{T}}^*(X)$ it is enough to make calculations with rational functions.

5.18 Example: (exercise) $X = \mathbb{P}^n$, \mathbb{T} the standard one, the image

$$H_{\mathbb{T}}^*(\mathbb{P}^n) \hookrightarrow \bigoplus_{k=0}^n \Lambda = \Lambda^{n+1}$$

consists of such sequences $(f_0, f_1, \dots, f_n) \in \mathbb{Q}[t_0, t_1, \dots, t_n]^{n+1}$, such that $t_i - t_j$ divides $f_i - f_j$.

Plans for the future:

5.19 Assume that X is equivariantly formal, $|X^{\mathbb{T}}| < \infty$.

Question: how to describe $H_{\mathbb{T}}^*(X) \hookrightarrow \bigoplus_{x \in X^{\mathbb{T}}} \Lambda$?

(an answer for GKM-spaces is easy and handy to use).

5.20 Assume, that X is equivariantly formal and $|X^{\mathbb{T}}| < \infty$.

Question: how to reconstruct an element $\alpha \in H_{\mathbb{T}}^*(X)$ knowing the restrictions $\alpha|_{\{x\}} \in \Lambda$?

Answer: Atiyah-Bott and Beline-Vergne theorem: assuming that X compact manifold

$$\alpha = \sum_{x \in X^{\mathbb{T}}} (i_x)_* \left(\frac{i_x^* \alpha}{e(T_x X)} \right) \in K \otimes_{\Lambda} H_{\mathbb{T}}^*(X),$$

where $i_x : \{x\} \rightarrow X$, and $e(T_x X) \in \Lambda$ is the equivariant Euler class of $T_x X \rightarrow \{x\}$, see 2.7.

5.21 Corollary (with the assumptions as above):

$$\int_X \alpha = \sum_{x \in X^{\mathbb{T}}} \frac{i_x^* \alpha}{e(T_x X)}.$$

5.22 Corollary: $X = \mathbb{P}^n$, $\alpha = (c_1(\mathcal{O}(1))^n$

$$\sum_{i=0}^n \frac{(-t_i)^n}{\prod_{j \neq i} (t_j - t_i)} = ?$$

6 Localization and integration on manifolds

[Anderson-Fulton, Ch. 5]

6.1 Corollary: If X is equivariantly formal, then $H^{even}(X; \mathbb{Q}) \simeq H^{even}(X^T; \mathbb{Q})$ and $H^{odd}(X; \mathbb{Q}) \simeq H^{odd}(X^T; \mathbb{Q})$

- By elementary arguments we already knew that $\chi(X) = \chi(X^T)$.

6.2 Remark: From Bialynicki-Birula decomposition one can derive more: the correspondences

$$\Gamma_i = \text{closure}(X_F^+ \rightarrow F) \subset F \times X$$

induce

$$H^*(X; \mathbb{Z}) \simeq \bigoplus_{F \subset X^T} H^{*-2n_F^+}(F, \mathbb{Z}),$$

where n_F^+ is the dimension of the fiber of the *limit map* $X_F^+ \rightarrow F$. [proof by Carrell].

6.3 Let $f : X \rightarrow Y$ be a map of compact oriented manifolds. Then the push-forward (or the Gysin map [Anderson-Fulton, Ch.3, §6]) $f_* : H^*(X) \rightarrow H_T^*(Y)$ may be defined by Poincaré duality

$$PD_X : H^k(X) \rightarrow H_{\dim X - k}(X)$$

$$a \mapsto a \cap [X],$$

We define f_* to be the composition

$$\begin{array}{ccccccc} H^k(X) & \xrightarrow{\simeq} & H_{\dim X - k}(X) & \rightarrow & H_{\dim X - k}(Y) & \xleftarrow{\simeq} & H^{\dim Y - \dim X + k}(Y) \\ a & \mapsto & a \cap [X] & \mapsto & f_*(a \cap [X]) & \mapsto & f_*(a) \end{array}$$

6.4 Another construction for an embedding: Let U be a tubular neighbourhood of X in Y , i.e. U is diffeomorphic to the space of the normal bundle $\pi : \nu \rightarrow X$, $c = \text{codim}X$. Let $\tau \in H^c(U, U \setminus X)$ be the Thom class. This means that τ restricted to any fiber of $U \simeq \nu \rightarrow X$ is the generator of $H^c(\nu_x, \nu_x \setminus \{0\}) \simeq H^c(\mathbb{R}^c, \mathbb{R}^c \setminus \{0\})$ (i.e. we have a continuous choice of orientations in the fibers). We define f_* :

$$H^k(X) \xrightarrow{\text{Thom}} H^{c+k}(U, U \setminus X) \xleftarrow[\simeq]{\text{excision}} H^{c+k}(Y, Y \setminus X) \longrightarrow H^{c+k}(Y).$$

The Thom isomorphism is given by $H^k(X) \xrightarrow{\simeq} H^{c+k}(U, U \setminus X)$, $a \mapsto \tau \cdot \pi^*(a)$, where $\pi : U \rightarrow X$ is the projection in the bundle $\nu \simeq U \rightarrow X$.

6.5 Exercise: show that both constructions of f_* are equivalent. Hint $\tau \cap [U] = [X] \in H_{\dim X}(U) \simeq H_{\dim X}(X)$, where $[U] \in H_{\dim Y}(\overline{U}, \partial U)$ is the orientation class.

6.6 Key formula. Let $e(\nu) \in H^c(X)$ be the Euler class, $i : X \hookrightarrow Y$ the inclusion. We have

$$i^* i_*(a) = e(\nu) \cdot a.$$

- Since

$$e(\nu) = i^*(\tau), \quad \tau \in H^c(\nu, \nu \setminus X) \simeq H^c(Y, Y \setminus X)$$

by the definition, we get $i^* i_*(a) = i^*(\tau \cdot \pi^*(a)) = i^*(\tau) \cdot i^* \pi^*(a) = e(\nu) a$.

6.7 If $X \subset Y$ is a \mathbb{T} -invariant. Let us define i_* as in (6.4). The equivariant class of an invariant submanifold is defined as $i_*(1_X) \in H_{\mathbb{T}}^*(Y)$.

6.8 Suppose, that X is a \mathbb{T} -manifold, $i : X^T \rightarrow X$ is an embedding,

$$i^* : K \otimes_{\Lambda} H_T^*(X) \xrightarrow{\sim} K \otimes_{\Lambda} H_T^*(X^T).$$

The composition $i_* i^*$ by the Euler class of the normal bundle X^T . (over each component $F \subset X^T$ the normal bundle can have a different dimension.)

6.9 Fundamental Lemma: The Euler class $e(\nu(X^T \text{ in } X)) \in H_{\mathbb{T}}^*(X)$ is invertible in $K \otimes_{\Lambda} H_{\mathbb{T}}^*(X)$.

- It has to be checked for every component of $F \subset X^T$ that the Euler class is invertible.
- If $F = \{x\}$ is a point,

$$e(\nu_F) = \prod_i w_i \in Z[t_1, t_2, \dots, t_r],$$

where w_1, \dots, w_c are weights of the torus representation $\nu_F = T_x X$. The weights are non-zero, since x is an isolated fixed point.

- E.g. if $x = [0 : \dots : 0 : 1 : 0 : \dots : 0] \in \mathbb{P}^n$ (1 on k -th position), then $e(\nu_{\{x\}}) = \prod_{i \neq k} (t_i - t_k)$.

6.10 Proof of the fundamental lemma in the general case: We decompose $\nu = \bigoplus_{w \in \mathcal{W}} \nu_w$. We can assume that ν_w is a complex bundle. (We do not assume that X is a complex manifold but the torus action allows to define complex structure.) Each summand ν_w has a complement μ_w such that

$$\nu_w \oplus \mu_w = \mathbb{1}^{d_w} \quad \text{a trivial bundle of dimension } d_w$$

The above isomorphism can be made equivariant, when we act on μ_w with the character w . Then $e(\nu_w \oplus \mu_w) = w^{d_w}$. Let $\mu = \bigoplus_w \mu_w$. We have

$$e(\nu \oplus \mu) = \prod_{w \in \mathcal{W}} w^{d_w}$$

hence

$$e(\nu) \cdot \left(e(\mu) / \prod_{w \in \mathcal{W}} w^{d_w} \right) = 1.$$

6.11 Localization formula (Atiyah-Bott, Berline-Vergne). Assume, that X is a compact \mathbb{T} -manifold, which is equivariantly formal. For $a \in H_{\mathbb{T}}^* * X$ we have

$$a = \sum_F (i_F)_* \left(\frac{i_F^*(a)}{e(\nu(F))} \right) \tag{1}$$

summation over the connected components $F \subset X^T$. Here $i_F : F \rightarrow X$ is the inclusion.

- Proof. Let ϕ be the composition

$$K \otimes_{\Lambda} H_T^*(X) \xrightarrow{i^*} \bigoplus_F K \otimes_{\Lambda} H_T^*(F) \xrightarrow{1/e(\nu)} \bigoplus_F K \otimes_{\Lambda} H_T^*(F).$$

Note, that $i_* \circ \phi = Id$. Since $K \otimes_{\Lambda} H_T^*(X)$ is of a finite dimension over K , thus $\phi \circ i_* = Id$. Hence we have an equality (1) in $K \otimes_{\Lambda} H_T^*(X)$.

- Note that we have an expression in $K \otimes_{\Lambda} H_T^*(X)$, but the sum belongs to $H_T^*(X)$, i.e. it is integral.

- The above argument reopposes the statement that the restriction to $X^{\mathbb{T}}$ is an isomorphism after tensoring with K .
- It is enough to invert the weights appearing in the normal bundles ν_F .
- We do not have to assume that X is compact. It is enough to know that $X^{\mathbb{T}}$ is compact and X is formal.

6.12 [Anderson-Fulton, Ch. 5, §2] AB-BV integration formula: Let $p_X : X \rightarrow pt$ be the constant map. With the assumption as above

$$\int_X a := (p_X)_*(a) = \sum_F (p_F)_* \left(\frac{i_F^*(a)}{e(\nu(F))} \right) \in \Lambda.$$

- The sum is in Λ although the summands belong to K .

- If $|X^T| < \infty$

$$\int_X a = \sum_{p \in X^T} \frac{a|_p}{e(T_p X)}$$

6.13 Example [Anderson-Fulton, Ch 5, Ex. 2.5] \mathbb{P}^n . Let $h = c_1(\mathcal{O}(1))$:

- Subexample, $n = 1$

$$\int_{\mathbb{P}^1} h = \frac{-t_0}{t_1 - t_0} + \frac{-t_1}{t_0 - t_1} = \dots = 1.$$

- In general

$$\begin{aligned} \int_{\mathbb{P}^n} h^{k+n} &= \sum_{i=0}^n \frac{(-t_i)^{k+n}}{\prod_{j \neq i} (t_j - t_i)} \\ &= (-1)^k \sum_{i=0}^n \text{Res}_{z=t_i} \frac{z^{k+n}}{\prod_{j=1}^n (z - t_j)} = \dots \end{aligned}$$

The result is:

$$(-1)^k S_k(t_0, t_1, \dots, t_n) = (-1)^k \sum_{\ell_0 + \ell_1 + \dots + \ell_n = k} t_0^{\ell_0} t_1^{\ell_1} \dots t_n^{\ell_n}$$

i.e. the *complete symmetric function*.

- Exercise: Check at least that $\int_{\mathbb{P}^n} h^n = 1$.

Application to compute Euler characteristic of holomorphic bundles.

6.14 Riemann-Roch theorem: Let E be a holomorphic bundle over a compact complex manifold, then

$$\chi(X; E) = \int_X \text{td}(TX) \text{ch}(E).$$

• Remainder: the Todd class td is a multiplicative characteristic class i.e. $\text{td}(E \oplus F) = \text{td}(E)\text{td}(F)$ and for a line bundle $\text{td}(L) = \frac{t}{1-e^{-t}}$, where $t = c_1(L)$.

• If a torus \mathbb{T} acts on X with a finite number of fixed points, and E is a vector bundle admitting \mathbb{T} action, the $\text{td}(TX)$ and $\text{ch}(E)$ naturally lift to equivariant cohomology (via Borel construction). Then

$$\chi(X; E) = \sum_{x \in X^{\mathbb{T}}} \frac{i_x^*(\text{td}(TX) \text{ch}(E))}{e(T_x X)}.$$

- For simplicity assume that $E = L$ is a line bundle. Each summand is equal to

$$\frac{\prod_{i=1}^n \frac{w_{x,i}}{1-e^{-w_{x,i}}}}{\prod_{i=1}^n w_{x,i}} e^{\alpha_x} = \frac{e^{\alpha}}{\prod_{i=1}^n (1 - e^{-w_{x,i}})},$$

where $w_{x,i}$ are the weights of the \mathbb{T} action on the tangent space $T_x X$ and α_x is the weight of \mathbb{T} acting on L_x .

- Exercise: compute from above $\chi(\mathbb{P}^n; \mathcal{O}(k))$.

7 Flag variety and flag bundles

[Anderson-Fulton, Ch.4, §4]

7.1 Let $E \rightarrow B$ be a complex vector bundle of rank n , $\pi : \mathcal{F}\ell(E) \rightarrow B$ the associated bundle of complete flag varieties. A point of $\mathcal{F}\ell(E)$ mapping to $x \in B$ is a sequence

$$V_\bullet = \{0 = V_0 \subset V_1 \subset V_2 \subset \cdots \subset V_n = E_x \mid \dim(V_i) = i\}.$$

The quotients $L_i = V_i/V_{i-1}$ with V_\bullet varying form a line bundle. Let $x_i = c_1(L_i)$.

7.2 Theorem. Cohomology $H^*(\mathcal{F}\ell(E))$ is generated by x_i as a $H^*(B)$ algebra:

$$H^*(\mathcal{F}\ell(E)) \simeq H^*(B)[x_1, x_2, \dots, x_n]/I,$$

where I is the ideal generated by

$$\sigma_i(x_1, x_2, \dots, x_n) - \pi^* c_i(E) \quad \text{for } i = 1, 2, \dots, n,$$

so that in $H^*(\mathcal{F}\ell(E))$

$$\pi^*(c(E)) = \prod_{i=1}^n (1 + x_i).$$

7.3 The proof by induction.

- For $n = 1$: $\mathcal{F}\ell(E) = B$, $H^*(B)[x_1]/(x_1 - c_1(E)) = H^*(B)$.
- Let $B' = \mathbb{P}(E)$ with the projection to B denoted by p . The bundle $p^*(E)$ fits to the exact sequence

$$0 \rightarrow \mathcal{O}(-1) \rightarrow p^*(E) \rightarrow E'.$$

By the projective bundle theorem

$$H^*(B') \simeq H^*(B)[h]/\left(\sum_{i=0}^n h^i p^*(c_{n-i}(E))\right).$$

Here $h = c_1(\mathcal{O}(1))$. By Whitney formula

$$c(E') = p^*(c(E))(1 - h)^{-1},$$

i.e.

$$c_k(E') = \sum_{i=0}^k h^i p^*(c_{k-i}(E)).$$

(The expression for $0 = c_n(E')$ is exactly the relation in the Projective Bundle Theorem.) We identify the flag bundle $\mathcal{F}\ell(E')$ with $\mathcal{F}\ell(E)$. The generators in cohomology of $\mathcal{F}\ell(E)$ correspond to generators for $\mathcal{F}\ell(E')$:

$$x_1 = -h, \quad x_2 = x'_1, \quad x_3 = x'_2 \quad \dots \quad x_n = x'_{n-1}.$$

We have by the inductive assumption

$$H^*(\mathcal{F}\ell(E')) \simeq H^*(B)[h, x'_1, x'_2, \dots, x'_{n-1}]/J$$

$$J = \left\langle \pi'^*(c_i(E')) - \sigma_i(x'_1, x'_2, \dots, x'_n) \text{ for } i = 1, 2, \dots, n-1, \quad \sum_{i=0}^n h^i \pi^* c_{n-i}(E) \right\rangle.$$

It is enough to change the name of variables and conclude that $J = I$.

- The inclusion $I \subset J$ follows since (topologically) $E \simeq \bigoplus_{i=1}^n L_i$.
- Example: $n = 4$. The generator of J (we drop pull-backs in the notation)

$$\begin{aligned} c_1(E') - \sigma_1(x'_1, x'_2, x'_3) &= c_1(E) - x_1 - \sigma_1(x_2, x_3, x_4) \\ c_2(E') - \sigma_2(x'_1, x'_2, x'_3) &= c_2(E) - x_1 c_1(E) + x_1^2 - \sigma_2(x_2, x_3, x_4) \\ c_3(E') - \sigma_3(x'_1, x'_2, x'_3) &= c_3(E) - x_1 c_2(E) + x_1^2 c_1(E) - x_1^3 - \sigma_3(x_2, x_3, x_4) \\ c_4(E) - x_1 c_3(E) + x_1^2 c_2(E) - x_1^3 c_1(E) + x_1^4 & \end{aligned}$$

We perform computations in $H^*(B)[x_1, x_2, \dots, x_n]/I$. By induction show that the generators of J are trivial. We abbreviate (x_1, x_2, \dots) by \underline{x}

$$\begin{aligned} c_1(E') - \sigma_1(\underline{x}') &= c_1(E) - x_1 - \sigma_1(\underline{x}') = c_1(E) - \sigma_1(\underline{x}) \\ c_2(E') - \sigma_2(\underline{x}') &= c_2(E) - x_1 \sigma_1(\underline{x}) + x_1^2 - \sigma_2(\underline{x}') = c_2(E) - \sigma_2(\underline{x}) \\ c_3(E') - \sigma_3(\underline{x}') &= c_3(E) - x_1 \sigma_2(\underline{x}) + x_1^2 \sigma_1(\underline{x}) - x_1^3 - \sigma_3(\underline{x}') = c_3(E) - \sigma_3(\underline{x}) \\ c_4(E) - x_1 \sigma_3(\underline{x}) + x_1^2 \sigma_2(\underline{x}) - x_1^3 \sigma_1(\underline{x}) + x_1^4 &= c_4(E) - \sigma_4(\underline{x}) \end{aligned}$$

We apply the formula

$$\sum_{i=0}^k (-1)^i x_1^i \sigma_{k-i}(\underline{x}) = \sigma_k(\underline{x}')$$

and for the last row

$$\sum_{i=0}^n (-1)^i x_1^i \sigma_{n-i}(\underline{x}) = 0$$

- Conceptually: the relations in J say that $c(E)(1 + x_1)^{-1}$ lives in the gradations $< n$ and $c(E)(1 + x_1)^{-1} = \prod_{k=2}^n (1 + x_k)$. That follows from the identities of I .

7.4 Corollary: Let \mathbb{T} be the maximal torus in $\mathrm{GL}_n(\mathbb{C})$ acting on

$$\mathcal{F}\ell(\mathbb{C}^n) = \mathrm{GL}_n(\mathbb{C})/(\text{upper-triangular}) \simeq U(n)/(U(n) \cap \mathbb{T}).$$

$$H_{\mathbb{T}}^*(\mathcal{F}\ell(\mathbb{C}^n)) \simeq \Lambda[x_1, x_2, \dots, x_n]/\langle \sigma_i(\underline{x}) - \sigma_i(\underline{x}') \mid i = 1, 2, \dots, n \rangle.$$

$$H_{\mathbb{T}}^*(\mathcal{F}\ell(\mathbb{C}^n)) \simeq \Lambda \otimes_{\Lambda^{\Sigma_n}} \Lambda.$$

- Note

$$H_{\mathrm{GL}_n(\mathbb{C})}^*(\mathcal{F}\ell(\mathbb{C}^n)) \simeq \Lambda.$$

7.5 [Anderson-Fulton, Ch. 4, §5] For Grassmannian $Gr_k(\mathbb{C}^n)$ the computation follows. The projection $\mathcal{F}\ell(\mathbb{C}^n) \rightarrow Gr_k(\mathbb{C}^n)$ induces the inclusion

$$H_{\mathbb{T}}^*(Gr_k(\mathbb{C}^n)) \hookrightarrow H_{\mathbb{T}}^*(\mathcal{F}\ell(\mathbb{C}^n)) \simeq \Lambda \otimes_{\Lambda^{\Sigma_n}} \Lambda,$$

(as for any locally-Zariski trivial fibration). The image lies in

$$\Lambda \otimes_{\Lambda^{\Sigma_n}} \Lambda^{\Sigma_k \times \Sigma_{n-k}}.$$

By a dimension consideration there is an isomorphism

$$H_{\mathbb{T}}^*(Gr_k(\mathbb{C}^n)) \simeq \Lambda \otimes_{\Lambda^{\Sigma_n}} \Lambda^{\Sigma_k \times \Sigma_{n-k}}.$$

- It follows that for any vector bundle $E \rightarrow B$ of rank n

$$H_{\mathbb{T}}^*(E) \simeq H^*(B)[c_1, c_2, \dots, c_k, c'_1, c'_2, \dots, c'_{n-k}]/I.$$

The ideal I is generated by the homogeneous components of the identity

$$(1 + c_1 + \cdots + c_k)(1 + c'_1 + \cdots + c'_{n-k}) = c(E).$$

7.6 We denote the group of invertible upper-triangular matrices by B_n . The fixed points of \mathbb{T} acting on $\mathcal{F}\ell_n = GL_n(\mathbb{C})/B_n$ are given by the permutation matrices. The identity corresponds to the standard flag V_0 . The quotient map $GL_n(\mathbb{C}) \rightarrow \mathcal{F}\ell_n$ is \mathbb{T} equivariant with respect to the action of \mathbb{T} on $GL_n(\mathbb{C})$ by conjugation. The tangent space of $\mathcal{F}\ell(\mathbb{C}^n) = GL_n(\mathbb{C})/B_n$ at the point $[id]$ is isomorphic to $\mathfrak{gl}_n/\mathfrak{b}$ with the adjoint action of the torus. The weights are $t_j - t_i$ for $i < j$. At the remaining points corresponding to permutations the weights differ by the action of the permutation.

7.7 Let $X = \mathcal{F}\ell(\mathbb{C}^n)$. We will apply AB-BV formula to integrate the class $\prod_{i=1}^n c_1(L_i)^{\alpha_i}$ for some choice of exponents $\alpha_i \in \mathbb{N}$:

- The integration formula is of the form

$$(\star) = \sum_{\sigma \in \Sigma_n} \frac{\prod_{i=1}^n t_{\sigma(i)}^{\alpha_i}}{\prod_{i < j} (t_{\sigma(j)} - t_{\sigma(i)})} = \frac{\begin{vmatrix} t_1^{\alpha_1} & t_1^{\alpha_2} & \cdots & t_1^{\alpha_n} \\ t_2^{\alpha_1} & t_2^{\alpha_2} & \cdots & t_2^{\alpha_n} \\ \vdots & & & \\ t_n^{\alpha_1} & t_n^{\alpha_2} & \cdots & t_n^{\alpha_n} \end{vmatrix}}{\text{Vandermonde}(t_1, t_2, \dots, t_n)}$$

If α_i is decreasing then we obtain the Schur function S_λ indexed by the sequence λ_i obtained as below

$$\begin{array}{ccccccc}
\alpha_1 & > & \alpha_2 & > & \alpha_3 & > & \dots & > & \alpha_n \\
\parallel & & \parallel & & \parallel & & & & \parallel \\
\lambda_1 + n - 1 & & \lambda_2 + n - 2 & & \lambda_3 + n - 3 & & \dots & & \lambda_n \\
& & & & & & & & \\
& & \alpha_k = \lambda_k + n - k & & & & & &
\end{array}$$

The Schur functions in n variables for $\lambda = (\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n \geq 0)$ form an additive basis of symmetric functions

$$S_\lambda = \frac{\begin{vmatrix} t_1^{n-1+\lambda_1} & t_1^{n-2+\lambda_2} & \dots & t_1^{\lambda_n} \\ t_2^{n-1+\lambda_1} & t_2^{n-2+\lambda_2} & \dots & t_2^{\lambda_n} \\ \vdots & & & \\ t_n^{n-1+\lambda_1} & t_n^{n-2+\lambda_2} & \dots & t_n^{\lambda_n} \end{vmatrix}}{\begin{vmatrix} t_1^{n-1} & t_1^{n-2} & \dots & 1 \\ t_2^{n-1} & t_2^{n-2} & \dots & 1 \\ \vdots & & & \\ t_n^{n-1} & t_n^{n-2} & \dots & 1 \end{vmatrix}} = \pm \frac{\text{Generalized Undetermined}}{\text{Vandermonde}}$$

It is equal $(-1)^{\frac{n(n-1)}{2}} (\star)$.

7.8 Exercise (but maybe not for this course): Check that

$$S_\lambda = \det (h_{\lambda_i+j-i})_{i,j=1,\dots,\text{length}(\lambda)}$$

where h_i is the complete symmetric function and $h_i = 0$ for $i < 0$.

• The fixed points of $G(k, n)$ are the coordinate subspaces (exercise), they correspond to k -element subsets of $\underline{n} = \{1, 2, \dots, n\}$. The weights at the point corresponding to $I_0 = \{1, 2, \dots, k\}$ can be computed from the isomorphism

$$T_{I_0} G(k, n) \simeq \mathfrak{gl}_n / \mathfrak{p}$$

where $\mathfrak{p} = \text{Lie}(P)$, P is the stabilizer of $\text{lin}\{\epsilon_1, \epsilon_2, \dots, \epsilon_k\}$. This set is equal to

$$\{t_j - t_i \mid i \leq k < j\}.$$

• At the point p_I corresponding to the set $I \subset \{1, 2, \dots, n\}$ the set of weights is equal to $\{t_j - t_i\}_{i \in I, j \notin I}$.

7.9 Let $a \in H_{\mathbb{T}}^*(G(k, n))$ be given by a polynomial $W(c_1(\gamma), c_2(\gamma), \dots, c_k(\gamma), c_1(Q), c_2(Q), \dots, c_{n-k}(Q))$ written as a polynomial in x_1, x_2, \dots, x_n , symmetric with respect to $\Sigma_k \times \Sigma_{n-k}$. Then

$$\int_{G(k, n)} a = \sum_{I \subset \underline{n} \mid |I|=k} \frac{W(t_I, t_{I^\vee})}{\prod_{i \in I} \prod_{j \in I^\vee} (t_j - t_i)}$$

where $I^\vee = \underline{n} \setminus I$.

7.10 Let $L = \Lambda^k \gamma^*$ be the top exterior power of the dual tautological bundle on $G(k, n)$. (This bundle is the pull-back of $\mathcal{O}(1)$ for the Plücker embedding).

• Exercise: Compute the degree of $G(k, n)$ under Plücker embedding: let $m = \dim(G(k, n)) = k(m-k)$

$$\int_{G(k, n)} c_1(L)^m = (-1)^m \sum_{I \subset \underline{n} \mid |I|=k} \frac{(\sum_{i \in I} t_i)^m}{\prod_{i \in I} \prod_{j \in I^\vee} (t_j - t_i)}.$$

• In particular

$$\frac{(t_1 + t_2)^4}{(t_3 - t_1)(t_4 - t_1)(t_3 - t_2)(t_4 - t_2)} + \text{other 5 summands} = 2.$$

Check it.

7.11 Tangent bundle of the Grassmannian $Gr_k(\mathbb{C}^n) = G(k, n)$: let $\gamma \xrightarrow{\iota} \mathbb{1}^n$ be the tautological bundle and let $Q = \mathbb{1}^n / \gamma$ be the quotient bundle. There is an equivariant isomorphism

$$TG(k, n) \simeq \text{Hom}(\gamma, Q).$$

• Proof. We define a map of vector bundles

$$\text{Hom}(\gamma, \mathbb{1}^n) \rightarrow TG(k, n)$$

constructing a curve: for $V \in G(k, n)$ let $f \in \text{Hom}(V, \mathbb{1}^n)$. The curve $x_f : (-\epsilon, \epsilon) \rightarrow G(k, n)$ is given by

$$x_f(t) = \text{image}(\iota + tf) \in G(k, n)$$

(well defined for small t). The bundle map is given by

$$\Phi(f) = \dot{x}_f(0).$$

This map invariant with respect to automorphisms of \mathbb{C}^n . At a point $V \in G(k, n)$ decompose $\mathbb{C}^n = V \oplus W$. In the affine neighbourhood of V

$$\{V' \in G(k, n) \mid V' \text{ is transverse to } W\}$$

every element is a graph of a map $V \rightarrow W$. The kernel of Φ is equal to $\text{Hom}(\gamma, \gamma) \subset \text{Hom}(\gamma, \mathbb{1}^n)$ (i.e. at the point V the kernel is equal to $\text{Hom}(V, V) \subset \text{Hom}(V, V \oplus W)$). Thus we have (equivariant) short exact sequence of bundles

$$0 \rightarrow \text{Hom}(\gamma, \gamma) \rightarrow \text{Hom}(\gamma, \mathbb{1}^n) \xrightarrow{\Phi} TG(k, n) \rightarrow 0$$

Hence

$$TG(k, n) \simeq \text{Hom}(\gamma, Q).$$

8 Application of the integration formula

8.1 Let $\mathbb{T} \subset B \subset \text{GL}_n(\mathbb{C})$ be the diagonal torus, B – the group of upper-triangular matrices. For a character $e^\lambda : \mathbb{T} \rightarrow \mathbb{C}^*$ define a line bundle $\mathcal{L}_\lambda = \text{GL}_n(\mathbb{C}) \times^B \mathbb{C}_{-\lambda}$. Here B acts on $\mathbb{C}_{-\lambda}$ via the surjection $B \rightarrow \mathbb{T} \xrightarrow{e^{-\lambda}} \mathbb{C}^*$. If $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n)$, then the diagonal torus acts via the multiplication by $t^{-\lambda_1} t^{-\lambda_2} \dots t^{-\lambda_n}$.

- If $n = 2$, then for $\lambda = (1, 0)$ the bundle \mathcal{L}_λ is isomorphic to $\mathcal{O}(1)$.
- Borel-Weil-Bott theorem: Suppose $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n \geq 0$, then $V_\lambda = H^0(G/B; \mathcal{L}_\lambda)$ is an irreducible representation of $\text{GL}_m(\mathbb{C})$ and $H^k(G/B; \mathcal{L}_\lambda) = 0$ for $k > 0$, [Fulton-Harris, p.392-394]

8.2 Character of a representation V is denoted by χ_V , it is the function from $G = \text{GL}_n \rightarrow \mathbb{C}$:

$$\chi_V(g) = \text{tr}(g : V \rightarrow V).$$

- Since $\chi_V(g) = \chi_V(hgh^{-1})$ the values of χ_V on the maximal torus determine χ_V .
- Let $R(\text{GL}(n))$ be the representation ring. The map

$$\chi : R(\text{GL}(n)) \rightarrow \mathbb{C}[t_1^{\pm 1}, t_2^{\pm 1}, \dots, t_n^{\pm 1}]^{\Sigma_n}$$

is an isomorphism after $\otimes \mathbb{C}$.

8.3 The construction of the representation ring is generalized to the equivariant K-theory of an algebraic variety (or to any category with exact sequences)

•

$$K_G(X) = \bigoplus \mathbb{Z}[\text{Isomorphism classes of equivariant vector bundles}] / (\text{short exact sequences})$$

$$0 \rightarrow E_1 \rightarrow E_2 \rightarrow E_3 \rightarrow 0 \quad \Rightarrow \quad [E_2] = [E_1] + [E_3].$$

- We take the algebraic version of the K-theory, but there is a variant for topological spaces.
- If complex algebraic group G is reductive (all representations split into a direct sum of irreducible representations), then $K_G(pt) = R(G)$. We will consider G reductive only, e.g. $G = \text{GL}_n(\mathbb{C})$.

8.4 Instead of vector bundles we can take the isomorphism classes of coherent sheaves. If X is smooth, then we obtain isomorphic K-theory.

8.5 Let $f : X \rightarrow Y$ be a proper G -equivariant map of smooth algebraic G -varieties. We define $f_! : K_G(X) \rightarrow K_G(Y)$

$$f_!(E) = \sum_{k=0}^{\dim X} (-1)^k [R^k f_*(E)]$$

- The sheaf $R^k f_*(E)$ is a coherent sheaf, should be replaced by its resolution by locally free sheaves, i.e. by vector bundles. We take $Y = pt$, then

$$f_!(E) = \sum_{k=0}^{\dim X} (-1)^k H^k(X; E) \in R(G) \simeq K_G(pt).$$

8.6 Equivariant Hirzebruch-Riemann-Roch theorem. Let G be an algebraic group acting on X .

$$\begin{array}{ccc} & td(X)ch(-) & \\ K_G(X) & \longrightarrow & \hat{H}_G^*(X) \\ f_! \downarrow & & \downarrow f_* \\ R(G) \simeq K_G(pt) & \longrightarrow & \hat{H}_G(pt) \\ & ch & \end{array}$$

Here $ch : R(G) \rightarrow \hat{H}_G(pt)$ maps a representation V to $ch(EG \times^G V)$. We need to take

$$\hat{H}_G^*(pt) := \prod_{k=0}^{\infty} H_G^k(pt)$$

since the Chern character lives in infinite gradations.

- If $G = \mathbb{T}$ the image of $ch : R(\mathbb{T}) \rightarrow \hat{H}^*\mathbb{T}(pt) = \mathbb{Z}[[t_1, t_2, \dots, t_n]]$ lies in the ring of Laurent polynomial $\mathbb{Z}[e^{\pm t_1}, e^{\pm t_2}, \dots, e^{\pm t_n}]$.

8.7 There is a coincidence of standard notations:

- $\chi(X; \mathcal{L})$ = Euler characteristic of G/B with coefficients in the sheaf \mathcal{L}
- if a group G acts on X , then naturally $\chi(X; \mathcal{L}) \in R(G)$.
- $\chi(V) = \chi_V \in R(G)$ character of a representation.

8.8 We will compute the character of the representation V_λ using localization theorem for \mathbb{T} -equivariant cohomology.

$$\begin{aligned} \chi(\mathcal{F}\ell_n; \mathcal{L}_\lambda) &= \sum_{p \in (\mathcal{F}\ell_n)^T} \frac{td(T\mathcal{F}\ell_n)|_p}{eu(T\mathcal{F}\ell_n)|_p} ch(\mathcal{L}_\lambda) \\ &= \sum_{\sigma \in \Sigma_n} \frac{1}{\prod_{i < j} (1 - e^{-(t_{\sigma(j)} - t_{\sigma(i)})})} \prod_{i=1}^n e^{-\lambda_i t_{\sigma(i)}}. \end{aligned}$$

With new variables $x_i = e^{-t_i}$:

$$\chi(\mathcal{F}\ell_n; \mathcal{L}_\lambda) = \sum_{\sigma \in \Sigma_n} \frac{1}{\prod_{i < j} (1 - x_{\sigma(j)}/x_{\sigma(i)})} \prod_{i=1}^n x_{\sigma(i)}^{\lambda_i}.$$

We introduce the notation

$$\begin{aligned} x^\lambda &= \prod_{i=1}^n x_i^{\lambda_i}, & \sigma(x^\lambda) &= \prod_{i=1}^n x_{\sigma(i)}^{\lambda_i}, \\ x^\rho &= \prod_{i=1}^n x_i^{n-i+1}, & x^{\lambda+\rho} &= \prod_{i=1}^n x_i^{\lambda_i+n-i+1}. \end{aligned}$$

Then

$$\chi_{V_\lambda} = \chi(\mathcal{F}\ell_n; \mathcal{L}_\lambda) = \sum_{\sigma \in \Sigma_n} \frac{\sigma(x^{\lambda+\rho})}{\prod_{i < j} (x_{\sigma(i)} - x_{\sigma(j)})} = S_\lambda(x_1, x_2, \dots, x_n).$$

- This is Weyl character formula describing the character of the representation V_λ

Goresky-Kottwitz-MacPherson: GKM spaces

8.9 Lemma [Chang, Skjelbred]. Suppose a torus acts on a topological space. Let $F = X^\mathbb{T}$ and let Y be the sum of F and 1-dimensional orbits. Assume that X is equivariantly formal. Then the sequence

$$0 \rightarrow H_{\mathbb{T}}^*(X) \rightarrow H_{\mathbb{T}}^*(F) \rightarrow H_{\mathbb{T}}^{*+1}(Y, F)$$

is exact.

- The lemma is equivalent to:

$$\ker(H_{\mathbb{T}}^*(F) \rightarrow H_{\mathbb{T}}^{*+1}(Y, F)) = \ker(H_{\mathbb{T}}^*(F) \rightarrow H_{\mathbb{T}}^{*+1}(X, F)).$$

- We do not prove CS Lemma in full generality (see Matthias Franz, Volker Puppe, Exact sequences for equivariantly formal spaces, arXiv:math/0307112). The proof will be given for spaces, which are of special interest for geometers.

8.10 Definition of GKM-space: The torus $\mathbb{T} = (\mathbb{C}^*)^r$ acting algebraically on X – a compact algebraic variety (there is a topological version as well). We assume $|X^\mathbb{T}| < \infty$ and there are only finitely many 1-dimensional orbits. We assume that X is equivariantly formal, e.g. X is smooth.

8.11 Assume X is smooth $|X^\mathbb{T}| < \infty$. For any $x \in X^\mathbb{T}$ no two weights of $T_x X$ are proportional if and only if there are only finitely many 1-dimensional orbits.

8.12 Graph GKM (V, E, w) ,

- $V = X^\mathbb{T}$ vertices
- E edges = 1-dimensional orbits. After fixing an isomorphism of the orbit with \mathbb{C}^* we get an oriented graph
- edges are labeled with weights $w : \mathbb{T} \rightarrow \mathbb{C}^*$ of the action of \mathbb{T} on $\mathbb{C}^* \simeq$ orbit.

All cohomologies are with coefficients in \mathbb{Q} .

8.13 Basic Lemma: suppose $X = \mathbb{P}^1$, \mathbb{T} acts via $w \in \mathfrak{t}^* \simeq H_{\mathbb{T}}^2(pt)$. Then

$$H_{\mathbb{T}}^*(X) = \{(u_0, u_\infty) \in \Lambda^2 \mid u_0 \equiv u_\infty \pmod{w}\}$$

- It follows from the long exact sequence of the pair $(\mathbb{P}^1, \{0, \infty\})$, since

$$H_{\mathbb{T}}^*(\mathbb{P}^1, \{0, \infty\}) \simeq \Lambda/(w) \quad \text{with a shift of gradation by 1.}$$

8.14 Description of $H_{\mathbb{T}}^*(X)$ for GKM-spaces:

$$0 \rightarrow H_{\mathbb{T}}^*(X) \rightarrow \bigoplus_{x \in F} \Lambda \rightarrow \bigoplus_{\text{1-orbits}} \Lambda / (w_{\ell})$$

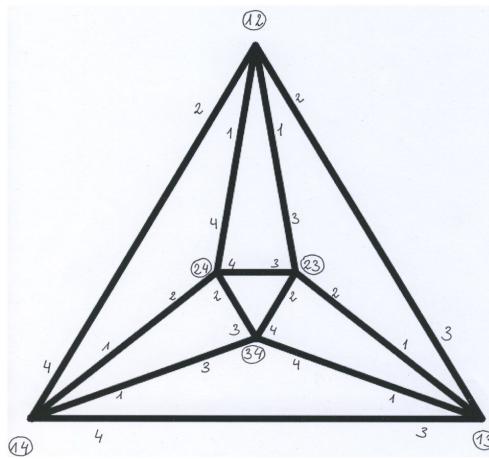
8.15 GKM-algebra associated with a graph $(V, E, w : E \rightarrow \mathfrak{t}_{\mathbb{Z}}^*)$

$$A(V, E, w) := \ker \left(\bigoplus_{v \in V} \Lambda \rightarrow \bigoplus_{e \in E} \Lambda / (w_{\ell}) \right)$$

$$\{a_v\}_{v \in V} \mapsto \{a_{t(e)} - a_{s(e)}\}_{e \in E}$$

(this description does not depend on the orientation of edges)

- The GKM-graph of Grassmannian $Gr_2(\mathbb{C}^4)$



The weight associated to the edge with numbers $i \dots j$ is equal to $t_i - t_j$ or $t_j - t_i$ depending on the choice of the orientation.

8.16 Original reference: Goresky-Kottwitz-MacPherson Equivariant cohomology, Koszul duality, and the localization theorem, Invent. math. 131, (1998). See [Anderson-Fulton, §7].

9 GKM spaces, differential model of equivariant cohomology

9.1 GKM graphs of Grassmannians $Gr_k(\mathbb{C}^n)$:

- vertices V : fixed points are the coordinate subspaces; bijection with subsets $I \subset \{1..n\}$
- edges E if I differs from J by one element; say $i \in I$ is replaced by $j \in J$, then let

$$W = \text{lin}\{\varepsilon_i + \varepsilon_j, \varepsilon_k \mid k \in I \cap J\}.$$

The stabilizer of W has the equation $t_i = t_j$. Hence the orbit of W is 1-dimensional, with the weight equal to $t_i - t_j$.

- Exercise: there are no other edges.

9.2 Moment map: GKM-graph of the Grassmannian can be realized in \mathbb{R}^n . Let $m = \binom{n}{k}$, we identify \mathbb{R}^m with $\wedge^k \mathbb{R}^m$:

- We have a map:

$$Gr_k(\mathbb{C}^n) \xrightarrow{\text{Plücker}} \mathbb{P}(\wedge^k \mathbb{C}^n) = \mathbb{P}^m \xrightarrow{\mu} \mathbb{R}^n,$$

where

$$\mu : [\dots, z_I, \dots] \mapsto \frac{1}{\|z\|^2}(\dots, |z_I|, \dots) \mapsto \frac{1}{|z|^2}(\dots, \sum_{I \ni i} |z_I|^2, \dots).$$

This map is the composition of the standard moment map from \mathbb{P}^m to m -dimensional simplex

$$[\dots : z_I : \dots] \mapsto \frac{1}{\|z\|^2}(\dots, |z_I|^2, \dots)$$

with a linear map $\mathbb{R}^m \rightarrow \mathbb{R}^n$.

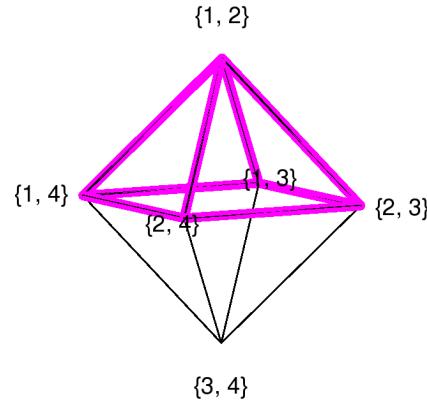
- The 1-dimensional orbits are mapped to intervals.
- The image is contained in $\{x_1 + x_2 + \dots + x_m = k\}$.
- For \mathbb{P}^n the GKM graph is the 1-skeleton of the standard n -simplex.
- For $n = 4, m = 2$ we get octahedron in $\{x_1 + x_2 + x_3 + x_4 = 2\}$

$$\begin{aligned} \varepsilon_1 \wedge \varepsilon_2 &\mapsto (1, 1, 0, 0) \\ \varepsilon_1 \wedge \varepsilon_3 &\mapsto (1, 0, 1, 0) \\ \varepsilon_1 \wedge \varepsilon_4 &\mapsto (1, 0, 0, 1) \\ \varepsilon_2 \wedge \varepsilon_3 &\mapsto (0, 1, 1, 0) \\ \varepsilon_2 \wedge \varepsilon_4 &\mapsto (0, 1, 0, 1) \\ \varepsilon_3 \wedge \varepsilon_4 &\mapsto (0, 0, 1, 1) \end{aligned}$$

- It will follow from differential methods, that the GKM graph of a projective manifold is canonically realized as a graph in \mathfrak{t}^* .

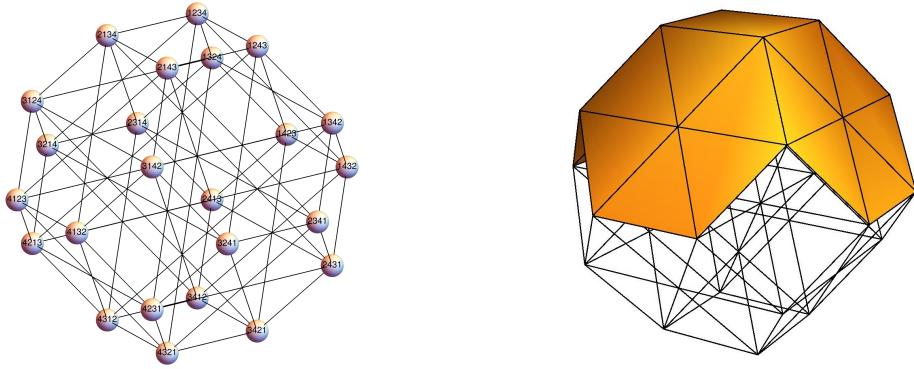
9.3 If X is smooth of dimension n , then there are n edges at each vertex. For singular spaces can be more edges from one vertex:

- GKM graph for the Schubert variety $X_1 = \{W \in Gr_2(\mathbb{C}^4) \mid W \cap \text{lin}\{\varepsilon_1, \varepsilon_2\} \neq 0\}$. The point $\{1, 2\}$ is singular.



9.4 GKM-graph for the flag variety $\mathcal{F}\ell(n)$

- The vertices V are labeled by permutations
- Since $\mathcal{F}\ell(n) \subset \prod_{k=1}^{n-1} Gr_k(\mathbb{C}^n)$ we see that one dimensional orbits join permutations if and only permutations differ by a transposition $\tau_{i,j}$
- One can realize the GKM graph in $\{\sum_{i=1}^n x_i = \frac{n(n+1)}{2}\} \subset \mathbb{R}^n$. The permutation $\sigma \mapsto (\sigma(1), \sigma(2), \dots, \sigma(n))$. Note that there are internal edges.
- For $n = 4$



Proof of Chang-Skjelbred lemma for smooth GKM spaces.

9.5 Notation:

- $H_{\mathbb{T}}^*(pt) = \Lambda = \mathbb{Q}[t_1, t_2, \dots, t_r]$
- $w : Edges \rightarrow \Lambda = \mathbb{Q}[t_1, t_2, \dots, t_r], \ell \mapsto w_\ell$
- $\phi \in \Lambda$ the least common multiple of all weights appearing as in the stabilizers (up to a coefficient in \mathbb{Q}). For each weight appearing in the product let $\psi_w := \phi/w$.
- Let $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_s$ be a basis over Λ of the free module $H_{\mathbb{T}}^*(X)$. By the first localization theorem $H_{\mathbb{T}}^*(X^{\mathbb{T}}) \simeq \bigoplus_{x \in X^{\mathbb{T}}} \Lambda$. The isomorphism is induced by the inclusion $\iota : X^{\mathbb{T}} \rightarrow X$. The set $\iota^* \varepsilon_1, \iota^* \varepsilon_2, \dots, \iota^* \varepsilon_s$ is a basis of $K \otimes_{\Lambda} H_{\mathbb{T}}^*(X^{\mathbb{T}})$ over the quotient field $K = (\Lambda)$. Any element $\underline{u} \in H_{\mathbb{T}}^*(X^{\mathbb{T}})$ can be written as

$$\underline{u} = \{u_x\}_{x \in X^{\mathbb{T}}} = \sum \frac{r_i}{s_i} \iota^* \varepsilon_i,$$

i.e. a sum of the basis vectors with the coefficients presented as irreducible fractions $\frac{r_i}{s_i}$ (it is unique up to a \mathbb{Q} -factor). The denominators s_i are products of w_ℓ 's.

Goal: Show that the coefficients $\frac{r_i}{s_i}$ are integral, i.e. $s_i = 1$, provided that the divisibility condition is satisfied.

9.6 Suppose $\underline{u} \in H_{\mathbb{T}}^*(X^{\mathbb{T}}) \simeq \bigoplus_{x \in X^{\mathbb{T}}} \Lambda$ satisfies the divisibility condition

$$w_\ell \mid u_{s(\ell)} - u_{t(\ell)},$$

where $s(\ell)$ is the source, and $t(\ell)$ is the target of the edge in the GKM graph.

- Define

$$X_w = X^{\mathbb{T}} \cup (\text{sum of the orbits with } \mathbb{T}\text{-action via } kw, k \in \mathbb{Q}).$$

With our assumptions $X_w = X^{\mathbb{T}} \cup (\text{disjoint union of } \mathbb{P}^1\text{'s})$

We claim, that the product of $\psi_w \underline{u}$ belongs to the image of $H_{\mathbb{T}}^*(X_w)$ in $H_{\mathbb{T}}^*(X)$.

- Proof of the claim:

- If no edges adjacent to x is proportional to w , then x is isolated in X_w . Then $\psi_w u_x$ is equal to $(\iota_x)_*(\frac{\psi_w}{e(x)} u_x)$, where $e(x)$ is the Euler class at x and $\frac{\psi_w}{e(x)} \in \Lambda$.
- If x and y are connected by the edge ℓ i.e. an orbit with \mathbb{T} -action having the weight $w_\ell = qw$, $q \in \mathbb{Q}$, then $e(\nu_x) = \frac{e(x)}{qw} \in \Lambda$ i.e. $e(\nu_y) = \frac{e(y)}{qw} \in \Lambda$ are the Euler classes of the normal bundle of the closure² of the orbit $\simeq \mathbb{P}^1$:

$$\nu = f_\ell^*(TX) - T\mathbb{P}^1, \quad f_\ell : \mathbb{P}^1 \hookrightarrow X \quad e(\nu) = f_\ell^*(e(TX))/e(T\mathbb{P}^1).$$

²In fact one has to take the normalization of the orbit.

Hence

$$e(\nu_x) = e(\nu_y) \pmod{w} \quad (2)$$

Let $\alpha_x = \frac{\psi_w}{e(\nu_x)} \in \Lambda$, $\alpha_y = \frac{\psi_w}{e(\nu_y)} \in \Lambda$. We have $\alpha_x e(\nu_x) = \alpha_y e(\nu_y)$, and w is not proportional to any factor of that. From (2) it follows

$$\alpha_x = \alpha_y \pmod{w}.$$

Since by the assumption

$$u_x = u_y \pmod{w}$$

we have

$$\alpha_x u_x = \alpha_y u_y \pmod{w}.$$

We deduce that $\{\alpha_x u_x, \alpha_y u_y\}$ defines an element of the cohomology of the closure of the orbit joining x with y . The push-forward to X restricted to x is equal to $\psi_w u_x$ and restricted to y respectively $\psi_w u_y$. \diamond

9.7 The end of the proof of CS Lemma: The coefficients of $\psi_w \underline{u} = \sum \frac{\psi_w r_i}{s_i} \iota^* \varepsilon_i$ belong to Λ . The weight w does not divide ψ_w , hence w does not divide s_i . Since w was arbitrary, $s_i = 1$. Finally we conclude that $\underline{u} = \iota^* (\sum r_i \epsilon_i)$.

\square

Differential model of equivariant cohomology — an overview of the next few lectures

9.8 A model of $\Omega^*(E\mathbb{T})$: It should be a differential graded algebra A^\bullet

- a module over $H^*(B\mathbb{T}) \simeq \text{Sym}^\bullet(\mathfrak{t}^*) = \text{Polynomials}(\mathfrak{t})$
- acyclic, i.e. $H^*(A^\bullet) \simeq H^*(pt) \simeq \mathbb{R}$
- an action of $\lambda \in \mathfrak{t}$ lowering degree by one - an analogue of the contraction of a form with the vector field generated by λ .
- Economic solution: the Weil algebra $W^\bullet(\mathfrak{t}) := \text{Sym}^\bullet \mathfrak{t}^* \otimes \wedge^\bullet \mathfrak{t}^*$. For $\xi \in \mathfrak{t}^* = \wedge^1 \mathfrak{t}^* = \text{Sym}^1 \mathfrak{t}^*$

$$1 \otimes \xi \in W^1(\mathfrak{t}), \quad \xi \otimes 1 \in W^2(\mathfrak{t}).$$

To define the differential let us fix a basis of \mathfrak{t} : $\alpha_1, \alpha_2, \dots, \alpha_r$ and the dual basis of \mathfrak{t}^* : $\alpha_1^*, \alpha_2^*, \dots, \alpha_r^*$. For $f \in \text{Sym}^\bullet \mathfrak{t}^*$, $\xi \in \Lambda^\bullet \mathfrak{t}^*$

$$d(f \otimes \xi) := \sum_{i=1}^r f \cdot \alpha_i^* \otimes \iota_{\alpha_i} \xi,$$

where ι_{α_i} is the contraction of the form ξ with the vector α_i

- Exercise: show that $d^2 = 0$ and that the differential does not depend on the choice of a basis.
- Example $n = 1$. Let $\xi = \alpha_1^*$:

$$W(\mathfrak{t}) \simeq \mathbb{R}[t] \otimes (\mathbb{R} \oplus \mathbb{R}\xi)$$

$$d(t^k \otimes \xi) = t^{k+1} \otimes 1, \quad d(t^k \otimes 1) = 0$$

9.9 There is a map from $W^\bullet(\mathfrak{t})$ to the forms on approximations of $E\mathbb{T}$:

$$\Omega^\bullet(E\mathbb{T}) := \lim_{\leftarrow} \Omega^\bullet((\mathbb{C}^m \setminus \{0\})^r)$$

sending the generators of $\text{Sym}^\bullet(\mathfrak{t}^*)$ to pull-backs of forms living on $B\mathbb{T}$ and the generators of $\wedge^\bullet(\mathfrak{t}^*)$ to connection forms. (It will be explained later.)

9.10 Similarly to the model of $\Omega^\bullet(EG)$ a model of $\Omega^*(E\mathbb{T} \times^{\mathbb{T}} X)$ is obtained. The exterior algebra $\wedge^\bullet \mathfrak{t}^*$ which serve as $H^*(\mathbb{T}) = \Omega^\bullet(\mathbb{T})^{\mathbb{T}}$ is replaced by $\Omega^\bullet(X)^{\mathbb{T}}$. The complex of twisted differential forms is defined as

$$Sym^\bullet \mathfrak{t}^* \otimes \Omega^\bullet(X)^{\mathbb{T}}$$

with the differential \tilde{d} , which is a map of $Sym^\bullet \mathfrak{t}^*$ -modules. For a form $\alpha \in \Omega^k(X)^{\mathbb{T}}$ let

$$\begin{aligned} \tilde{d}(1 \otimes \alpha) &\in \mathbb{R} \otimes \Omega^{k+1}(X)^{\mathbb{T}} \oplus \mathfrak{t}^* \otimes \Omega^{k-1}(X)^{\mathbb{T}} \\ \tilde{d}(1 \otimes \alpha) &= 1 \otimes d\alpha + \sum_{i=1}^r \alpha_i^* \otimes \iota_{v_\lambda} \alpha, \end{aligned}$$

where v_λ is the fundamental field generated by $\lambda \in \mathfrak{t}$.

9.11 If $\mathbb{T} = S^1$ then we obtain the model constructed by Witten. The equivariant differential forms are defined as $Sym^\bullet \mathfrak{t}^* \otimes \Omega^\bullet(X)^{\mathbb{T}} = \Omega^\bullet(X)^{\mathbb{T}}[h]$, i.e. polynomials in h with coefficients in $\Omega^\bullet(X)^{\mathbb{T}}$. The standard differential is perturbed by the contraction

$$\tilde{d}(\alpha) = d\alpha - h\iota_v \alpha.$$

We think of h as something very small.

- From the Cartan formula expressing the Lie derivative $\mathcal{L}_v = \iota_v d + d\iota_v$ we compute $\tilde{d} = 0$.

10 De Rham model of equivariant cohomology

Main reference:

Atiyah, M. F.; Bott, R. *The moment map and equivariant cohomology*, Topology 23 (1984), no. 1, 1-28.

Text-book: Guillemin, Victor W.; Sternberg, Shlomo. *Supersymmetry and equivariant de Rham theory*. Springer, 1999

10.1 Basics about differential forms $\Omega^\bullet(M)$ on a C^∞ manifolds

- $(\Omega^\bullet(M), d)$ is a CDGA i.e. a graded-commutative algebra with a differential satisfying the Leibniz rule

- vector fields act on forms: for $X \in \Gamma(TM)$ there is a contraction operator:

$$\iota_X : \Omega^k(M) \rightarrow \Omega^{k-1}(M).$$

such that for a function $f \in \Omega^0(M) = C^\infty(M)$

$$\iota_X df = Xf.$$

The contraction is an odd derivative

$$\iota_X(a \wedge b) = \iota_X a \wedge b + (-1)^{\deg a} a \wedge \iota_X b,$$

$$\iota_X \circ \iota_X = 0.$$

- Lie derivative \mathcal{L}_X :

$$\mathcal{L}_X f = Xf, \quad \text{for } f \in \Omega^0(M),$$

$$\mathcal{L}_X(a \wedge b) = \mathcal{L}_Xa \wedge b + a \wedge \mathcal{L}_Xb,$$

$$d \circ \mathcal{L}_X = \mathcal{L}_X \circ d.$$

$$[\mathcal{L}_X, \mathcal{L}_Y] = \mathcal{L}_{[X, Y]}.$$

10.2 Cartan formula

$$\boxed{\mathcal{L}_X = d\iota_X + \iota_X d.}$$

- Proof: it is enough to check that it agrees for functions (YES) and both sides of equations commute with the differential and satisfy the (even) Leibniz rule:

$$d(d\iota_X + \iota_X d) = d^2\iota_X + d\iota_X d = d\iota_X d = d\iota_X d + \iota_X d^2 = (d\iota_X + \iota_X d)d.$$

- Leibniz rule: this is a general phenomenon, that the super-commutator of two odd differentiations is an even differentiation. Set $U = \iota_X$, $V = d$. We skip \wedge and write $|a|$ for $\deg a$

$$[U, V] = UV + VU,$$

$$\begin{aligned} UV(ab) &= U((Va)b + (-1)^{|a|}a(Vb)) \\ &= (UVa)b + (-1)^{|a|-1}(Va)(Ub) + (-1)^{|a|}(Ua)(Vb) + (-1)^{2|a|}a(UVb) \end{aligned}$$

$$\begin{aligned} VU(ab) &= V((Ua)b + (-1)^{|a|}a(Ub)) \\ &= (VUa)b + (-1)^{|a|-1}(Ua)(Vb) + (-1)^{|a|}(Va)(Ub) + (-1)^{2|a|}a(VUb) \end{aligned}$$

Hence

$$(UV + VU)(ab) = ((UV + VU)a)b + a((UV + VU)b).$$

- 10.3 We study manifolds with an action of a compact, connected Lie group G . Each element $\lambda \in \mathfrak{g} = \text{Lie}(G)$ generates a vector field, denoted v_λ .

- Taking the fundamental field

$$\mathfrak{g} \xrightarrow{v} \{\text{vector fields on } M\}.$$

is a map of Lie algebras, i.e.

$$[v_\lambda, v_\mu] = v_{[\lambda, \mu]}.$$

- The contraction with v_λ will be denoted by ι_λ .

10.4 The structure which will be relevant in what follows is:

- M a graded vector space or an algebra
- M is equipped with a differential d of degree 1 and operations \mathcal{L}_λ of degree 0 and ι_λ of degree -1 . All together satisfy the commutative relations as described above.
- In other words M is a representation of the graded Lie algebra $\mathfrak{g} \oplus \mathfrak{g} \oplus \mathbb{R}d$

$$[\iota_\lambda, \iota_\mu] = 0, \quad [\mathcal{L}_\lambda, \iota_\mu] = \iota_{[\lambda, \mu]}, \quad [d, \iota_\lambda] = \mathcal{L}_\lambda,$$

$$[\mathcal{L}_\lambda, \mathcal{L}_\mu] = \mathcal{L}_{[\lambda, \mu]}, \quad [\mathcal{L}_\lambda, d] = 0, \quad [d, d] = 0.$$

- Later we will assume that $\mathfrak{g} = \mathfrak{t}$ is commutative, i.e. $[\lambda, \mu] = 0$.

10.5 The group G acts on $\Omega^\bullet(M)$. If G is connected

$$\Omega^\bullet(M)^G = \{\alpha \in \Omega^\bullet(M) \mid \forall \lambda \in \mathfrak{g} \quad \mathcal{L}_\lambda \alpha = 0\} =: \Omega^\bullet(M)^\mathfrak{g}.$$

10.6 Assume G is connected. For all $g \in G$ and $[\alpha] \in H^*(M)$ the transported form has the same cohomology class $[g^*\alpha] = [\alpha]$.

10.7 If G is compact, every form can be averaged. Hence

$$H^*(\Omega^*(M)^G) = H^*(\Omega^*(X)).$$

Principal bundles

10.8 Let $p : P \rightarrow B = M/G$ be a principal bundle. The group is assumed to be compact and connected. Let us define *basic forms* [Guillemin-Sternberg §2.3.5]:

$$\Omega^*(P)_{bas} = \{\alpha \in \Omega^*(P) \mid \forall v_0 \in \mathfrak{g} \quad \mathcal{L}_{v_0} \alpha = 0, \quad \iota_{v_0} \alpha = 0\} = \{\alpha \in \Omega^*(P) \mid \forall v_0 \in \mathfrak{g} \quad \iota_{v_0} \alpha = 0, \quad \iota_{v_0} d\alpha = 0\}.$$

This is a subcomplex.

10.9 Theorem:

$$\Omega^*(P)_{bas} = p^* \Omega^*(B) \simeq \Omega^*(B).$$

10.10 For M with an action of $\mathbb{T} = S^1$. For short let $\iota = \iota_\lambda$ for a fixed $\lambda \in \mathfrak{t}$. Let us define a differential in $\mathbb{R}[h] \otimes \Omega^*(M)^\mathbb{T}$

$$d_h(\omega) = d - h\iota.$$

This is called the Cartan construction, also appears in a Witten's paper [Supersymmetry and Morse theory, J. Differential Geometry 17 (1982), no. 4, 661-692]. The symbol h stands for an independent variable, which lives in the gradation 2. If we specialize h to a number, then we obtain a \mathbb{Z}_2 -graded complex. (Sometimes it is more convenient to have $+h\iota$, but we obtain an isomorphic complex).

10.11 The cohomology $H_{\mathbb{T},dR}^*(M) = H^*(\Omega^*(M)^\mathbb{T}[h], d_h)$ is a module over the polynomial ring $\mathbb{R}[h]$. If $M = pt$ then $H_{\mathbb{T},dR}^*(M) = \mathbb{R}[h]$.

10.12 We will show, that $H_{\mathbb{T},dR}^*(M) \simeq H_{\mathbb{T}}^*(M; \mathbb{R})$, first constructing a map on the level of differential forms.

- There is a mapping $\mathbb{R}[h] \rightarrow \Omega^2(\mathbb{P}^n)$, $h \mapsto \omega_n$, where ω_n is the Fubini-Study form. (It is enough to assume that $[\omega_n]$ generates $H^2(\mathbb{P}^n)$ and $(\omega_{n+1})|_{\mathbb{P}^n} = \omega_n$ to get a map to \varprojlim .)
- Define $M_{\mathbb{T},n} = S^{2n+1} \times^\mathbb{T} M$, an approximation of the Borel construction. The polynomial ring $\mathbb{R}[h]$ acts on $\Omega^*(M_{\mathbb{T},n})$, h acts as the pull back of ω_n .

10.13 We will construct a map of $\mathbb{R}[h]$ modules

$$\mathbb{R}[h] \otimes \Omega^*(M)^\mathbb{T} \rightarrow \Omega^*(M_{\mathbb{T},n}) = \Omega^*(S^{2n+1} \times M)_{bas}$$

First approximation: For $\alpha \in \Omega^*(M)^\mathbb{T}$

$$1 \otimes \alpha \mapsto p^*\alpha,$$

where $p : S^{2n+1} \times M \rightarrow M$ is the projection.

- We check if the image is a basic form:

- $p^*\alpha$ is \mathbb{T} -invariant (YES)

- $\iota(p^*\alpha) = 0$? (NO)

Some correction needs to be done.

10.14 The principal bundle and its connection: Suppose $P \rightarrow P/\mathbb{T} = B$ is a principal bundle. The tangent space of the fiber at each point is canonically isomorphic to \mathfrak{t} . With fixed $\lambda \in \mathfrak{t}$, the vector v_λ spans that fiber.

- The connection is a \mathbb{T} -invariant 1-form θ , such that $\theta(v_\lambda) = 1$. Such form can be constructed having a \mathbb{T} -invariant metric.

$$\theta(w) = \frac{(v_\lambda, w)}{(v_\lambda, v_\lambda)}.$$

This is just the orthogonal projection from TP to the tangent space of the fiber, i.e. to $\ker(TP \rightarrow TB)$

- In general a connection is a 1-form with values in \mathfrak{g} , which is G invariant, with G acting on \mathfrak{g} via the adjoint representation..

10.15 Let $\theta \in \Omega^1(S^{2n+1})^{\mathbb{T}}$, be the connection. This is equivalent to $\iota\theta = 1$. It is elementary to check that

$$\theta = -\frac{i}{2\pi} \partial \log ||z||^2$$

is a good choice. When restricted to the points of the form $(z_0, 0, \dots, 0)$ it is equal to

$$-\frac{i}{2\pi} \frac{\bar{z}_0 dz_0}{|z_0|^2} = -\frac{i}{2\pi} \frac{dz_0}{z_0}.$$

For the parametrization of the orbit $\gamma_z(t) = e^{2\pi it}z$ we compute

$$\theta(\dot{\gamma}(0)) = \left\langle -\frac{i}{2\pi} \gamma_z^*(\frac{dz}{z}), \frac{d}{dt} \right\rangle = \left\langle -\frac{i}{2\pi} \frac{2\pi i e^{2\pi it} z dt}{e^{2\pi it} z}, \frac{d}{dt} \right\rangle = 1$$

The differential $d\theta$ is a basic form and it is the Kähler form ω_n on \mathbb{P}^n .

- It follows that in general $d\theta$ is a basic form: $[d\theta] \in H^2(P/\mathbb{T})$ is the first Chern class of the line bundle associated to P (up to a scalar).

10.16 Correction: We identify θ_n with its pull-back to $S^{2n+1} \times M$.

- Let

$$\alpha' = p^*\alpha - \theta_n \wedge p^*\iota\alpha.$$

We have

$$\iota\alpha' = \iota p^*\alpha - \iota(\theta_n \wedge p^*\iota\alpha) = \iota p^*\alpha - 1 \wedge p^*\iota\alpha + \theta_n \wedge \iota p^*\iota\alpha = 0.$$

- We check that the map $\phi : f(h) \otimes \alpha \mapsto f(\omega_n) \wedge (p^*\alpha - \theta \wedge p^*(\iota\alpha))$ is a chain map. It is enough to check for $f(h) = 1$

$$\begin{aligned} d\phi(1 \otimes \alpha) &= d(p^*\alpha - \theta_n \wedge p^*(\iota\alpha)) \\ &= dp^*\alpha - d\theta_n \wedge p^*(\iota\alpha) + \theta_n \wedge dp^*(\iota\alpha), \\ \phi(d_h(1 \otimes \alpha)) &= \phi(1 \otimes d\alpha - h \otimes \iota\alpha) = \phi(1 \otimes d\alpha) - \phi(h \otimes \iota\alpha) \\ &= p^*d\alpha - \theta_n \wedge p^*(\iota d\alpha) - \omega_n \wedge p^*(\iota\alpha) \end{aligned}$$

Since α is \mathbb{T} invariant

$$dp^*(\iota\alpha) = p^*(d\iota\alpha) = p^*(-\iota d\alpha)$$

we obtain that $d\phi(1 \otimes \alpha) = \phi(d_h(1 \otimes \alpha))$.

10.17 Theorem: the map $\phi : \mathbb{R}[h] \otimes \Omega^\bullet(M)^\mathbb{T} \rightarrow \varprojlim \Omega^\bullet(S^{2n+1} \times M)_{bas}$ is a quasiisomorphism, i.e. an isomorphism of cohomologies.

- Proof:

- The complex $\mathbb{R}[h] \otimes \Omega^\bullet(M)$ is filtered (a decreasing filtration) by the powers the ideal (h) .
- The complex $\varprojlim \Omega^\bullet(S^{2n+1} \times M)_{bas}$ is filtered by

$$\ker(\varprojlim \Omega^\bullet(S^{2n+1} \times M)_{bas} \rightarrow \Omega^\bullet(S^{2n+1} \times M)_{bas}).$$

The map ϕ is a quasiisomorphism on the associated graded complexes. Hence it is a quasiisomorphism. (This is an exercise in homological algebra.)

11 Models for higher dimensional Lie groups. Moment map $M \rightarrow \mathfrak{t}^*$

11.1 Reference to general theory of G^* modules: Guillemin-Sternberg §2. **We make the assumption $G = \mathbb{T}$ simplifying radically the formulas.**

11.2 Let $p : P \rightarrow B$ be a S^1 -principal bundle (i.e. S^1 acts freely on P and $B = P/S^1$). We identify S^1 with the image

$$\mathbb{R} \rightarrow \mathbb{C}, \quad t \mapsto e^{2\pi it},$$

hence we have determined the choice of $\lambda \in \mathfrak{t} \simeq \mathbb{R}$.

- Let $\theta \in \Omega^1(P; \mathfrak{t})^\mathbb{T} \simeq \Omega^1(P)^\mathbb{T}$ be a connection, i.e. $\iota\theta = 1$.
- The form $d\theta$ is closed. We check that $d\theta$ is a basic form

$$\iota d\theta = \mathcal{L}\theta - d\iota\theta = 0 - d1 = 0.$$

Hence $d\theta$ defines an element of $H^2(B)$.

• Exercise: $[d\theta] = c_1(L)$, where L is the associated line bundle $L = P \times^{S^1} \mathbb{C}$. In particular the cohomology class does not depend on the choice of the connection. Hint for $B = \mathbb{P}^n$ we have $d\theta = -\omega_{FS}$.

11.3 The case of a higher dimensional torus $\mathbb{T} = (S^1)^n$ acting on a smooth manifold M :

- Set $A = \Omega^\bullet(M)$. Let

$$\tilde{A} = \text{Polynomial functions}(\mathfrak{t}, A)^\mathbb{T} \simeq \text{Sym } \mathfrak{t}^* \otimes A^\mathbb{T}$$

Here

$$\text{Sym } \mathfrak{t}^* = \bigoplus_{k=0}^{\infty} \text{Sym}^k \mathfrak{t}^* = \text{Polynomial functions on } \mathfrak{t}.$$

• The constructions below are purely algebraic. Thus we consider a G^* module A i.e a graded vector space equipped with operations $d, \iota_\lambda, \mathcal{L}_\lambda$ for $\lambda \in \mathfrak{t}$ satisfying the relations 10.3.

- We set

$$A_{hor} = \{\alpha \in A \mid \forall \lambda \in \mathfrak{t} \ \iota_\lambda \alpha = 0\} \quad \text{horizontal submodule}$$

and

$$A_{bas} = A_{hor}^{\mathbb{T}} = \{\alpha \in A \mid \forall \lambda \in \mathfrak{t} \ \iota_\lambda \alpha = 0, \ \iota_\lambda d\alpha = 0\}.$$

- The differential in \tilde{A} is Sym \mathfrak{t}^* -linear and for $\alpha \in A^k$

$$\tilde{d}(1 \otimes \alpha)(\lambda) = d\alpha - \iota_\lambda \alpha$$

viewed as a function on \mathfrak{t} , which is linear with respect to λ , i.e. it belongs to

$$\mathbb{R} \otimes A^{k+1} \oplus \mathfrak{t}^* \otimes A^{k-1}.$$

In a basis $\lambda_1, \dots, \lambda_n$ of \mathfrak{t}

$$\tilde{d}(1 \otimes \alpha) = 1 \otimes d\alpha - \sum_{i=1}^n \lambda_i^* \otimes \iota_{\lambda_i} \alpha.$$

- We will use physicists notation. The vectors will have superscripts, and functionals subscripts. Also the running index will be a instead of i , which can easily confused with ι . We write

$$\tilde{d}(1 \otimes \alpha) = 1 \otimes d\alpha - \sum_{a=1}^n \lambda_a \otimes \iota_{\lambda^a} \alpha$$

or according to the Einstein notation

$$\tilde{d}(1 \otimes \alpha) = 1 \otimes d\alpha - \lambda_a \otimes \iota_{\lambda^a} \alpha.$$

11.4 [Guillemin-Sternberg §3.2] If $A = \Omega^\bullet(\mathbb{T})$, then $A^{\mathbb{T}} = \wedge \mathfrak{t}^*$. The resulting \tilde{A} is the Weil algebra of \mathfrak{t}

$$W(\mathfrak{t}) = Sym(\mathfrak{t}^*) \otimes \wedge \mathfrak{t}^*.$$

- Theorem: $H^0(W(\mathfrak{t})) = \mathbb{R}$ and $H^k(W(\mathfrak{t})) = 0$ for $k > 0$.

Proof: Since $W(\mathfrak{t}_1 \oplus \mathfrak{t}_2) = W(\mathfrak{t}_1) \otimes W(\mathfrak{t}_2)$ as dg-algebra, it is enough to compute cohomology for \mathfrak{t} of dimension 1. This was an easy check.

- Since $\Omega^\bullet(\mathbb{T})^{\mathbb{T}} = \wedge \mathfrak{t}^*$, if $\dim \mathbb{T} = 1$ an explicit map from $W(\mathfrak{t}) = \mathbb{R}[h] \otimes (\mathbb{R} + \mathfrak{t}^*)$ to

$$(\Omega^\bullet(S^{2m+1} \setminus 0) \times \wedge \mathfrak{t}^*)_{bas}$$

was already given in the previous section:

$$f \otimes \xi \mapsto f(\omega_{FS})(\xi - \theta \wedge \iota \xi).$$

For higher dimensional tori we take the product of these maps and obtain a quasiisomorphism

$$W(\mathfrak{t}) \rightarrow \Omega^\bullet(E\mathbb{T} \times^{\mathbb{T}} \mathbb{T}) \xrightarrow{qis} \Omega^\bullet(E\mathbb{T}).$$

The right hand side is understood as the inverse limit of forms on finite dimensional representations. Note that $W(\mathfrak{t})$ is a very economic model of forms on $E\mathbb{T}$.

Mathai-Quillen twist See [Mathai-Quillen: Superconnections, Thom classes, and equivariant differential forms. Topology 25(1986), no.1, 85-110], [Guillemin-Sternberg §7.2]

We construct an explicit map of complexes

$$\tilde{A} \rightarrow (W(\mathfrak{t}) \otimes A)_{bas} \xrightarrow{qis} (\Omega^\bullet(EG) \otimes A)_{bas},$$

which for $A \simeq \Omega^\bullet(M)$ will provide a convenient model for the equivariant cohomology.

11.5 [Guillemin-Sternberg §2.3.4] Let A be a \mathbb{T}^* module. We say that A is locally free if there exists a connection, i.e. $\theta \in \mathfrak{t} \otimes (A^1)^{\mathbb{T}}$, in a basis of \mathfrak{t} it can be written as

$$\sum_{a=1}^n \lambda^a \otimes \theta_a.$$

such that for

$$\theta_a(\lambda^b) = \delta_a^b.$$

- Differential forms $\Omega^\bullet(M)$ is a locally free \mathbb{T}^* module if the action of T is locally free, i.e. the stabilizers of points are finite.

11.6 Mathai-Quillen twist: consider \mathbb{T}^* -algebras W and A , with W locally free (e.g. $W = W(\mathfrak{t})$). Let

$$\gamma = \sum \theta_a \otimes \iota_{\lambda^a},$$

$$\phi = \exp(\gamma) \in \text{Aut}(W \otimes A) = 1 + \gamma + \frac{1}{2}\gamma \circ \gamma + \dots$$

It is well defined since $\gamma^{n+1} = 0$ for $n = \dim(\mathbb{T})$.

11.7 The map γ , hence also ϕ , is T -invariant.

- **Theorem.** [Guillemin-Sternberg, chapter 4, Theorem 4.1.1] For any $\lambda \in \mathfrak{t}$

$$\phi \circ (\iota_\lambda \otimes 1 + 1 \otimes \iota_\lambda) \circ \phi^{-1} = \iota_\lambda \otimes 1$$

$$\phi \circ (d \otimes 1 + 1 \otimes d) \circ \phi^{-1} = (d \otimes 1 + 1 \otimes d) - \sum \nu_a \otimes \iota_{\lambda^a} + \sum \theta_a \otimes \mathcal{L}_{\lambda^a}$$

where $\nu_a = d\theta_a$

- This is a direct computation. See [W. Greub, S. Halperin, S, Vanstone: Curvature, Connections and Cohomology, vol. III Academic Press New York. (1976)] Prop. V, p.286,, or better compute it manually. This is an **Exercise**.

11.8 After the twist

$$\phi((W \otimes A)_{hor}) = W_{hor} \otimes A$$

For $W = W(\mathfrak{t})$

$$\phi((W \otimes A)_{bas}) = S(\mathfrak{t}) \otimes A$$

with the differential

$$\tilde{d} = 1 \otimes d - \sum \lambda^a \otimes \iota_{\lambda_a}$$

That is exactly the **Cartan model** of equivariant cohomology. [Guillemin-Sternberg §4.2]

11.9 The construction can be carried out for noncommutative connected groups. The action of G on \mathfrak{g} has to be taken into account. Then the cohomology of

$$(Sym \mathfrak{g}^* \otimes \Omega^\bullet(M))^G$$

with an appropriate differential serves, as a model for equivariant cohomology. Reference: Guillemin-Sternberg §3-4

Moment map

11.10 Assume $T = S^1$. Let $\alpha \in \Omega^2(M)^\mathbb{T}$. Suppose $d\alpha = 0$. An equivariant enhancement of α is a function $f \in \Omega^0(M)$, such that

$$d_h(1 \otimes \alpha - h \otimes f) = 0,$$

i.e.

$$1 \otimes d\alpha - h \otimes \iota\alpha + h \otimes df = 0.$$

This reduces to

$$\iota\alpha = df.$$

11.11 Basic example: Moment map $f : \mathbb{P}^1 \rightarrow \mathbb{R}$.

- Suppose $\mathbb{T} = S^1$ acts on \mathbb{P}^1 with the weights (λ_0, λ_1) . In the 0-th affine standard chart the action is linear and the weights are $\lambda_1 - \lambda_0$. The fundamental field at the point z is equal to

$$v = \frac{d}{dt}(e^{(\lambda_1 - \lambda_0)2\pi it}z)|_{t=0} = 2\pi i(\lambda_1 - \lambda_0)z = 2\pi(\lambda_1 - \lambda_0)(-y + ix)$$

i.e.

$$v = 2\pi(\lambda_1 - \lambda_0) \left(-y \frac{d}{dx} + x \frac{d}{dy} \right).$$

Let $\alpha = \omega_{FS}$. In the affine coordinate

$$\omega_{FS} = \frac{i}{2\pi} \partial \bar{\partial} \log(1 + |z|^2) = \frac{i}{2\pi} \frac{dz \wedge d\bar{z}}{(1 + |z|^2)^2} = \frac{1}{\pi} \frac{dx \wedge dy}{(1 + x^2 + y^2)^2}.$$

We compute the contraction

$$\iota_v \omega_{FS} = 2\pi(\lambda_1 - \lambda_0) (-y \iota_x \omega_{FS} + x \iota_y \omega_{FS}) = -2\pi(\lambda_1 - \lambda_0) \frac{ydy + xdx}{(1 + x^2 + y^2)^2}.$$

Let

$$f = \frac{\lambda_0 + \lambda_1 |z|^2}{1 + |z|^2} = \frac{\lambda_0 + \lambda_1 (x^2 + y^2)}{1 + x^2 + y^2},$$

$$df = (\lambda_1 - \lambda_0) \frac{2xdx + 2ydy}{(1 + x^2 + y^2)^2}.$$

The form

$$1 \otimes \omega_{FS} - h \otimes \pi f$$

is a closed equivariant form.

- Globally f is defined by the formula

$$f([z_0, z_1]) = \frac{\lambda_0 |z_0|^2 + \lambda_1 |z_1|^2}{\|z\|^2}.$$

11.12 In general, if the action on \mathbb{P}^n has weights $(\lambda_0, \lambda_1, \dots, \lambda_n)$ we set

$$f([z]) = \frac{\sum_{i=0}^n \lambda_i |z_i|^2}{\|z\|^2}$$

Then $1 \otimes \omega_n - h \otimes \pi f$ is an equivariant d_h -closed form.

- An element $f \in \mathfrak{t}^* \otimes \Omega^0(M) = \text{Hom}(\mathfrak{t}, C^\infty(M))$ by adjunction is the same as a map $\mu : M \rightarrow \mathfrak{t}^*$

$$\langle \mu(x), \lambda \rangle = f(\lambda)(x).$$

- For $\mathbb{T} = (S^1)^{n+1}$ acting on \mathbb{P}^n we obtain the map

$$\mu([z]) = \frac{1}{||z||^2}(|z_0|^2, |z_1|^2, \dots, |z_n|^2).$$

Symplectic geometry [Guillemin-Sternberg §9], but before beginning see [V. I. Arnold, Mathematical Methods Of Classical Mechanics. Graduate Texts in Mathematics 60. Springer 1989] chapter 8.

11.13 The most interesting case is when M is a symplectic manifold e.g. Kähler manifold and the symplectic ω has a lift to an equivariant form, then $\mu : M \rightarrow \mathfrak{t}^*$ is defined.

- Of course μ is constant on the components of $X^{\mathbb{T}}$.

11.14 Symplectic manifold (M, ω) such that ω is a nondegenerate 2-form, $d\omega = 0$

- basic examples:

- M complex Kähler manifold,
- $M = T^*N$, where N is a real smooth manifold, $\omega = d$ (Liouville form)
 - ω induces an isomorphism $TM \simeq T^*M$: $v \mapsto \iota_v \omega$
 - a function f defines a vector field X_f . It is the field, such that $\iota_{X_f} \omega = df$
 - the symplectic structure defines a structure of a Lie algebra of functions (Poisson bracket)

$$\{f, g\} = \omega(X_f, X_g) = (\iota_{X_f} \omega)(X_g) = df(X_g) = X_g f.$$

- Definition: Action of S^1 is Hamiltonian iff the fundamental field v is equal to X_f for some f

$$\iota_v \omega = df \quad \text{i.e.} \quad v = X_f.$$

If that is so then $\omega + h f$ is a closed equivariant form.

12 Hamiltonian action and the moment map

[Dusa McDuff, Dietmar Salamon ; Introduction to Symplectic Topology (Oxford Mathematical Monographs) §5]

[Anna Cannas da Silva Lectures on Symplectic Geometry.]

12.1 Physical motivation:

- Hamiltonian system q position, $p = mv$ momentum, $H(p, q)$ a C^∞ function

$$\begin{cases} \dot{q} = \frac{\partial H}{\partial p} \\ \dot{p} = -\frac{\partial H}{\partial q} \end{cases}$$

- Motion of a particle in the constant gravitation field, H =energy, $q = h$ height:

$$H(q, p) = \frac{mv^2}{2} + mgq = \frac{p^2}{2m} + mgq, \quad \begin{cases} \dot{q} = \frac{p}{m} = v \\ \dot{p} = -mg \end{cases}$$

- Conservation energy law: H is constant along trajectories

12.2 Poisson bracket in local Darboux coordinates

$$\omega = \sum_{i=1}^n dp_i \wedge dq_i, \quad \{f, g\} = \sum_{i=1}^n \frac{\partial f}{\partial q_i} \frac{\partial g}{\partial p_i} - \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i}.$$

- The Hamiltonian equations take the form $\dot{q} = \{q, H\}$, $\dot{p} = \{p, H\}$.

12.3 Let ω be a symplectic form on M and $f : M \rightarrow \mathbb{R}$. Then ω is invariant with respect to the Hamiltonian flow generated by f

$$\mathcal{L}_{X_f} \omega = d\iota_{X_f} \omega + \iota_{X_f} d\omega = d\iota_{X_f} \omega = ddf = 0.$$

We also note that $\iota_{X_f} \omega$ is closed.

12.4 The commutator of the Hamiltonian fields is related with the Poisson bracket

$$[X_f, X_g] = -X_{\{f, g\}}.$$

- We have to show that

$$\iota_{[X_f, X_g]} \omega = d\{g, f\} \quad \text{which is by definition } d(\omega(X_g, X_f)).$$

- We compute the Lie derivative

$$\mathcal{L}_{X_f}(\iota_{X_g} \omega) = \iota_{\mathcal{L}_{X_f} X_g} \omega = \iota_{[X_f, X_g]} \omega$$

since $\mathcal{L}_{X_f} \omega = 0$. By the Cartan formula

$$\mathcal{L}_{X_f}(\iota_{X_g} \omega) = d\iota_{X_f} \iota_{X_g} \omega + \iota_{X_f} d\iota_{X_g} \omega = d(\omega(X_g, X_f)).$$

12.5 Let $C^\infty(M; TM)$ be the space of smooth vector fields. It is a Lie algebra with respect to the Poisson bracket. The map

$$-X : C^\infty(M) \rightarrow C^\infty(M; TM), \quad f \mapsto -X_f$$

is a map of Lie algebras. (Applying alternative conventions we can get rid of „-“.)

- For an arbitrary Lie group: The G -action defines a map of Lie algebras

$$v : \mathfrak{g} \rightarrow C^\infty(M; TM).$$

We say that the action is Hamiltonian if there exists a linear map of Lie algebras $\tilde{\mu} : \mathfrak{g} \rightarrow C^\infty(M)$ making the following diagram commutative up to a sign

$$\begin{array}{ccc} C^\infty(M) & & \\ \nearrow \tilde{\mu} & & \downarrow X \\ \mathfrak{g} & \xrightarrow{v} & C^\infty(M; TM) \end{array}$$

Existence of the map $\tilde{\mu}$ is equivalent to having a map $\mu : M \rightarrow \mathfrak{t}^*$, called the moment map.

12.6 From now on we assume that $G = \mathbb{T} = (S^1)^n$. The moment map is given in coordinates $\mu = (\mu_1, \dots, \mu_n) \in \mathfrak{t}^* = \mathbb{R}^n$. The Hamiltonian flows associated to μ_i commute, moreover we assume $\{\mu_i, \mu_j\} = 0$, so that $\tilde{\mu} : \mathfrak{t} \rightarrow C^\infty(M)$ is a map of Lie algebras.

12.7 The map μ restricted to the fixed points is locally constant. The moment map $\mu \in C^\infty(M, \mathfrak{t}^*)$ evaluated at $\lambda \in \mathfrak{t}$ is a function whose differential vanishes at zeros of the fundamental vector field:

$$d\mu(\lambda)(x) = 0 \quad \text{iff} \quad v_\lambda(x) = 0.$$

12.8 The map μ is constant on the orbits:

$$d\mu_i(v_{\lambda_j}) = (\iota_{v_{\lambda_i}} \omega)(v_{\lambda_j}) = \omega(v_{\lambda_i}, v_{\lambda_j}) = \{\mu_i, \mu_j\} = 0.$$

12.9 Theorem [Atiyah, Guillemin-Sternberg]. If M is compact, then $\Delta_{M,\mathbb{T}} := \mu(M)$ is a convex polytope

$$\Delta_{M,\mathbb{T}} = \text{Conv}(\mu(M^T)).$$

See [McDuff-Salamon §5.5, Theorem 5.47]

- Note that the image of the moment map μ restricted to a 1-dimensional $\mathbb{T}_\mathbb{C} = \mathbb{T} \otimes \mathbb{C}$ orbit is an interval.

12.10 Assume $M \subset \mathbb{P}^m$ is a smooth projective variety, $\omega = (\omega_{FS})|_M$.

12.11 The most important example $M = \mathbb{P}^n$, $\mathbb{T} = (S^1)^{n+1}$, $\mu = \text{const}_{\frac{1}{\|z\|^2}}(\dots, |z_i|^2, \dots) \in \mathbb{R}^{n+1}$. The constant depends on the convention.

12.12 If M is a smooth projective variety with an algebraic action of $\mathbb{T}_\mathbb{C} \simeq (\mathbb{C}^*)^n$ then it can be equivariantly embedded into $\mathbb{P}(V)$ for some representation V of a finite cover of \mathbb{T} . Hence it admits a moment map (possibly after a modification of ω).

- If M is a smooth projective toric variety (i.e. M has a dense and open orbit of $\mathbb{T}_\mathbb{C}$), then $M/\mathbb{T} = \Delta_{M,\mathbb{T}}$.

12.13 Suppose M is equivariantly embedded into $\mathbb{P}(V)$, $L = \mathcal{O}(1)|_M$ an equivariant vector bundle. The form $\omega = \omega_{FS}|_M$ represents $c_1(L) \in H^2_{\mathbb{T}}(M)$. Let $x \in M^{\mathbb{T}}$ be a fixed point. Then $c_1(L)|_x \in H^2_{\mathbb{T}}(pt) \simeq \text{Hom}(\mathbb{T}, S^1)$ is the character of the action of \mathbb{T} on L_x . We claim that

$$\mu(x) = c_1(L) \in \text{Hom}(\mathbb{T}, S^1) \otimes \mathbb{R} = \mathfrak{t}^*.$$

- That is true for $M = \mathbb{P}^n$ with the action of $(S^1)^{n+1}$, since

$$\mu([0 : \dots : 0 : 1 : 0 : \dots : 0]) = (0, \dots, 0, 1, 0, \dots, 0) \quad \text{with the preferred normalization.}$$

In general chose coordinates of $V = \mathbb{C}^{m+1}$, such that \mathbb{T} action is diagonal. Consider the embedding $\mathbb{T} \hookrightarrow \mathbb{T}_{big} = (S^1)^{m+1}$ and the natural maps

$$\begin{array}{ccc} M & \xrightarrow{\mu} & \mathfrak{t}^* \\ \downarrow & & \uparrow \\ \mathbb{P}^m & \xrightarrow{\mu_{big}} & \mathfrak{t}_{big}^* \end{array}$$

The claim follows from the commutativity of the diagram.

12.14 (!!!) Note that the moment polytope does not depend on the C^∞ consideration with the symplectic form. It only depends on the action of \mathbb{T} on L . It can be defined purely in the realm of algebraic geometry as

$$\Delta_{M,\mathbb{T}} = \text{Conv}\{\chi(L_x) \mid x \in M^\mathbb{T}\}.$$

12.15 Example. Let $M = \mathcal{F}\ell(n)$ be the flag manifold. We have an equivariant embedding

$$\mathcal{F}\ell(n) \hookrightarrow \prod_{k=1}^{n-k} Gr_k(\mathbb{C}^n) \hookrightarrow \prod_{k=1}^{n-k} \mathbb{P}(\wedge^k \mathbb{C}^n).$$

Let $p_i : \mathcal{F}\ell(n) \rightarrow \mathbb{P}(\wedge^k \mathbb{C}^n)$ be the projection and let ω_k be the Fubini-Study form on $\mathbb{P}(\wedge^k \mathbb{C}^n)$. For a sequence of positive numbers $a_i \in \mathbb{R}^n$ let

$$\omega_{\underline{a}} = \sum_{k=1}^{n-1} a_k p_k^*(\omega_k).$$

This is a symplectic form and the \mathbb{T} action admits a moment map

$$\mu_{\underline{a}} = \sum_{k=1}^{n-1} a_k \mu_k \circ p_k,$$

where μ_k is the moment map for $\mathbb{P}(\wedge^k \mathbb{C}^n)$.

12.16 Suppose

$$(V_1 \subset \cdots \subset V_{n-1}) \in \mathcal{F}\ell(n)^\mathbb{T}.$$

Such a point corresponds to a permutation $\sigma \in \Sigma_n$

$$V_1 = \text{lin}\{\epsilon_{\sigma(1)}\}, \quad V_2 = \text{lin}\{\epsilon_{\sigma(1)}, \epsilon_{\sigma(2)}\}, \quad \dots, \quad V_{n-1} = \text{lin}\{\epsilon_{\sigma(1)}, \epsilon_{\sigma(2)}, \dots, \epsilon_{\sigma(n-1)}\}.$$

Denote it by V_σ

12.17 The value of the map $Gr_k(\mathbb{C}^n) \rightarrow \mathbb{P}(\wedge^k \mathbb{C}^n) \xrightarrow{\mu_k} \mathbb{R}^n$ restricted at the point

$$\text{lin}\{\epsilon_{\sigma(i)} \mid i \leq k\}$$

is equal to

$$-\sum_{i=1}^k \epsilon_{\sigma(i)}.$$

• For $n = 4$ the moment polytopes for $Gr_1(\mathbb{C}^4)$ and $Gr_3(\mathbb{C}^4)$ are tetrahedra, and $Gr_2(\mathbb{C}^4)$ is the octahedron.

12.18 Take $\underline{a} = (1, 1, \dots, 1)$ then

$$\mu_{\underline{a}}(V_\sigma) = -\sum_{k=1}^{n-1} \sum_{i=1}^k \epsilon_{\sigma(i)} = -\sum_{k=1}^{n-1} (n-k) \epsilon_{\sigma(k)},$$

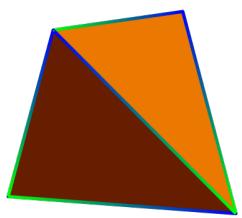
which is equal up to the shift by $n \sum_{k=1}^n \epsilon_k$ to $\sum_{k=1}^n k \epsilon_{\sigma(k)}$.

• This way we obtain the permutohedron in \mathbb{R}^n which can also be defined as the convex hull of Σ_n orbit of $(1, 2, \dots, n)$.

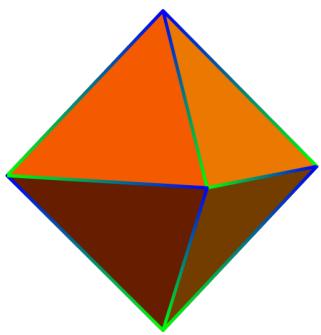
12.19 Taking various values of a_i we obtain deformations of the permutohedron

$$\text{Conv}(\Sigma_n(a_1, a_1 + a_2, \dots, a_1 + a_2 + \dots + a_n)) \quad \text{up to a shift.}$$

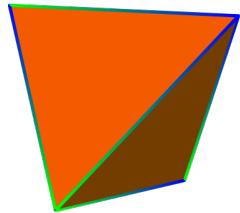
The extreme values with some a_i 's equal to 0, the images are moment polytopes for partial flag varieties.



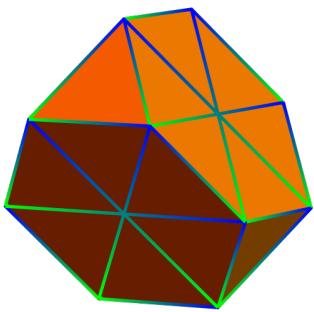
$a=\{1, 0, 0\}$



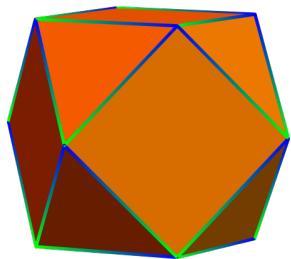
$a=\{0, 1, 0\}$



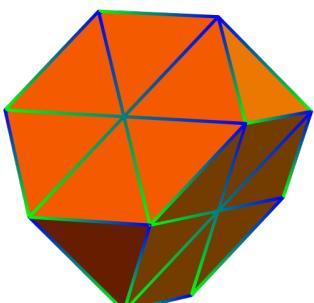
$a=\{0, 0, 1\}$



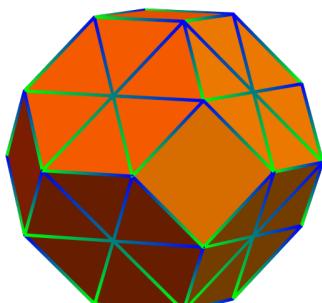
$a=\{1, 1, 0\}$



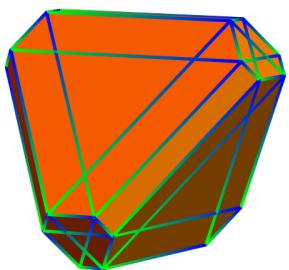
$a=\{1, 0, 1\}$



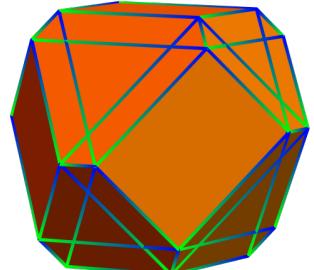
$a=\{0, 1, 1\}$



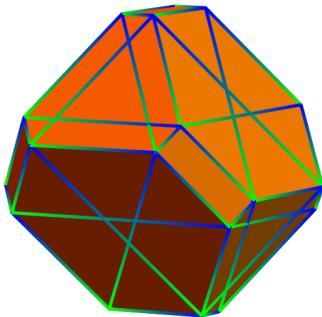
$a=\{1, 1, 1\}$



$a=\{0.5, 1, 4\}$



$a=\{3, 1, 4\}$



$a=\{3, 4, 1\}$

13 Moment map and quotients

13.1 Suppose a compact group G acts on a symplectic manifold (M, ω) with a moment map $\mu : M \rightarrow \mathfrak{g}^*$. Recall that ω is G invariant $\mathcal{L}_\lambda \omega = 0$ and μ is G invariant with respect to the coadjoint action on \mathfrak{g}^* .

13.2 Symplectic reduction [Guillemin-Sternberg §9.6], [McDuff,Salamon §5.4]

- Assume that $a \in \mathfrak{g}^*$ is an invariant element with respect to the coadjoint action. Then $\mu^{-1}(a)$ is G -invariant manifold.
- Furthermore assume that G action on $\mu^{-1}(a)$ is free. Then the quotient $X = \mu^{-1}(a)/G$ is denoted by $M//_{\mu,a}G$. Often a is assumed to be 0 and we write $M//_\mu G$. This is called the symplectic quotient. We will assume that $a = 0$.

13.3 Let $x \in \mu^{-1}(0)$. The tangent space $T_x Gx$ is coisotropic and $(T_x Gx)^{\perp_\omega} = T_x \mu^{-1}(0)$.

- For $\lambda \in \mathfrak{g}$, $v \in T_x \mu^{-1}(0)$ compute $\omega(X_\lambda, v) = d\mu_\lambda(v)$, where $\mu_\lambda(x) = \mu(x)(\lambda)$. But since $\mu^{-1}(0)$ is mapped by μ to 0, the tangent vectors are mapped to 0 as well. Hence $(T_x Gx)^{\perp_\omega} \subset T_x \mu^{-1}(0)$. Since $\dim((T_x Gx)^{\perp_\omega}) = \dim G$ and $T_x \mu^{-1}(0) = \dim M - \dim G$ and ω is nondegenerate, the opposite inclusion holds.

13.4 The manifold X has a canonical symplectic structure induced from M : For $v, w \in T_y X$ find the lifts $\tilde{v}, \tilde{w} \in T_x M$ (with x mapping to y) and apply ω . It is well defined because ω is G -invariant and the orbits lie in the kernel of ω . Moreover the induced form is nondegenerate (it is an exercise in the linear algebra).

13.5 Example 1. $M = \mathbb{C}^n$ with the standard form, $G = S^1$ acting by scalar multiplication, $\mu(z) = |z|^2$, $a \in 1$. Then

$$\mathbb{C}^n //_{\mu,a} S^1 = \mathbb{P}^{n-1}$$

with the Fubini-Study form.

13.6 Example 2 (slightly more general): $M = \text{Hom}(\mathbb{C}^k, \mathbb{C}^n)$, $k < n$ with the action of $U(k)$. Let $A^* = \bar{A}^T$. Note that $\mathfrak{u}(k) = \{X \in \mathfrak{gl}_k \mid X^* = -X\}$. The moment map is defined by

$$\mu(A) = iA^*A \in \mathfrak{u}(k) \simeq \mathfrak{u}(k)^*$$

$a = iI$. Then $\mu^{-1}(a)$ is equal to unitary k -tuples of vectors in \mathbb{C}^n , and $X//_{\mu,a} U(k)$ is equal to the Grassmannian $Gr_k(\mathbb{C}^n)$.

- Exercise: Compute that this is a moment map.

13.7 Kirwan [Cohomology of Quotients in Symplectic and Algebraic Geometry] compared symplectic quotients with GIT quotients in algebraic geometry. They basically coincide: the symplectic quotient by a compact group G is equal to the GIT quotient by the complexification $G_{\mathbb{C}}$ (as C^∞ manifolds). The symplectic quotients depends on the choice of the moment map (and $a \in \mathfrak{g}$) and GIT quotient depends on the linearization and stability condition. These notions can be translated one to another.

13.8 Example 3 (still more general): We want to obtain $\mathcal{F}\ell_n = \mathrm{GL}_n/B_n$ as a symplectic quotient. The Borel group is not a complexification of a compact group. Thus we take a presentation of the flag manifold in terms of a quiver:

$$1 \rightarrow 2 \rightarrow \cdots \rightarrow n-1 \rightarrow \boxed{n}$$

- Let $M = \prod_{k=1}^{n-1} \mathrm{Hom}(\mathbb{C}^k, \mathbb{C}^{k+1})$, $G = \prod_{k=1}^{n-1} U(k)$. The moment map is given by

$$(A_1, A_2, \dots, A_{n-1}) \mapsto (A_1^* A_1, A_2^* A_2, \dots, A_{n-1}^* A_{n-1})$$

and a is the sequence of i times the identity matrices.

- $\mu^{-1}(a)$ is a sequence of isometric embeddings $\mathbb{C}^k \hookrightarrow \mathbb{C}^{k+1}$, the quotient is the flag variety. Taking the quotient we forget about the particular coordinates on $V_k \subset \mathbb{C}^n$.

13.9 [Kirwan] If M is a compact symplectic manifold with a G action admitting a moment map μ , $X = M//_{\mu, a}$, then the map

$$\kappa : H_G^*(M) \rightarrow H_G^*(\mu^{-1}(a)) \simeq H^*(X)$$

is surjective.

[D. Mumford, J. Fogarty, and F. Kirwan. Geometric Invariant Theory, volume 34 of Results in Mathematics and Related Areas (2). Springer-Verlag, third edition, 1994. §8], compare [Megumi Harada, Gregory D. Landweber, Surjectivity for Hamiltonian G -spaces in K-theory, Trans. Amer. Math. Soc. 359 (2007), 6001-6025]

- The assumptions of the theorem can be relaxed. Just assume that μ is proper.
- A double-equivariant version: Assume that a group \mathbb{T} acts on M , and \mathbb{T} action commutes with G -action, then

$$\kappa : H_{\mathbb{T} \times G}^*(M) \rightarrow H_{\mathbb{T} \times G}^*(\mu^{-1}(a)) \simeq H_{\mathbb{T}}^*(X)$$

is surjective.

13.10 Back to Example 1:

$$\kappa : H_{\mathbb{C}^*}^*(\mathbb{C}^n) \simeq \mathbb{Q}[h] \twoheadrightarrow H^*(\mathbb{P}^{n-1}) \simeq \mathbb{Q}[h]/(h^n)$$

$$\kappa : H_{\mathbb{T} \times \mathbb{C}^*}^*(\mathbb{C}^n) \simeq \mathbb{Q}[t_1, t_2, \dots, t_n, h] \twoheadrightarrow H_{\mathbb{T}}^*(\mathbb{P}^{n-1}) \simeq \mathbb{Q}[t_1, t_2, \dots, t_n, h]/(\prod (h + t_i))$$

13.11 Back to Example 2:

$$\kappa : H_{U(k)}^*(\mathrm{Hom}(\mathbb{C}^k, \mathbb{C}^n)) \simeq \mathbb{Q}[c_1, c_2, \dots, c_k] \twoheadrightarrow H^*(\mathrm{Gr}_k(\mathbb{C}^n))$$

$$\kappa : H_{\mathbb{T} \times U(k)}^*(\mathrm{Hom}(\mathbb{C}^k, \mathbb{C}^n)) \simeq \mathbb{Q}[t_1, t_2, \dots, t_n, c_1, c_2, \dots, c_k] \twoheadrightarrow H_{\mathbb{T}}^*(\mathrm{Gr}_k(\mathbb{C}^n))$$

13.12 Projective toric varieties (without fans, but via polytopes), compare [Anderson-Fulton, Ch 8].

- Let X be a smooth compact algebraic manifold with a torus action. Assume that $\dim X = \dim \mathbb{T}_{\mathbb{C}}$ and $\mathbb{T}_{\mathbb{C}}$ has an open orbit and dense. We can assume that $\mathbb{T}_{\mathbb{C}}$ action is free on the open orbit. Then X is determined by a certain combinatorial data involving characters.
- Assume that the action of \mathbb{T} admits a moment map to $\mathfrak{t}^* \simeq \mathbb{R}^n$. If the moment map is the restriction of the standard moment map $X \hookrightarrow \mathbb{P}^N \rightarrow \mathfrak{t}_N^* \rightarrow \mathfrak{t}^*$, then the moment polytope Δ_X has integral vertices.

- Since we assume that X is smooth, thus locally, around any fixed point X looks like \mathbb{C}^n with the standard action of $(\mathbb{C}^*)^n$, so the moment polytope locally is linearly isomorphic to a neighbourhood of $0 \in \mathbb{C}^n/(S^1)^n \simeq \mathbb{R}_{\geq 0}^n$.
- Each facet F_i (a codimension 1 face) of $\Delta_X \subset \mathfrak{t}^*$ we set $v_i \in (\mathfrak{t}^*)^* = \mathfrak{t}$, the normal vector (integral, minimal length). Let \mathbb{T}_i be the 1-dimensional subtorus corresponding to v_i

13.13 For $p \in F_{i_1} \cap F_{i_2} \cap \dots \cap F_{i_\ell}$ let $\mathbb{T}_p = \mathbb{T}_{i_1} \mathbb{T}_{i_2} \dots \mathbb{T}_{i_\ell} \simeq (S^1)^\ell$. Topologically $X = \Delta_X \times (S^1)^n / \sim$. The pairs (p, t) and (p, t') are identified if and only if $t't^{-1} \in \mathbb{T}_p$.

13.14 The inverse images $\mu^{-1}(x_i)$ are divisors (=codimension 1 subvarieties) in X .

13.15 Theorem [Daniłov, Jurkiewicz, Davis-Januszkiwicz] The cohomology ring is generated by the classes of $[D_i] \in H^2(X)$. Assume that Δ_X has d facets:

$$H^*(X) = \mathbb{Z}[x_1, \dots, x_d]/(I + J),$$

$$I = (x_{i_1} x_{i_2} \dots x_{i_\ell} \mid F_{i_1} \cap F_{i_2} \cap \dots \cap F_{i_\ell} \text{ is not a codimension } \ell \text{ face of } \Delta_X).$$

$$J = \left(\sum \langle u, v_i \rangle x_i \mid u \in \mathfrak{t}_{\mathbb{Z}}^* \right).$$

Here the left hand side is written in the additive notation, but it concerns the monomials.

- The quotient $\mathbb{Z}[x_1, \dots, x_d]/I$ is called the Stanley Reisner ring. [Anderson-Fulton, §8.3]
- Similarly the equivariant cohomology. Let $\Lambda = \text{Sym}(\mathfrak{t}_{\mathbb{Z}}^*) = H_{\mathbb{T}}^*(pt)$

$$H_{\mathbb{T}}^*(X) = \Lambda[x_1, \dots, x_d]/(I' + J'),$$

$$I' = \Lambda \otimes I.$$

$$J' = (u - \sum \langle u, v_i \rangle x_i \mid u \in \mathfrak{t}_{\mathbb{Z}}^*).$$

- Note that

$$\mathbb{Z}[x_1, \dots, x_d]/I \simeq \Lambda[x_1, \dots, x_d]/(I' + J')$$

and

$$\mathbb{Z}[x_1, \dots, x_d]/(I + J) \simeq \Lambda[x_1, \dots, x_d]/(I' + J') \otimes_{\Lambda} \mathbb{Z}.$$

13.16 Connection with the Kirwan map: any toric variety can be obtained by the Cox construction

$$X = U/\mathbb{T}',$$

Where $U \subset \mathbb{C}^d$,

$$U = \mathbb{C}^d \setminus \bigcup_I V_I$$

where sum runs over the sequences i_1, i_2, \dots, i_ℓ such that $\bigcap_{j=1}^\ell F_{i_j}$ is not a face and

$$V_I = \{x_{i_1} = x_{i_2} = \dots = x_{i_\ell} = 0\},$$

\mathbb{T}' = some subtorus of $(\mathbb{C}^*)^d$. Decomposing $(\mathbb{C}^*)^d = \mathbb{T}' \times \mathbb{T}$ we obtain an action of \mathbb{T} on U/\mathbb{T}' .

13.17 Example $\mathbb{P}^n = \mathbb{C}^{n+1} \setminus \{0\}/(\text{diagonal torus})$. Let $\mathbb{T} = \{t \in (\mathbb{C}^*)^{n+1} \mid t_0 = 1\}$.

$$H_{\mathbb{T}}^*(\mathbb{P}^n) = \mathbb{Z}[x_0, x_1, \dots, x_n]/(x_0 x_1 \dots x_n)$$

The Λ -module structure is given by the relations in J' : the vectors v_i consists of the standard basis vectors ϵ_i , $v_0 = -\sum \epsilon_i$. For the generator $t_i \in \Lambda$, $i > 0$

$$\langle t_i, v_j \rangle = \begin{cases} -\delta_{i,j} & \text{for } j > 0 \\ 1 & \text{for } j = 0 \end{cases}$$

hence

$$t_i \mapsto x_i - x_0 \quad \text{for } i > 0.$$

13.18 The ranks of $H_{\mathbb{T}}^*(X)$ can be easily computed inductively from the exact sequence of a pair: for a smooth closed invariant submanifold $N \subset M$ we have

$$\rightarrow H_{\mathbb{T}}^{*-2\text{codim}N}(N) \rightarrow H_{\mathbb{T}}^*(M) \rightarrow H_{\mathbb{T}}^*(M \setminus N) \rightarrow H_{\mathbb{T}}^{*-2\text{codim}N+1}(N) \rightarrow \dots$$

Note that if X is a sum of \mathbb{T} orbits, then each $H_{\mathbb{T}}^{\text{odd}}(\text{orbit}) = 0$ and the sequence splits.

•

$$H_{\mathbb{T}}^*(X) \simeq \bigoplus_{\mathcal{O} \text{ orbit}} H_{\mathbb{T}}^{*-2\text{codim}\mathcal{O}}(B\mathbb{T}_{\mathcal{O}}), \quad \mathbb{T}_{\mathcal{O}} \simeq (\mathbb{C}^*)^{\text{codim}\mathcal{O}}$$

• Let us compute the equivariant Poincaré polynomial: set $q = t^2$

$$P_{\mathbb{T}}(X) = \sum_{\mathcal{O}} q^{\text{codim}\mathcal{O}} (1-q)^{-\text{codim}\mathcal{O}}$$

• The nonequivariant Poincaré polynomial can be computed due to equivariant formality:

$$P_{\mathbb{T}}(X) = P(X)P(B\mathbb{T}),$$

hence

$$P(X) = P_{\mathbb{T}}(X)P(B\mathbb{T})^{-1} = \left(\sum_{\mathcal{O}} q^{\text{codim}\mathcal{O}} (1-q)^{-\text{codim}\mathcal{O}} \right) (1-q)^n = \sum_{\mathcal{O}} q^{\text{codim}\mathcal{O}} (1-q)^{\dim \mathcal{O}}$$

13.19 Example: $X = \mathbb{P}^2$

3 fixed points $\rightarrow 3q^2$

3 lines $\rightarrow 3q(1-q)$

1 open orbit $\rightarrow (1-q)^2$

$$3q^2 + 3q(1-q) + (1-q)^2 = 3q^2 + 3q - 3q^2 + 1 - 2q + q^2 = q^2 + q + 1$$

14 Equivariant Schubert Calculus on Grassmannians

This section contains mainly the example of the calculus on Grassmannian $Gr_2(\mathbb{C}^4)$. See [Anderson-Fulton, Chapter 9] for the explanation.

14.1 The Grassmannian $Gr_d(\mathbb{C}^n) = \mathrm{GL}_n/B_n$ is the union of Schubert cells Ω_λ° , $\lambda = (\lambda_1 \geq \lambda_2 \geq \lambda_d \geq 0)$ with $i_1 \leq n-d$. For convenience we set $\lambda_{d+1} = 0$. Set $e = n-d$. We fix the standard flag E_\bullet preserved by the Borel group and define

$$\Omega_\lambda^\circ(E_\bullet) = \{V \subset \mathbb{C}^n \mid \dim(E_q \cap V) = k \text{ for } q \in [e+k-\lambda_k, e+k-\lambda_{k+1}]\},$$

i.e. the sets Ω_λ° are defined by the strict Schubert conditions. • For $n=4, d=2$,

$$\Omega_{00}^\circ(E_\bullet) = \left\{ V \subset \mathbb{C}^4 : \begin{array}{ll} \dim(E_q \cap V) = 1 & \text{for } q \in [3-0, 3-0] \\ \dim(E_q \cap V) = 2 & \text{for } q \in [4-0, 4-0] \end{array} \right\}.$$

(The dimensions of the intersections are generic.)

$$\Omega_{22}^\circ(E_\bullet) = \left\{ V \subset \mathbb{C}^4 : \begin{array}{ll} \dim(E_q \cap V) = 1 & \text{for } q \in [3-2, 3-2] \\ \dim(E_q \cap V) = 2 & \text{for } q \in [4-2, 4-2] \end{array} \right\}.$$

(The dimensions are the maximal possible, i.e. $\Omega_{22}^\circ = \{E_2\}$.)

$$\Omega_{10}^\circ(E_\bullet) = \left\{ V \subset \mathbb{C}^4 : \begin{array}{ll} \dim(E_q \cap V) = 1 & \text{for } q \in [3-1, 3-0] \\ \dim(E_q \cap V) = 2 & \text{for } q \in [4-0, 4-0] \end{array} \right\}.$$

(The only nontrivial condition is $\dim(E_2 \cap V) = 1$ but $E_1 \not\subset V, V \not\subset E_3$)

$$\Omega_{11}^\circ(E_\bullet) = \left\{ V \subset \mathbb{C}^4 : \begin{array}{ll} \dim(E_q \cap V) = 1 & \text{for } q \in [3-1, 3-1] \\ \dim(E_q \cap V) = 2 & \text{for } q \in [4-1, 4-0] \end{array} \right\}.$$

(This means, that $V \subset E_3$.)

$$\Omega_{20}^\circ(E_\bullet) = \left\{ V \subset \mathbb{C}^4 : \begin{array}{ll} \dim(E_q \cap V) = 1 & \text{for } q \in [3-2, 3-0] \\ \dim(E_q \cap V) = 2 & \text{for } q \in [4-0, 4-0] \end{array} \right\}.$$

(This means $E_1 \subset V, V \neq E_2$.)

$$\Omega_{21}^\circ(E_\bullet) = \left\{ V \subset \mathbb{C}^4 : \begin{array}{ll} \dim(E_q \cap V) = 1 & \text{for } q \in [3-2, 3-1] \\ \dim(E_q \cap V) = 2 & \text{for } q \in [4-1, 4-0] \end{array} \right\}.$$

($E_1 \subset V$ and $V \subset E_3$.)

14.2 For the standard flag the Schubert cells are the B_n orbits of the torus-fixed points. Let $x_{i,j} = \mathrm{lin}\{\epsilon_i, \epsilon_j\}$

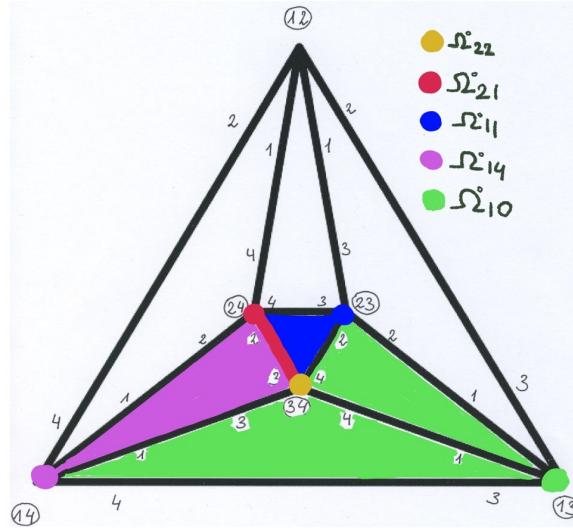
$$\begin{aligned} \Omega_{00}^\circ(E_{st}) &= B_4 x_{34}, & \text{open cell} \\ \Omega_{22}^\circ(E_{st}) &= B_4 x_{12}, & \text{a point} \\ \Omega_{10}^\circ(E_{st}) &= B_4 x_{24}, & \text{divisor} \\ \Omega_{11}^\circ(E_{st}) &= B_4 x_{23}, & \text{dim=2, closure } \simeq \mathbb{P}^2 \\ \Omega_{20}^\circ(E_{st}) &= B_4 x_{14}, & \text{dim=2, closure } \simeq \mathbb{P}^2 \\ \Omega_{21}^\circ(E_{st}) &= B_4 x_{13}, \text{dim=1, closure } \simeq \mathbb{P}^1 \end{aligned}$$

14.3 If we reverse the reference flag, then the Schubert cells are the orbits of the opposite Borel group B_n^- , consisting of the lower triangular matrices.

$$\begin{aligned} \Omega_{00}^\circ(E_{op}) &= B_4^- x_{12}, & \text{open cell} \\ \Omega_{22}^\circ(E_{op}) &= B_4^- x_{34}, & \text{a point} \\ \Omega_{10}^\circ(E_{op}) &= B_4^- x_{13}, & \text{divisor} \\ \Omega_{11}^\circ(E_{op}) &= B_4^- x_{23}, \text{ dim=2, closure } \simeq \mathbb{P}^2 \\ \Omega_{20}^\circ(E_{op}) &= B_4^- x_{14}, \text{ dim=2, closure } \simeq \mathbb{P}^2 \\ \Omega_{21}^\circ(E_{op}) &= B_4^- x_{24}, \text{ dim=1, closure } \simeq \mathbb{P}^1 \end{aligned}$$

(we replace $x_{i,j}$ by $x_{5-j, 5-i}$).

- Let us work with the opposite flag. We set $\sigma_\lambda = \overline{[\Omega_\lambda^\circ(E_{op})]}$.



14.4 The main statements of nonequivariant Schubert calculus are the following:

- The Giambelli formula says, that the classes of Schubert varieties can be expressed by the Chern classes of the (dual) tautological bundle V^*

$$[\Omega_\lambda] = S_\lambda(V^*).$$

- The rules how to multiply $\sigma_\lambda[\Omega_\lambda]$'s: Pieri rule and more general Littlewood-Richardson rule.

14.5 For example for $d = 1$, $Gr_1(\mathbb{C}^n) = \mathbb{P}^{n-1}$, $V^* = \mathcal{O}(1)$ and $[\Omega_i] = [\mathbb{P}^{n-1-i}] = c_1(\mathcal{O}(1))^i$.

14.6 Nonequivariant multiplication for $Gr_2(\mathbb{C}^4)$

	σ_{00}	σ_{10}	σ_{11}	σ_{20}	σ_{21}	σ_{22}
σ_{00}	σ_{00}	σ_{10}	σ_{11}	σ_{20}	σ_{21}	σ_{22}
σ_{10}	σ_{10}	$\sigma_{11} + \sigma_{20}$	σ_{21}	σ_{21}	σ_{22}	0
σ_{11}	σ_{11}	σ_{21}	σ_{22}	0	0	0
σ_{20}	σ_{20}	σ_{21}	0	σ_{22}	0	0
σ_{21}	σ_{21}	σ_{22}	0	0	0	0
σ_{22}	σ_{22}	0	0	0	0	0

14.7 The product $\sigma_\lambda \cdot \sigma_\mu$ can be written as $\sum_\nu c_{\lambda\mu}^\nu \sigma_\nu$. The coefficients are called the Littlewood-Richardson coefficients. They are nonnegative integers:

$$c_{\lambda\mu}^\nu = |g_1\Omega_\lambda(F_{st}) \cap g_2\Omega_\mu(F_{st}) \cap g_3\Omega_{\nu^\vee}(F_{st})|,$$

where ν^\vee is the opposite partition $\nu^\vee = \text{Reverse}((n-k)^k - \nu)$, g_i are general elements of GL_n . In the equivariant calculus the coefficients $c_{\lambda\mu}^\nu$ are polynomials in t_1, t_2, \dots, t_n .

14.8 In the nonequivariant case the reference flag is irrelevant for computing cohomology classes. Instead of B_n orbits one can take the orbits of the opposite Borel group B_n^- .

14.9 Equivariant cohomology contains more information. There are at least three important bases of $H_{\mathbb{T}}^*(Gr_d(\mathbb{C}^n))$:

- The basis on $[\sigma_\lambda]$ — the natural choice;
- The bases of Schur classes of V^* — convenient for functorial reasoning;
- The basis of the fixed point classes (this is a basis after the localization in $S = \langle t_i - t_j \mid i \neq j \rangle$) — here the multiplication is easy.

14.10 The analogues of the Giambelli formulas are the Kempf-Laksov formulas. In [Anderson-Fulton, 9.2] given for B_n^- orbit closures.

14.11 Table of the restrictions of Schubert classes at the fixed points

	x_{34}	x_{24}	x_{23}	x_{14}	x_{13}	x_{12}
σ_0	1	1	1	1	1	1
σ_{10}	$t_1 + t_2 - t_3 - t_4$	$t_1 - t_4$	$t_2 - t_4$	$t_1 - t_3$	$t_2 - t_3$	0
σ_{11}	$(t_1 - t_3)(t_1 - t_4)$	$(t_1 - t_2)(t_1 - t_4)$	0	$(t_1 - t_2)(t_1 - t_3)$	0	0
σ_{20}	$(t_1 - t_4)(t_2 - t_4)$	$(t_1 - t_4)(t_3 - t_4)$	$(t_2 - t_4)(t_3 - t_4)$	0	0	0
σ_{21}	$(t_1 - t_3)(t_1 - t_4)(t_2 - t_4)$	$(t_1 - t_2)(t_1 - t_4)(t_3 - t_4)$	0	0	0	0
σ_{22}	$(t_1 - t_3)(t_2 - t_3)(t_1 - t_4)(t_2 - t_4)$	0	0	0	0	0

14.12 The formula for σ_{10} : in nonequivariant cohomology $\sigma_1 = c_1(V^*) = c_1(\mathcal{O}(1))$ (the bundle $\mathcal{O}(1)$ comes from the Plücker embedding).

- The equivariant formula is of the form

$$\sigma_{10} = c_1(V^*) + \text{linear form}(t_1, t_2, t_3, t_4).$$

The form is chosen in such way that $(\sigma_{10})_{|x_{1,2}} = 0$, i.e. it is equal $t_1 + t_2$. This reasoning works in general.

14.13 Equivariant multiplication table.

- Multiplication by σ_{10}

$$\begin{aligned} \sigma_{10}\sigma_{22} &= (t_1 + t_2 - t_3 - t_4)\sigma_{22} \\ \sigma_{10}\sigma_{21} &= (t_1 - t_4)\sigma_{21} + \sigma_{22} \\ \sigma_{10}\sigma_{20} &= (t_2 - t_4)\sigma_{20} + \sigma_{21} \\ \sigma_{10}\sigma_{11} &= (t_1 - t_3)\sigma_{11} + \sigma_{21} \\ \sigma_{10}^2 &= (t_2 - t_3)\sigma_{10} + \sigma_{11} + \sigma_{20} \end{aligned}$$

According to the equivariant Monk formula

$$\sigma_{10}\sigma_\lambda = \sum_{\lambda^+} \sigma_{\lambda^+} + (\sigma_{10})_{|x_\lambda} \sigma_\lambda,$$

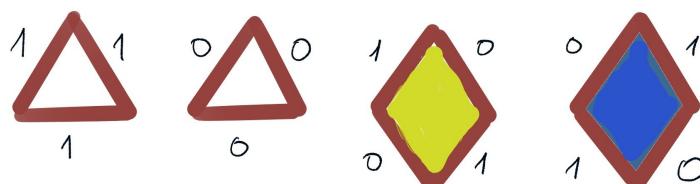
where x_λ is the fixed point in $\Omega_\lambda^o(E_{op})$.

- The remaining multiplications

$$\begin{aligned} \sigma_{22}^2 &= (t_1 - t_3)(t_2 - t_3)(t_1 - t_4)(t_2 - t_4)\sigma_{22} \\ \sigma_{21}\sigma_{22} &= (t_1 - t_3)(t_1 - t_4)(t_2 - t_4)\sigma_{22} \\ \sigma_{20}\sigma_{22} &= (t_1 - t_4)(t_2 - t_4)\sigma_{22} \\ \sigma_{11}\sigma_{22} &= (t_1 - t_3)(t_1 - t_4)\sigma_{22} \\ \sigma_{21}^2 &= (t_1 - t_4)^2\sigma_{22} + (t_1 - t_2)(t_1 - t_4)(t_3 - t_4)\sigma_{21} \\ \sigma_{20}\sigma_{21} &= (t_1 - t_4)\sigma_{22} + (t_1 - t_4)(t_3 - t_4)\sigma_{21} \\ \sigma_{11}\sigma_{21} &= (t_1 - t_2)(t_1 - t_4)\sigma_{21} + (t_1 - t_4)\sigma_{22} \\ \sigma_{20}^2 &= (t_2 - t_4)(t_3 - t_4)\sigma_{20} + (t_3 - t_4)\sigma_{21} + \sigma_{22} \\ \sigma_{11}\sigma_{20} &= (t_1 - t_4)\sigma_{21} \\ \sigma_{11}^2 &= (t_1 - t_2)(t_1 - t_3)\sigma_{11} + (t_1 - t_2)\sigma_{21} + \sigma_{22} \end{aligned}$$

14.14 Knutson-Tao puzzles: we draw a triangle with all edges of length n and fill them with pieces of the following shapes

- Three nonequivariant puzzles and one equivariant:

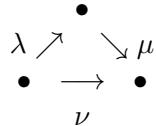


The last one is not rotatable.

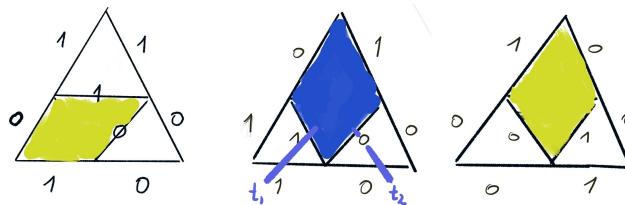
- We change the coding of Schubert varieties. Instead of partitions we use 0-1 sequences of length n . We walk along the edges of Young diagram $NE \rightarrow SW$: the sequence has 1 if we go S , 0 if we go W .

00	\rightarrow	0011
10	\rightarrow	0101
11	\rightarrow	0110
20	\rightarrow	0110
21	\rightarrow	1010
22	\rightarrow	1100

We label the edges of the triangle with the codes

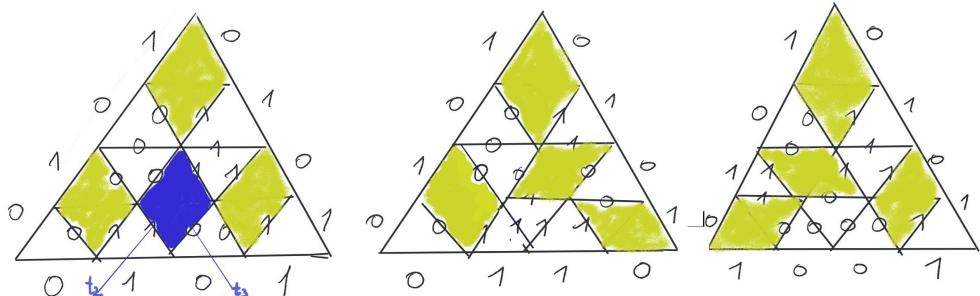


14.15 Multiplication in $\mathbb{P}^1 = Gr_1(\mathbb{C}^2)$



$$\sigma_0\sigma_1 = \sigma_1 \quad \sigma_1\sigma_1 = (t_1 - t_2)\sigma_1 \quad \sigma_0\sigma_0 = \sigma_0.$$

14.16 Multiplication in $Gr_2(\mathbb{C}^4)$



Three coefficients of the expansion of $\sigma_{10}\sigma_{10}$ in $H^*(Gr_2(\mathbb{C}^4))$

$$c_{10,10}^{10} = t_2 - t_3, \quad c_{10,10}^{11} = 1, \quad c_{10,10}^{20} = 1.$$

14.17 [Anderson-Fulton, §9, Theorem 8.4] The equivariant Littlewood-Richardson coefficient is equal to

$$c_{\lambda\mu}^\nu = \sum_{\text{puzzle fillings}} \prod_{\text{special pieces}} (t_{\text{left leg}} - t_{\text{right leg}}).$$

- In [Anderson-Fulton, §9] the signs of the variables are reversed, due to a different convention.

1 Ciągi spektralne

Przykładowe źródło: C. Weibel - An Introduction to Homological Algebra, roz. 5

1.1 Homologiczny ciąg spektralny, to rodzina modułów (lub innych obiektów kategorii abelowej) E_{pq}^r wraz z różniczkami

$$d_{p,q}^r : E_{p,q}^r \rightarrow E_{p-r,q+r-1}^r, \quad E_{p,q}^{r+1} = \ker(d_{p,q}^r) / \text{im}(d_{p+r,q-r+1}^r)$$

Napis $E_{p,q}^r \Rightarrow H_{p+q}$ oznacza, że w H_* jest filtracja malejąca taka, że

$$F_p H_{p+q} / F_{p-1} H_{p+q} \simeq E_{p,q}^\infty.$$

1.2 Homologiczny ciąg spektralny związany z filtracją kompleksu łańcuchowego. Definiujemy

$$\begin{aligned} A_{p,\bullet}^r &= \{x \in F_p C_\bullet \mid d(x) \in F_{p-r} C_\bullet\}, \\ Z_{p,\bullet}^r &= \text{obraz } A_{p,\bullet}^r \text{ w } F_p C_\bullet / F_{p-1} C_\bullet, \\ B_{p,\bullet}^r &= \text{obraz } d(A_{p+r-1,\bullet}^{r-1}) \text{ w } F_p C_\bullet / F_{p-1} C_\bullet, \\ E_{p,\bullet}^r &= \frac{Z_{p,\bullet}^r}{B_{p,\bullet}^r} = \frac{A_{p,\bullet}^r + F_{p-1} C_\bullet}{d(A_{p+r-1,\bullet}^{r-1}) + F_{p-1} C_\bullet} = \frac{A_{p,\bullet}^r}{d(A_{p+r-1,\bullet}^{r-1}) + A_{p-1,\bullet}^{r-1}}. \end{aligned}$$

Gradacja na współrzędnej q jest tak dobrana, że

$$B_{p,q}^r \subset Z_{p,q}^r \subset F_p C_{p+q} / F_{p-1} C_{p+q}.$$

Różniczka w C_\bullet indukuje różniczkę $E_{p,q}^r \rightarrow E_{p-r,q+r-1}^r$ (Ćw). Jest spełniony warunek $H_*(E_{*,*}^r) = E_{*,*}^{r+1}$ (Ćw). Zatem $E_{p,q}^r$ jest podilorazem (ilorazem podobiektu) $F_p C_{p+q}$.

1.3 Ciąg spektralny przestrzeni topologicznej z filtracją

$$E_{p,q}^0 = C_{p+q}(X_p, X_{p-1}), \quad E_{p,q}^1 = H_{p+q}(X_p, X_{p-1}) \Rightarrow H_{p+q}(X).$$

Różniczka

$$E_{p,q}^1 \rightarrow E_{p-1,q}^1$$

czyli

$$H_{p+q}(X_p, X_{p-1}) \rightarrow H_{p-1+q}(X_{p-1}, X_{p-2})$$

jest różniczką z długiego ciągu dokładnego homologii trójką

$$(X_p, X_{p-1}, X_{p-2}).$$

1.4 Kohomologiczny ciąg spektralny, struktura multiplikatywna

$$\begin{aligned} d_r^{p,q} : E_r^{p,q} &\rightarrow E_r^{p+r,q-r+1}, \quad E_{p,q}^{r+1} = \ker(d_{p,q}^r) / \text{im}(d_{p-r,q+r-1}^r) \\ E_r^{p,q} \times E_r^{p',q'} &\rightarrow E_r^{p+p',q+q'}. \end{aligned}$$

1.5 Ciąg spektralny Serre'a rozwólknenia $F \rightarrow X \rightarrow B$ pochodzi od filtracji bazy szkieletami rozkładu komórkowego

$$B_0 \subset B_1 \subset \dots \subset B_p \subset \dots.$$

Bierzemy przeciwbraz tej filtracji w X

$$X_0 \subset X_1 \subset \dots \subset X_p \subset \dots.$$

Mamy

$$E_{p,q}^1 = H_{p+q}(X_p, X_{p-1}) \simeq C_p(B; H_q(F)) \quad (\text{łańcuchy komórkowe}).$$

Sprawdzamy, że różniczka w tablicy $E_{\bullet\bullet}^1$ jest równa różniczce w kompleksie liczącym kohomologię B , zatem

$$E_{p,q}^2 = H_p(B; H_q(F)) \Rightarrow H_{p+q}(X).$$

Dualny ciąg kohomologiczny:

$$E_2^{p,q} = H^p(B; H^q(F)) \Rightarrow H^{p+q}(X)$$

1.6 szczególne przypadki: ciąg Wanga, ciąg Gysina

1.7 Przykład: obliczenie kohomologii ΩS^n

Odp: jako grupa abelowa: \mathbb{Z} w gradacjach podzielnymi przez $n - 1$. Mnożenie: $a_k a_\ell = \binom{k+\ell}{k} a_{k+\ell}$

2 Ciagi spektralne a teoria Hodge'a

2.1 Ciąg spektralny Frölichera dla rozmaitości zespolonej

$$E_1^{p,q} = H^q(M; \Omega_M^p) \Rightarrow H^{p+q}(X; \mathbb{C})$$

związany z filtracją Hodge'a w $\mathcal{A}_\mathbb{C}^\bullet(M)$. (Dla ciągów spektralnych kohomologicznych rozważamy filtracje malejące.)

- gdy M Kählera, to $E_1^{p,q} = E_\infty^{p,q}$
- gdy M jest afiniczna to $E_1^{p,q} = 0$ dla $q > 0$, więc $E_2^{p,q} = E_\infty^{p,q}$, zatem $H^*(M; \mathbb{C}) = H^*(\Omega^\bullet(M))$.

2.2 Degeneracja ciągu spektralnego rozwólknienia $F \subset X \rightarrow B$, którego włókna są kählerowskie, a forma Kählera rozszerza się do X , ponadto zakładamy, że systemy współczynników $H^q(F)$ na B są trywialne. Wniosek: $H^*(X) \simeq H^*(B) \otimes H^*(F)$ addytywnie (!!).

2.3 Ciąg spektralny Deligne'a obliczający kohomologie dopełnienia dywizora z normalnymi przecięciami $X = M \setminus D$, $D = \bigcup_{i \in I} D_i$. Twierdzenie: ciąg degeneruje się na E_2

– Filtracja wagowa kompleksu $\mathcal{A}^\bullet(M, \log\langle D \rangle)$

$$E_1^{-pq} = H^{q-2p}(X^p).$$

- Dla multindeksu $I = \{i_1, i_2, \dots, i_\ell\}$ mamy $X_I = D_{i_1} \cap D_{i_2} \cap \dots \cap D_{i_\ell}$ i $X^\ell = \coprod_{|I|=\ell} X_I$ (przyjmujemy $X^0 = M$). Dla $\ell = 0, 1, \dots, m$ mamy reziduum

$$\frac{dz_{i_1}}{z_{i_1}} \wedge \frac{dz_{i_2}}{z_{i_2}} \wedge \dots \wedge \frac{dz_{i_\ell}}{z_{i_\ell}} \wedge \omega \longmapsto \omega|_{X_I},$$

które indukuje izomorfizm na kohomologiach

$$res_\ell : H^k(W_\ell \mathcal{A}^\bullet(M, \log\langle D \rangle) / W_{\ell-1} \mathcal{A}^\bullet(M, \log\langle D \rangle)) \rightarrow H^{k-\ell}(\mathcal{A}^\bullet(X^\ell))$$

(Patrz Zadanie 10 lub Shabat, *Introduction to complex analysis* §18 roz. 54, Thm. 1)

– Tablica E_1 :

$$\begin{array}{ccccccc} 0 & \rightarrow & H^0(X^2) & \rightarrow & H^2(X^1) & \rightarrow & H^4(X^0) & \rightarrow & 0 & 4 \\ & & 0 & \rightarrow & H^1(X^1) & \rightarrow & H^3(X^0) & \rightarrow & 0 & 3 \\ & & 0 & \rightarrow & H^0(X^1) & \rightarrow & H^2(X^0) & \rightarrow & 0 & 2 \\ & & & & 0 & \rightarrow & H^1(X^0) & \rightarrow & 0 & 1 \\ & & & & 0 & \rightarrow & H^0(X^0) & \rightarrow & 0 & 0 \\ -3 & & -2 & & -1 & & 0 & & 1 \end{array}$$

– Różniczka d_1 jest alternującą sumą odwzorowań Gysina

$$H^*(X^I) \rightarrow H^{*+2}(X^{I \setminus \{i\}}).$$

Aby brać pod uwagę strukturę Hodge'a piszemy $V(k)$ dla oznaczenia twistu Tate'a (przesunięcie indeksów: $V(k)^{p,q} := V^{p-k, q-k}$):

$$\begin{array}{ccccccc} 0 & \rightarrow & H^0(X^2)(-2) & \rightarrow & H^2(X^1)(-1) & \rightarrow & H^4(X^0) & \rightarrow & 0 & 4 \\ & & 0 & \rightarrow & H^1(X^1)(-1) & \rightarrow & H^3(X^0) & \rightarrow & 0 & 3 \\ & & 0 & \rightarrow & H^0(X^1)(-1) & \rightarrow & H^2(X^0) & \rightarrow & 0 & 2 \\ & & & & 0 & \rightarrow & H^1(X^0) & \rightarrow & 0 & 1 \\ & & & & 0 & \rightarrow & H^0(X^0) & \rightarrow & 0 & 0 \\ -3 & & -2 & & -1 & & 0 & & 1 \end{array}$$

– Ciąg Deligne'a degeneruje się: $E_\infty = E_2$, bo różniczka w ciągu spektralnym zachowuje strukturę Hodge'a. Dostajemy:

$$Gr_\ell^W H^n(X) = H^{n-\ell} \left(\dots \rightarrow \underbrace{H^{n-4}(X^2)(-2)}_{-2} \rightarrow \underbrace{H^{n-2}(X^1)(-1)}_{-1} \rightarrow \underbrace{H^n(X^0)}_0 \rightarrow 0 \right).$$

2.4 Moje notatki o mieszanych strukturach Hodge'a <http://www.mimuw.edu.pl/~aweber/ps/mhs.pdf>

2.5 P. Griffiths, W. Schmid Recent developments in Hodge theory, o mieszanych strukturach Hodge'a.

2.6 Abstrakcyjna definicja mieszanej struktury Hodge'a jest w książce Marka A. de Cataldo: Lectures on the Hodge theory of projective manifolds <http://arxiv.org/abs/math/0504561>

Some problems at the beginning

1 [Done] Let S^1 act on a smooth manifold M , and let $p \in M$ be an isolated fixed point. Let v be the fundamental vector field, e.g.

$$v(x) = \frac{d}{dt}tx|_{t=0}.$$

Compute the index of v at p .

(You can assume that $M = \mathbb{R}^n$ and the action is linear.)

2 [Done] Let p be a prime number. Let M be a compact smooth manifold with $\mathbb{Z}_p = \mathbb{Z}/p\mathbb{Z}$ smooth action. Show that $\chi(M) \equiv_p \chi(M^{\mathbb{Z}_p})$ not using triangulations. Generalize the result for p -groups and S^1 .

3 [Done] Show that if \mathbb{Z}_p acts without fixed points on a contractible spaces X , then X cannot be a compact manifold nor simplicial complex.

(*) Also, X cannot be a finite dimensional CW-complex (not necessarily compact).

4 Let X be an algebraic variety over \mathbb{C} , Y a subvariety. Show that $\chi(X) = \chi(Y) + \chi(X \setminus Y)$.
(Assume that X and Y are smooth, eventually generalize. See Sullivan, D. *Combinatorial invariants of analytic spaces*, Lecture Notes in Math., Vol. 192 Springer-Verlag, Berlin-New York, 1971, pp. 165–168.)

5 Describe Białynicki-Birula decomposition of the quadrics:

a) $Q = \{z_0z_5 + z_1z_4 + z_2z_3 = 0\} \subset \mathbb{P}^5$ with the action of \mathbb{C}^*

(i)

$$t[z_0 : z_1 : z_2 : z_3 : z_4 : z_5] = [z_0 : tz_1 : t^2z_2 : t^3z_3 : t^4z_4 : t^5z_5]$$

(ii)

$$t[z_0 : z_1 : z_2 : z_3 : z_4 : z_5] = [z_0 : tz_1 : tz_2 : tz_3 : tz_4 : t^2z_5]$$

b) $Q = \{z_0z_4 + z_1z_3 + z_2^2 = 0\} \subset \mathbb{P}^4$ with the action of \mathbb{C}^*

$$t \cdot [z_0 : z_1 : z_2 : z_3 : z_4] = [z_0 : tz_1 : t^2z_2 : t^3z_3 : t^4z_4]$$

6 Fix integers w_0, w_1, \dots, w_n . Let \mathbb{C}^* act on the projective space \mathbb{P}^n by the formula

$$t \cdot [z_0 : z_1 : \dots, z_n] = [t^{w_0}z_0 : t^{w_1}z_1 : \dots, t^{w_n}z_n].$$

What are the fixed points? Describe Białynicki-Birula cells. What are their dimensions.

7 Let $(\mathbb{C}^*)^{n+1}$ act on the projective space \mathbb{P}^n by the formula

$$(t_0, t_1, \dots, t_n) \cdot [z_0 : z_1 : \dots, z_n] = [t_0z_0 : t_1z_1 : \dots, t_nz_n].$$

Consider the compact torus $T_0 = (S^1)^{n+1}$ defined by $|t_i| = 1$. Show that the map

$$\mu : \mathbb{P}^n \rightarrow \mathbb{R}^{n+1}$$

$$\mu([z_0 : z_1 : \dots, z_n]) = \frac{1}{\sum_{k=0}^n |z_k|^2} (|z_0|^2, |z_1|^2, \dots, |z_n|^2)$$

is well defined and the fibers are exactly the orbits of T_0 .

List 2 — 17 October

1 [Done ???] For a representation V of \mathbb{T} consider an action of $\tilde{\mathbb{T}} = \mathbb{T} \times S^1$ on $\tilde{V} = V$, where S^1 acts by the scalar multiplication. Denote by \hbar the weight corresponding to the character $\tilde{T} \rightarrow S^1$, which is the projection. Show that

$$c(V) = e(\tilde{V})_{|\hbar=1}.$$

2 Let¹ $\mathbb{G}_m = \text{Spec}(\mathbb{F}[t, t^{-1}])$ (simply meaning \mathbb{F}^* as an algebraic group). Show that for any field $\mathbb{F} = \overline{\mathbb{F}}$ any linear action of $\mathbb{T}_{\mathbb{F}} = (\mathbb{G}_m)^r$ on the vector space \mathbb{F}^n can be diagonalized.

3 Let A be an algebra over a field \mathbb{F} and $X = \text{Spec}(A)$. Defining an action of \mathbb{G}_m on X is equivalent to defining a \mathbb{Z} -gradation of A . Prove this correspondence and generalize it to an action of the algebraic torus \mathbb{G}_m^r .

4 Let G be a group, H a subgroup, $E \rightarrow G/H$ be a vector bundle with G -action, such that for any $g \in G$, $x \in G/H$ the map $g : E_x \rightarrow E_{gx}$ is linear. Show that $E \simeq G \times^H E_{[e]}$. Here $[e]$ denotes the coset eH (i.e. any equivariant bundle over a homogeneous space G/H is induced from a H -representation).

5 Let G be a topological group, H a subgroup. Construct a homeomorphism

$$G \times^H G/H \simeq G/H \times G/H.$$

Is it G -equivariant with respect to a suitable G -actions?

¹The multiplicative group

Problem list 3 — 24 October

1 Let

$$\Sigma_r(n, m) = \{f \in \text{Hom}(\mathbb{C}^n, \mathbb{C}^m) : \dim(\ker(f)) = r\}.$$

Compute the dimension of $\Sigma_r(n, m)$.

Deduce that for any fixed $i \in \mathbb{N}$ and sufficiently large m the homotopy groups $\pi_i(\Sigma_0(n, m))$ is trivial.

2 Find a CW-decomposition of \mathbb{P}^n with the standard action of $(S^1)^{n+1}$ (at least with $n = 2$.)

3 Find a presentation of the cohomology ring $H^*(G(k, n))$ using the fibration $\text{Gras}_k(\mathbb{C}^n) \rightarrow B(U_k \times U_{n-k}) \rightarrow BU_n$.

Hint: use a corollary from Leray-Hirsh theorem, sayin that the fibration $F \rightarrow E \rightarrow B$ satisfying the appropriate assumptions $H^*(F; \mathbb{Q}) = \mathbb{Q} \otimes_{H^*(B; \mathbb{Q})} H^*(E; \mathbb{Q})$.

4 Suppose $H \triangleleft G$ is a normal subgroup, $K = G/H$. Construct a fibration $BH \rightarrow BG \rightarrow BK$.

(Take $EH := EG$ and $E'G = EG \times EK$, taking the fibration $E'G/G \rightarrow EK/K$ we find that the fiber is $EG \times^G G/H = BH$.)

5 Milnor construction of EG .

For topological spaces X and Y let $X * Y$ denote its join, i.e.

$$CX \times Y \cup_{X \times Y} X \times CY,$$

where CX denotes the cone over X . Let G be a topological group, show that n -fold join $X * X * \dots * X$ has homotopy groups π_i trivial for $i < n - 1$ and G acts freely on that space. Taking the infinite join we obtain a model of EG .

6 Simplicial model of EG using bar-construction.

Let $X_i = G^{i+1}$ and $d_{i,k} : X_i \rightarrow X_{i-1}$ is the projection, forgetting about the k -th component $k = 0, 1, \dots, i$. (This is a presimplicial topological space.) The geometric realization is defined as

$$|X_\bullet| = \left(\bigsqcup_{i \geq 0} X_i \times \Delta^i \right) / \sim$$

$$(d_{i,k}(a), b) \sim (a, \partial_{i-1,k}(b)) \quad \text{for } a \in X_i, b \in \Delta^{i-1}$$

where $\partial_{i-1,k} : \Delta_{i-1} \hookrightarrow \Delta_i$ is the inclusion of the k -th facet in the standard symplex. Show that $E = |X_\bullet|$ is contractible and the diagonal action of G is free.

Present E/G as a geometric realization of a (pre-)simplicial set Y_\bullet , such that $Y_i = G^i$.

Problem list 4 — 31 October

1 Find a CW-decomposition of \mathbb{P}^n with the standard action of $(S^1)^{n+1}$ (at least with $n = 2$.)

2 Show that for a finite group G and a G -space X

$$H_G^*(X; \mathbb{Q}) \simeq H^*(X/G; \mathbb{Q}).$$

3 a) Find a presentation of the cohomology ring $H^*(Gras_k(\mathbb{C}^n))$ using the fibration

$$Gras_k(\mathbb{C}^n) \rightarrow B(U_k \times U_{n-k}) \rightarrow BU_n.$$

Hint: use a corollary from Leray-Hirsh theorem, sayin that the fibration $F \rightarrow E \rightarrow B$ satisfying the appropriate assumptions $H^*(F; \mathbb{Q}) = \mathbb{Q} \otimes_{H^*(B; \mathbb{Q})} H^*(E; \mathbb{Q})$.

b) Show that the Chern classes of the tautological bundle generate $H^*(Gras_k(\mathbb{C}^n))$.

4 Let $\mathbb{T} = (\mathbb{C}^*)^2$ act on \mathbb{P}^3 by the formula

$$(t_0, t_1) \cdot [z_0 : z_1 : z_2 : z_3] = [t_0 z_0 : t_1 z_1 : t_1^{-1} z_2 : t_0^{-1} z_3].$$

Let X be the quadric $z_0 z_3 = z_1 z_2$. compute $H_{\mathbb{T}}^*(X)$. It is an algebra over $\mathbb{Z}[t_0, t_1]$. Find generators and their relations. Check that it is free as a module.

Hint: $X \simeq \mathbb{P}^1 \times \mathbb{P}^1$.

5 Simplicial model of EG using bar-construction [mini-talk KP]

Let $X_i = G^{i+1}$ and $d_{i,k} : X_i \rightarrow X_{i-1}$ is the projection, forgetting about the k -th component $k = 0, 1, \dots, i$. (This is a presimplicial topological space.) The geometric realization is defined as

$$|X_{\bullet}| = \left(\bigsqcup_{i \geq 0} X_i \times \Delta^i \right) / \sim$$

$$(d_{i,k}(a), b) \sim (a, \partial_{i-1,k}(b)) \quad \text{for } a \in X_i, b \in \Delta^{i-1}$$

where $\partial_{i-1,k} : \Delta_{i-1} \hookrightarrow \Delta_i$ is the inclusion of the k -th facet in the standard symplex. Show that $E = |X_{\bullet}|$ is contractible and the diagonal action of G is free.

Present E/G as a geometric realization of a (pre-)simplicial set Y_{\bullet} , such that $Y_i = G^i$.

Problem list 5 — 7 November

1 Let $NT \subset U(n)$ be the normalizer of the maximal torus. Compute $H^*(U(n)/NT; \mathbb{Q})$.

Hint: Use the fact¹ that $H^*(X/G; \mathbb{Q}) \xrightarrow{\sim} H^*(X; \mathbb{Q})^G$ for a finite group G acting on a topological space. Apply it to $X = BT$, $G =$ the permutation group.

BTW: What is it $U(2)/NT$?

2 Compute cohomology of $BSU(n)$. (Or equivalently $BSL_n(\mathbb{C})$.)

3 Cohomology of Grassmannians:

- Show that the Chern classes of the tautological bundle generate $H^*(Grask(\mathbb{C}^n))$. Find the relations.
- Let $E \rightarrow B$ be a complex vector bundle, $0 < k < \text{rank}(E)$. By $Gr_k(E)$ we denote the associated Grassmann bundle (we replace the fibers E_x by the Grassmannians of k -dimensional subspaces in E_x). Let γ be the tautological bundle over $Gr_k(E)$. Show that $H^*(Gr_k(E))$ is generated over $H^*(B)$ by the Chern classes $c_i(\gamma)$, $i = 1, 2, \dots, k$.
- As a corollary compute $H_T^*(Gr_k(\mathbb{C}^n))$, where T is the maximal torus in $GL_n(\mathbb{C})$.
- Compare the answer with Projective Bundle Theorem $H^*(\mathbb{P}(E)) \simeq H^*(B)[h]/(\text{well known relation})$.

4 Let G be a Lie group of dimension d . Suppose $P \rightarrow B$ is a principal bundle. Assume that P is n -connected, i.e. its homotopy groups are trivial in degrees $\leq n$. Show that $H^k(B) \simeq H^k(BG)$ for $k \leq n$.

¹Glen E. Bredon - Sheaf Theory-Springer-Verlag New York (Graduate Texts in Mathematics 170), Theorem 19.2.

Problem list 6 — 14 November

1 Define the equivariant fundamental class not passing through approximation of EG , but using the equivariant normal bundle on Y_{smooth} which gives rise to a bundle on $EG \times^G Y_{smooth}$.

2 Show that the localization functor

$$\Lambda\text{-modules} \longrightarrow K\text{-modules}$$

is exact.

3 See what goes wrong with the proof of localization theorem for \mathbb{T} replaced by a nonabelian group. In the torus case for any proper subgroup $K \subset \mathbb{T}$ the orbit $H_{\mathbb{T}}^*(\mathbb{T}/K)$ turned out to be a torsion $H_{\mathbb{T}}^*(pt)$ -module. What happens for noncommutative groups?

4 Let $X = \mathbb{P}^n$ with the standard action of $\mathbb{T} = (\mathbb{C}^*)^{n+1}$. Show that the image

$$H_{\mathbb{T}}^*(\mathbb{P}^n) \hookrightarrow \bigoplus_{k=0}^n \Lambda = \Lambda^{n+1}$$

consists of such sequences $(f_0, f_1, \dots, f_n) \in \mathbb{Q}[t_0, t_1, \dots, t_n]^{n+1}$, such that $t_i - t_j$ divides $f_i - f_j$. (Of course not using the general theorem, but by a direct computation.)

5 Cohomology of Grassmannians → N.C.:

- Show that the Chern classes of the tautological bundle generate $H^*(Grask(\mathbb{C}^n))$. Find the relations.
- Let $E \rightarrow B$ be a complex vector bundle, $0 < k < \text{rank}(E)$. By $Gr_k(E)$ we denote the associated Grassmann bundle (we replace the fibers E_x by the Grassmannians of k -dimensional subspaces in E_x). Let γ be the tautological bundle over $Gr_k(E)$. Show that $H^*(Gr_k(E))$ is generated over $H^*(B)$ by the Chern classes $c_i(\gamma)$, $i = 1, 2, \dots, k$.
- As a corollary compute $H_T^*(Gr_k(\mathbb{C}^n))$, where T is the maximal torus in $\text{GL}_n(\mathbb{C})$.
- Compare the answer with Projective Bundle Theorem $H^*(\mathbb{P}(E)) \simeq H^*(B)[h]/(\text{well known relation})$.

Problem list 7— 21 November

1 Show that the localization functor

$$\Lambda\text{-modules} \longrightarrow K\text{-modules}$$

is exact.

2 See what goes wrong with the proof of localization theorem for \mathbb{T} replaced by a nonabelian groups. In the torus case for any proper subgroup $K \subset \mathbb{T}$ the orbit $H_{\mathbb{T}}^*(\mathbb{T}/K)$ turned out to be a torsion $H_{\mathbb{T}}^*(pt)$ -module. What happens for noncommutative groups?

3 Let $X = \mathbb{P}^n$ with the standard action of $\mathbb{T} = (\mathbb{C}^*)^{n+1}$. Show that the image

$$H_{\mathbb{T}}^*(\mathbb{P}^n) \hookrightarrow \bigoplus_{k=0}^n \Lambda = \Lambda^{n+1}$$

consists of such sequences $(f_0, f_1, \dots, f_n) \in \mathbb{Q}[t_0, t_1, \dots, t_n]^{n+1}$, such that $t_i - t_j$ divides $f_i - f_j$. (Of course not using the general theorem, but by a direct computation.)

4 The torus $\mathbb{T} = (\mathbb{C}^*)^{n+1}$ acts in the standard way on \mathbb{P}^n . Let $h = c_1(\mathcal{O}(1)) \in H_{\mathbb{T}}^2(\mathbb{P}^n)$. Using AB-BV localization formula compute

$$p_*(h^{n+m}) \in H_{\mathbb{T}}^*(pt) = \mathbb{Z}[t_0, t_1, \dots, t_n].$$

(The restriction of h at the standard fixed point $p_k \in \mathbb{P}^n$ is equal $h|_{p_k} = -t_k$.)

5 Let $L = \mathcal{O}(m)$, $m \geq 0$. Using Riemann-Roch theorem and the localization theorem compute $\chi(\mathbb{P}^n; L)$. Check if it agrees with the formula well known for algebraic geometers:

$$\chi(\mathbb{P}^n; L) = \dim H^0(\mathbb{P}^n; \mathcal{O}(m)) = \mathbb{C}[t_0, t_1, \dots, t_n]_{\deg=m}.$$

(The restriction of L at the standard fixed point $p_k \in \mathbb{P}^n$ is equal to \mathbb{C}_{-mt_k} , i.e. \mathbb{C} with \mathbb{T} acting with the weight $-mt_k$.)

Problem list 8— 28 November

1 Let $L = \mathcal{O}(m)$, $m \geq 0$. Using Riemann-Roch theorem and the localization theorem compute $\chi(\mathbb{P}^n; L)$. Check if it agrees with the formula well known for algebraic geometers:

$$\chi(\mathbb{P}^n; L) = \dim H^0(\mathbb{P}^n; \mathcal{O}(m)) = \mathbb{C}[t_0, t_1, \dots, t_n]_{\deg=m}.$$

(The restriction of L at the standard fixed point $p_k \in \mathbb{P}^n$ is equal to \mathbb{C}_{-mt_k} , i.e. \mathbb{C} with \mathbb{T} acting with the weight $-mt_k$.)

2 Suppose $F \rightarrow X \rightarrow B$ is a fibration, and F is a sphere. Write how the $E_r^{p,q}$ table looks like for $r+1 \leq \dim F$ and deduce the Gysin long exact sequence.

3 Suppose $F \rightarrow X \rightarrow B$ is a fibration, and B is a sphere. Write how the $E_r^{p,q}$ table looks like for $r \leq \dim B$ and deduce the resulting long exact sequence (called Wang sequence).

4 Write all the entries of the spectral sequence $E_2^{p,q} = H^p(B\mathbb{T}, H^q(X)) \Rightarrow H_{\mathbb{T}}^{p+q}(X)$ for $\mathbb{T} = S^1$ acting on $S^3 \subset \mathbb{C}^2$ as the scalar multiplication.

5 Write all the entries of the Serre spectral sequence of the fibration $E\mathbb{T} \times X \rightarrow E\mathbb{T} \times^{\mathbb{T}} X$ for $X = \mathbb{P}^1$ or S^3 (with the usual torus actions).

6 Show that if a topological \mathbb{T} -space has no odd cohomology (i.e. $H^{odd}(X) = 0$), then X is equivariantly formal.

Problem list 9— 5 December

1 Write all the entries of the Serre spectral sequence of the fibration $E\mathbb{T} \times X \rightarrow E\mathbb{T} \times^{\mathbb{T}} X$ for $X = \mathbb{P}^1$ or S^3 (with the usual torus actions).

2 Consider the spectral sequence from the previous problem for X arbitrary, and $\mathbb{T} = S^1$. Show that $d_2^{p,1} : H_{\mathbb{T}}^p(X) = E_2^{p,1} \rightarrow E_2^{p+2,0} = H_{\mathbb{T}}^{p+2}(X)$ can be identified with the multiplication by the generator of $H_{\mathbb{T}}^2(pt)$. What happens when X is equivariantly formal?

3 Write all the entries of the spectral sequence $E_2^{p,q} = H^p(B\mathbb{T}, H^q(X)) \Rightarrow H_{\mathbb{T}}^{p+q}(X)$ for $\mathbb{T} = S^1$ acting on $S^3 \subset \mathbb{C}^2$ as the scalar multiplication.

4 Consider the spectral sequence from the previous problem for X arbitrary, and $\mathbb{T} = S^1$. Assuming that $\mathbb{T} = S^1$ recognize the differential

$$H^q(X) = E_2^{0,q} \rightarrow E_2^{2,q-1} = H^2(B\mathbb{T}) \otimes H^{q-1}(X) \simeq H^1(\mathbb{T}) \otimes H^{q-1}(X)$$

as a map induced by the multiplication $S^1 \times X \rightarrow X$.

(Taking $X = \mathbb{T}$ the differential $H^1(\mathbb{T}) = E_2^{0,1} \rightarrow E_2^{2,0} = H^2(B\mathbb{T})$ is an isomorphism.)

5 Let γ be the tautological bundle over the Grassmannian $Gr_2(\mathbb{C}^4)$. Compute the push-forward to the point

$$\int_{Gr_2(\mathbb{C}^4)} c_2(\gamma^*)^n.$$

Show that the result is equal to the Schur function for $\lambda = (n-2, n-2, 0, 0)$ if $n \geq 2$. If possible – generalize this calculus.

Hint $c_2(L_1 \oplus L_2)^n = S_{\lambda}(c_1(L_1), c_1(L_2))$ for $\lambda = (n, n)$. Use Laplace block-expansion.

6 The space \mathbb{C}^{2n} is equipped with the canonical non-degenerate antisymmetric 2-form

$$\omega = \sum_{i=1}^n dx_i \wedge dx_{n-i+1}$$

(i.e. the symplectic form). Let $LG_n \subset Gr_n(\mathbb{C}^n)$ be the Lagrangian Grassmannian, i.e. the set of isotropic n -subspaces. The torus

$$diag(t_1, t_2, \dots, t_n, t_n^{-1}, \dots, t_2^{-1}, t_1^{-1})$$

acts on \mathbb{C}^{2n} preserving ω , hence it acts on LG_n . Find the fixed points and the GKM-graph.

Problem list 10— 12 December

The space \mathbb{C}^{2n} is equipped with the canonical non-degenerate antisymmetric 2-form

$$\omega = \sum_{i=1}^n dx_i \wedge dx_{n-i+1}$$

(i.e. the symplectic form). Let $LG_n \subset Gr_n(\mathbb{C}^{2n})$ be the Lagrangian Grassmannian, i.e. the set of isotropic n -subspaces. The torus

$$diag(t_1, t_2, \dots, t_n, t_n^{-1}, \dots, t_2^{-1}, t_1^{-1})$$

acts on \mathbb{C}^{2n} preserving ω , hence it acts on LG_n . Let $e_1, e_2, \dots, e_n, f_n, \dots, f_2, f_1$ be the Darboux basis. We have found that the fixed points correspond to the choices of subsets $I \subset \{1, 2, \dots, n\}$

$$p_I = \text{lin}\{e_i, f_j : i \in I, j \notin I\}$$

1 Compute the GKM-graph of $LG(n)$.

2 Let $\mathbb{C}^* \simeq \mathbb{T}_0 \subset \mathbb{T} = (\mathbb{C}^*)^{2n}$ be the 1-dimensional subtorus

$$\mathbb{T}_0 = \{(t^n, t^{n-1}, \dots, t, t^{-1}, \dots, t^{1-n}, t^{-n}) \mid t \in \mathbb{C}^*\}.$$

Compute the dimension of the Białynicki-Birula cell attached to $p_I \in LG(n)$.

3 Finish the proof, that the only 1-dimensional orbits in $Gr_k(\mathbb{C}^n)$ correspond to exchanging one element in the subset $I \subset \{1, 2, \dots, n\}$, $|I| = k$.

4 Using AB-BV formula compute the equivariant $\int_{LG(2)} c_1(\gamma^*)^k$ for $k = 3, 4$, where γ is the tautological bundle on $LG(2)$.

5 Let γ be the tautological bundle over the Grassmannian $Gr_2(\mathbb{C}^4)$. Compute the equivariant push-forward to the point

$$\int_{Gr_2(\mathbb{C}^4)} c_2(\gamma^*)^n.$$

Show that the result is equal to the Schur function for $\lambda = (n-2, n-2, 0, 0)$ if $n \geq 2$. If possible – generalize this calculus.

Hint $c_2(L_1 \oplus L_2)^n = S_\lambda(c_1(L_1), c_1(L_2))$ for $\lambda = (n, n)$. Use Laplace block-expansion.

6 Let $X_1 \subset Gr_2(\mathbb{C}^n)$ be (the Schubert variety) defined by

$$X_1 = \{W \in Gr_2(\mathbb{C}^4) \mid W \cap \text{lin}\{\varepsilon_1, \varepsilon_2\} \neq 0\}.$$

Compute an equation of X_1 in neighbourhoods of the fixed points $\text{lin}\{\varepsilon_i, \varepsilon_j\}$. Compute the restriction of the fundamental class $[X_1]$ to the fixed points.

Hint: to compute the restriction of $[X_1]$ at $\text{lin}\{\varepsilon_i, \varepsilon_j\}$ one can use the divisibility relations or the fact that $\int_{Gr_2(\mathbb{C}^4)} [X_1] = 0$.

Problem list 11— 19 December

1 Let γ be the tautological bundle over the Grassmannian $Gr_k(\mathbb{C}^n)$. Compute

$$\int_{Gr_2(\mathbb{C}^4)} c_1(\gamma^*)^{(n-k)k},$$

using the AB-BV formula.

Hint: Install Wolfram Mathematica on your laptop and execute for a fixed n and k

```
Sum[(-Sum[t[a], {a, J}])^(k (n - k))/Product[t[b] - t[a], {a, J}, {b, Complement[Range[n], J]}], {J, Subsets[Range[n], {k}]}]
```

Factor[%]

How far can you go?

2 Let γ be the tautological bundle and Q be the quotient bundle over the Grassmannian $Gr_k(\mathbb{C}^n)$. We consider generalized Schur classes for arbitrary sequences $\lambda_1, \lambda_2, \dots, \lambda_d$ for a vector bundle of rank d : if the E bundle splits into direct sum of line bundles L_i , and $t_i = c_1(L_i)$ then

$$S_\lambda(E) = \frac{\det \begin{pmatrix} t_1^{\lambda_1+d-1} & t_1^{\lambda_1+d-2} & \dots & t_1^{\lambda_d} \\ t_2^{\lambda_2+d-1} & t_2^{\lambda_2+d-2} & \dots & t_2^{\lambda_d} \\ \vdots & & & \vdots \\ t_d^{\lambda_1+d-1} & t_d^{\lambda_2+d-2} & \dots & t_d^{\lambda_d} \end{pmatrix}}{\det \begin{pmatrix} t_1^{d-1} & t_1^{d-2} & \dots & t_1^0 \\ t_2^{d-1} & t_2^{d-2} & \dots & t_2^0 \\ \vdots & & & \vdots \\ t_d^{d-1} & t_d^{d-2} & \dots & t_d^0 \end{pmatrix}}$$

Show that

$$\int_{Gr_k(\mathbb{C}^n)} S_\lambda(\gamma) S_\mu(Q) = S_\nu(\mathbb{C}^n)$$

for some ν .

3 Let $X_1 \subset Gr_2(\mathbb{C}^n)$ be (the Schubert variety) defined by

$$X_1 = \{W \in Gr_2(\mathbb{C}^4) \mid W \cap \text{lin}\{\varepsilon_1, \varepsilon_2\} \neq 0\}.$$

Compute an equation of X_1 in neighbourhoods of the fixed points $\text{lin}\{\varepsilon_i, \varepsilon_j\}$. Compute the restriction of the fundamental class $[X_1]$ to the fixed points.

Hint: to compute the restriction of $[X_1]$ at $\text{lin}\{\varepsilon_i, \varepsilon_j\}$ one can use the divisibility relations or the fact that $\int_{Gr_2(\mathbb{C}^4)} [X_1] = 0$.

4 Define the equivariant intersection form

$$H_T^*(M) \times H_T^*(M) \rightarrow H_T^*(pt)$$

$$(a, b) \mapsto \int_M ab \in \mathbb{H}_T^*(pt).$$

Compute the intersection form in the basis $[\mathbb{P}^0], [\mathbb{P}^1], [\mathbb{P}^2]$, where $\mathbb{P}^i = \mathbb{P}(\text{lin}\{\varepsilon_0, \dots, \varepsilon_i\})$.

5 Let G be a compact connected Lie group. Prove that

$$H^k(G; \mathbb{R}) \simeq (\Lambda^k \mathfrak{g}^*)^G.$$

BTW: $H^{2k}(BG; \mathbb{R}) \simeq (\text{Sym}^k \mathfrak{g}^*)^G$.

Problem list 11 — 9 January

1 Let \mathfrak{g} be a graded vector space with a binary operation $[-, -]$ which is graded-antisymmetric, i.e.

$$[x, y] = -(-1)^{\deg(x) \deg(y)} [y, x].$$

We say that $[x, -]$ satisfies the graded Leibniz formula if

$$[x, [y, z]] = [[x, y], z] + (-1)^{\deg(x) \deg(y)} [y, [x, z]].$$

Show, that in the classical case (i.e. \mathfrak{g} lives only in even gradations) the above identity is equivalent to the Jacobi identity.

2 Let \mathfrak{g} be a Lie algebra (in the usual sense). Show that $\tilde{\mathfrak{g}} = \tilde{\mathfrak{g}}_{-1} \oplus \tilde{\mathfrak{g}}_0 \oplus \tilde{\mathfrak{g}}_1$ with

$$\iota_\lambda \in \tilde{\mathfrak{g}}_{-1} = \mathfrak{g}, \quad \mathcal{L}_\lambda \in \tilde{\mathfrak{g}}_0 = \mathfrak{g} \quad d \in \tilde{\mathfrak{g}}_1 = \mathbb{R}$$

with the commutation relations

$$\begin{aligned} [\iota_\lambda, \iota_\mu] &= 0, & [\mathcal{L}_\lambda, \iota_\mu] &= \iota_{[\lambda, \mu]}, & [d, \iota_\lambda] &= \mathcal{L}_\lambda, \\ [\mathcal{L}_\lambda, \mathcal{L}_\mu] &= \mathcal{L}_{[\lambda, \mu]}, & [\mathcal{L}_\lambda, d] &= 0, & [d, d] &= 0, \end{aligned}$$

is a graded Lie algebra.

3 Mathai-Quillen twist: Assume that $P \rightarrow B$ is a \mathbb{T} -principal bundle with a connection

$$\theta \in \text{Hom}(TP, \mathfrak{t}) \simeq \mathfrak{t} \otimes \Omega^1(P).$$

That is:

1. θ is \mathbb{T} -invariant
2. for $\lambda \in \mathfrak{t}$, $x \in P$ the value of θ at x in the fundamental vector field v_λ is equal to λ .

In a basis of $\{\lambda^a\} \subset \mathfrak{t}$ we write

$$\theta = \sum_a \lambda^a \otimes \theta_a.$$

Let X be a \mathbb{T} manifold.

$$\gamma = \sum \theta_a \otimes \iota_{\lambda^a} \in \text{End}(\Omega^\bullet(P) \otimes \Omega^\bullet(X)).$$

Show, that γ does not depend on the choice of a basis.

4 Assume that $\dim T = 1$ or 2. Consider \mathbb{T}^* -algebras W and A , with W locally free (e.g. $W = W(\mathfrak{t})$). Let

$$\phi = \exp(\gamma) \in \text{Aut}(W \otimes A) = 1 + \gamma + \frac{1}{2}\gamma \circ \gamma + \dots$$

Check that for any $\lambda \in \mathfrak{t}$

$$\phi \circ (\iota_\lambda \otimes 1 + 1 \otimes \iota_\lambda) \circ \phi^{-1} = \iota_\lambda \otimes 1$$

$$\phi \circ (d \otimes 1 + 1 \otimes d) \circ \phi^{-1} = (d \otimes 1 + 1 \otimes d) - \sum \nu_a \otimes \iota_{\lambda^a} + \sum \theta_a \otimes \mathcal{L}_{\lambda^a}$$

where $\nu_a = d\theta_a$

5 Let $G = SU(2)$, $\mathfrak{g} = \mathfrak{su}_2 = \text{lin}\{i, j, k\}$ with the well known commutation relations $[i, j] = 2k$, etc. Write down explicitly the Chevalley complex computing $H^*(SU(2))$. Compare it with $H^*(BSU(2))$, check that indeed $H^*(BG) \simeq (\text{Sym } \mathfrak{g}^*)^G \simeq (\text{Sym } \mathfrak{t}^*)^W$.

6 Define the equivariant intersection form

$$H_{\mathbb{T}}^*(M) \times H_{\mathbb{T}}^*(M) \rightarrow H_{\mathbb{T}}^*(pt)$$

$$(a, b) \mapsto \int_M ab \in H_{\mathbb{T}}^*(pt).$$

Compute the intersection form in the basis $[\mathbb{P}^0], [\mathbb{P}^1], [\mathbb{P}^2]$, where $\mathbb{P}^i = \mathbb{P}(\text{lin}\{\varepsilon_0, \dots, \varepsilon_i\})$.

[Use Wolfram Mathematica or your favourite formal algebra software for higher dimension \mathbb{P}^n 's.]

Problem list 13 — 16 January

1 Let $G = SU(2)$, $\mathfrak{g} = \mathfrak{su}_2 = \text{lin}\{i, j, k\}$ with the well known commutation relations $[i, j] = 2k$, etc. Write down explicitly the Chevalley complex computing $H^*(SU(2))$. Compare it with $H^*(BSU(2))$, check that indeed $H^*(BG) \simeq (\text{Sym } \mathfrak{g}^*)^G \simeq (\text{Sym } \mathfrak{t}^*)^W$.

2 Define the equivariant intersection form

$$H_{\mathbb{T}}^*(M) \times H_{\mathbb{T}}^*(M) \rightarrow H_{\mathbb{T}}^*(pt)$$

$$(a, b) \mapsto \int_M ab \in H_{\mathbb{T}}^*(pt).$$

Compute the intersection form in the basis $[\mathbb{P}^0], [\mathbb{P}^1], [\mathbb{P}^2]$, where $\mathbb{P}^i = \mathbb{P}(\text{lin}\{\varepsilon_0, \dots, \varepsilon_i\})$.

[Use Wolfram Mathematica or your favourite formal algebra software for higher dimension \mathbb{P}^n 's.]

3 Describe the moment polytopes of homogeneous spaces for $SO(5)$ and $Sp(3)$, in particular for the Lagrangian Grassmannian $LG(3) \subset Gr_3(\mathbb{C}^6)$ and for the generalized flag manifold $Sp(3)/B \simeq p^{-1}(LG(3))$, where $p : Fl_{1,2,3}(\mathbb{C}^6) \rightarrow Gr_3(\mathbb{C}^6)$. Here $Fl_{1,2,3}(\mathbb{C}^6)$ denotes the partial flags $V_1 \subset V_2 \subset V_3 \subset \mathbb{C}^6$. Make some colourful pictures!

4 Let G be a Lie group acting on a symplectic manifold M with a moment map $\mu : M \rightarrow \mathfrak{g}^*$. Show that μ is G invariant, i.e. $\mu(gx) = Ad_g^*(\mu(x))$.

5 Let (M, ω) be a symplectic manifold with a Hamiltonian S^1 action. Let $H : M \rightarrow \mathfrak{t}^* \simeq \mathbb{R}$ be the moment map. Prove the Duistermaat-Heckman formula

$$\int_M e^{\hbar f} \frac{\omega^n}{n!} = \sum_{p \in S^1} \frac{e^{\hbar f(p)}}{e(T_p M)}.$$

Problem list 14 — 23 January

1 Describe the moment polytopes of homogeneous spaces for $SO(5)$ and $Sp(3)$, in particular for the Lagrangian Grassmannian $LG(3) \subset Gr_3(\mathbb{C}^6)$ and for the generalized flag manifold $Sp(3)/B \simeq p^{-1}(LG(3))$, where $p : Fl_{1,2,3}(\mathbb{C}^6) \rightarrow Gr_3(\mathbb{C}^6)$. Here $Fl_{1,2,3}(\mathbb{C}^6)$ denotes the partial flags $V_1 \subset V_2 \subset V_3 \subset \mathbb{C}^6$. Make some colourful pictures!

2 Let G be a Lie group acting on a symplectic manifold M with a moment map $\mu : M \rightarrow \mathfrak{g}^*$. Show that μ is G invariant, i.e. $\mu(gx) = Ad_g^*(\mu(x))$.

3 (Angular momentum) Consider the natural action of $G = SO(3)$ on $\mathbb{R}^6 = T^*\mathbb{R}^3$ (with the standard symplectic structure). Find the moment map.

Here we can identify \mathfrak{so}_3 with \mathbb{R}^3 with the vector product \times , moreover we identify \mathfrak{so}_3 with \mathfrak{so}_3^* via the scalar product $trace(X^T Y)$ (for $X, Y \in \mathfrak{so}_3$) which becomes 2 times the standard scalar product in \mathbb{R}^3 .

(Read more about the moment map see: Dusa McDuff, Dietmar Salamon - *Introduction to symplectic topology*-Oxford University Press, 1999, Section 5.2)

4 Let $U(k)$ act on $\text{Hom}(\mathbb{C}^k, \mathbb{C}^n)$ (assuming $k < n$). Show that $\mu(A) = iA^A$ is a moment map.

5 Suppose $\mathbb{T} = (\mathbb{C}^*)^2$ acting of \mathbb{C}^2 in the standard way. We extend this action to \mathbb{P}^2 . Let X be the blow-up at 0. Pick an equivariant embedding of X into a projective space, and find the resulting moment polytope for a choice of \mathbb{T} action on $L = \mathcal{O}(1)|_X$.

Oral exam questions

- 1 10♠ Topological Euler characteristic and torus actions, p -group actions.
- 2 J♠ Linear representation of tori, weights, characters
- 3 Q♠ Topological properties of group actions on smooth manifolds, slice theorem.
- 4 K♠ Classifying spaces. Examples.
- 5 A♠ Cohomology of Grassmannians and $BU(n)$.
- 6 10♣ Borel construction and equivariant cohomology. Examples of computations.
- 7 J♣ Equivariant formality of compact, smooth algebraic manifolds
- 8 Q♣ Localization theorem for torus action (about the restriction $H_T^*(X) \rightarrow H_T^*(X^T)$).
- 9 K♣ Localization (Atiyah-Bott, Berline-Vergne formula)
- 10 A♣ GKM spaces and their equivariant cohomology
- 11 10◊ Examples of application of the integration formula
- 12 J◊ Computations of characters via integration on flag manifold.
- 13 Q◊ Differential model of the equivariant cohomology.
- 14 K◊ Algebraic model of forms on ET .
- 15 A◊ The role of the connection in the differential model, and Mathai-Quillena twist.
- 16 10♡ Symplectic manifolds, hamiltonian actions, the moment map.
- 17 J♡ Examples of moment polytopes. Permutohedron.
- 18 Q♡ Quotients and the Kirwan map.
- 19 K♡ Toric varieties associated to convex polytopes.
- 20 A♡ Equivariant Schubert calculus on Grassmannians.

Possible Essay Subjects ECiAG 2023/4

Comparison of slice theorem for actions of compact groups in topology with the Luna slice theorem in algebraic geometry. [B] Section II.5, [D]

Torus localization for generalized cohomology theories [tD]

Todd genus of toric varieties [BV]

A proof of Borel-Bott-Weil character formula via equivariant cohomology [FH, section 24-25]

Mathai-Quillen twist [MQ]

Moment polytopes for homogeneous varieties, the compact quotients of $SO(5)$ and $Sp(3)$

Equivariant Schubert calculus: basic identities and examples. [KT]

Chang-Skjelbred Lemma. [F]

Equivariant K-theory [S]

Equivariant Chow groups [EG]

Convexity of the Moment Polytope [A]

Quotients and Kirwan Surjectivity [MFK] Ch.8

[A] Atiyah, M. F. Convexity and commuting Hamiltonians.
Bull. London Math. Soc. 14(1982), no. 1, 1–15.

[B] G. Bredon, Introduction to Compact Transformation Groups. Academic Press 1972.

[BV] M. Brion, M. Vergne, An equivariant Riemann-Roch theorem for complete, simplicial toric varieties.
J. Reine Angew. Math. 482(1997), 67-92

[D] Jean-Marc Drézet, Luna's slice theorem and applications,
<https://hal.science/hal-00742479/document>

[EG] Edidin, Dan; Graham, William, Localization in equivariant intersection theory and the Bott residue formula
Amer. J. Math. 120 (1998), no. 3, 619-636.

[Fr] Matthias Franz,
The Chang–Skjelbred Lemma And Generalizations, <https://arxiv.org/pdf/2306.05165.pdf>

[FH] Fulton, William; Harris, Joe;
Representation theory
Grad. Texts in Math., 129

[KT] Knutson, Allen; Tao, Terence; Puzzles and (equivariant) cohomology of Grassmannians
Duke Math. J. 119 (2003), no. 2, 221–260

[MQ] Mathai, Varghese; Quillen, Daniel;
Superconnections, Thom classes, and equivariant differential forms.
Topology 25(1986), no.1, 85-110

[MFK] D. Mumford, J. Fogarty, and F. Kirwan. Geometric Invariant Theory, volume 34 of Results in Mathematics and Related Areas (2). Springer-Verlag, third edition, 1994.

[S] Segal, Graeme;
Equivariant K-theory,
Inst. Hautes Études Sci. Publ. Math.(1968), no. 34, 129–151

[tD] Tammo tom Dieck. Lokalisierung aquivarianter Kohomologie-Theorien. Math. Z., 121:253–262, 1971.