zadanie

M.B. M.L.

We denote by $H^{*}(X)$ the cohomology of X with coefficients in \mathbb{Q}. Equivariant formality is equivalent to showing the following isomorphism of $H_{T}^{*}(*)$-modules

$$
H_{T}^{*}(X) \cong H_{T}^{*}(*) \otimes H^{*}(X)
$$

To prove this we will study the fibration $X \hookrightarrow E T \times^{T} X \rightarrow B T$. The second sheet of Serre's spectral sequence associated to this fibration has groups

$$
E_{2}^{p, q}=H^{p}\left(B T ; H^{q}(X)\right)
$$

By assumption, $H^{o d d}(X)=0$ and from the CW decomposition of $B T=\left(\mathbb{C} P^{\infty}\right)^{r}$ we see that $H^{\text {odd }}\left(B T ; H^{q}(X)\right)=0$. Thus each differential in E_{2} is zero and so is the case for all $E_{r}-$ as $d_{r}: E_{r}^{p, q} \rightarrow E_{r}^{p+r, q+1-r}$ and $E_{r}^{p, q}$ is nonzero if and only if both p and q are even, then always either the domain or codomain of d_{r} is zero. Therefore $E_{2}=E_{\infty}$ and thus $H_{T}^{n}(X)$ has a filtration

$$
0 \subset F_{n}^{n} \subset \cdots \subset F_{0}^{n}=H_{T}^{*}(X),
$$

where $F_{p}^{n} / F_{p+1}^{n} \cong E_{\infty}^{p, n-p}=E_{2}^{p, n-p}$. Since we are working with \mathbb{Q}-modules, then each of these inclusions split and therefore we can describe $H_{T}^{*}(X)$ neatly

$$
\begin{equation*}
H_{T}^{*}(X)=F_{0}^{n} \oplus E_{2}^{0, n}=F_{1}^{n} \oplus E_{2}^{1, n-1} \oplus E_{2}^{0, n}=\cdots=\bigoplus_{p+q=n} E_{2}^{p, q} \tag{1}
\end{equation*}
$$

Lastly, we need to get a handle on $E_{2}^{p, q}=H^{p}\left(B T ; H^{q}(X)\right)$. For this we use the Universal Coefficients Theorem

$$
0 \rightarrow \operatorname{Ext}_{\mathbb{Q}}^{1}\left(H_{p-1}(B T), H^{q}(X)\right) \rightarrow H^{p}\left(B T ; H^{q}(X)\right) \rightarrow \operatorname{Hom}_{\mathbb{Q}}\left(H_{p}(B T), H^{q}(X)\right) \rightarrow 0
$$

Again, we are working over \mathbb{Q} and all finitely dimensional spaces are projective \mathbb{Q}-modules, i.e. the Ext vanish. From the CW decomposition of $B T$ we get that $H_{*}(X)^{\vee} \cong H^{*}(X)$ and thus we obtain

$$
H^{p}\left(B T ; H^{q}(X)\right) \cong \operatorname{Hom}_{\mathbb{Q}}\left(H_{p}(B T), H^{q}(X)\right) \cong H_{p}(B T)^{\vee} \otimes H^{q}(X) \cong H^{p}(B T) \otimes H^{q}(X)
$$

Plugging this into (1) we get the desired result

$$
H_{T}^{*}(X) \cong \bigoplus_{n \geq 0} \bigoplus_{p+q=n} E_{2}^{p, q} \cong \bigoplus_{n \geq 0} \bigoplus_{p+q=n} H^{p}(B T) \otimes H^{q}(X) \cong H_{T}^{*}(*) \otimes H^{*}(X) .
$$

