zadanie

M.B. M.L.

Problem. Suppose that $F \rightarrow X \rightarrow B$ is a fibration and F is a sphere. Write how $E_{r}^{p, q}$ table looks like for $r \leq \operatorname{dim} F+1$ and deduce the Gysin long exact sequence.

Solution:

Let $F=S^{n}$. Then the Serre spectral sequence starting from the second sheet is given by

$$
E_{2}^{p, q}=H^{p}\left(B, H^{q}\left(S^{n}\right)\right)= \begin{cases}H^{p}(B) & , p=0, n \\ 0 & , \text { otherwise }\end{cases}
$$

Notice the only non-zero differential would appear when $r=n+1$, where $d_{n+1}^{p, n}: E_{n+1}^{p, n} \rightarrow E_{n+1}^{p+n+1,0}$, i.e. $E_{2}=E_{r}$ for $r \leq n+1$ and this differential is a map $d^{p}:=d_{n+1}^{p, n}: H^{p}(B) \rightarrow H^{p+n+1}(B)$. On the $(n+2)$-th page we have

$$
\begin{aligned}
& E_{n+2}^{p, n}=\operatorname{ker} d^{p} \\
& E_{n+2}^{p, 0}=H^{p}(B) \text { for } p \leq n+1, \\
& E_{n+2}^{p+n+1,0}=H^{p+n+1}(B) / \operatorname{im} d^{p} \text { for } p \geq 0 .
\end{aligned}
$$

We can put all of the above information into a not-so-long exact sequence for $p \geq 0$

$$
0 \rightarrow E_{n+2}^{p, n} \rightarrow H^{p}(B) \xrightarrow{d^{p}} H^{p+n+1}(B) \rightarrow E_{n+2}^{p+n+1,0} \rightarrow 0
$$

After $n+1$ all sheets have zero differentials, so $E_{n+1}=E_{\infty}$. The induced filtration on $H^{*}(X)$ thus consists of one nontrivial subgroup (as there are only two rows in the spectral sequence)

$$
0 \subseteq E_{n+2}^{p, 0} \subseteq H^{p}(X) \text { and } H^{p}(X) / E_{n+2}^{p, 0} \cong E_{n+2}^{p-n, n} \text { if } p \geq n .
$$

For $p<n$ the filtration becomes an equality $H^{p}(X)=H^{p}(B)$. For $p \geq n$ we get the Gysin long exact sequence:

Exactness everywhere is trivial as we are using shorter exact sequences to construct this long exact sequence. For $p<n$ te inclusion $E_{n+2}^{p, 0} \rightarrow H^{p}(X)$ is an isomorphism, so if we set $H^{q}(B)=0$ for $q<0$, then the same exact sequence holds. These sequences merge at n :

Exactness everywhere besides $H^{n}(B)$ is clear, but even there it is clear since $H^{n}(B) \rightarrow E_{n+2}^{n, 0}$ is an isomorphism and not just an epimorphism. Thus we get the full Gysin long exact sequence.

Problem. Consider the spectral sequence associated to the fibration $T \rightarrow E T \times X \rightarrow E T \times^{T} X$ for $T=S^{1}$. Show that $d_{2}^{p, 1}: H_{T}^{p}(X)=E_{2}^{p, 1} \rightarrow E_{2}^{p+2,0}=H_{T}^{p+2}(X)$ can be identified with the multiplication by the generator of $H_{T}^{2}(p t)$. What happens when X is equivariantly formal?

Solution:

We will work with cohomology with coefficients in \mathbb{Q}. Let us first observe that cup product on $H_{T}^{*}(X)$ induces a product on E_{2}, namely $E_{2}^{p, q} \times E_{2}^{s, t} \rightarrow E_{2}^{p+s, q+t}$ is $(-1)^{q s}$ times the cup product in cohomology. We will only need to look at the product $E_{2}^{p, 0} \times E_{2}^{q, 1} \rightarrow E_{2}^{p+q, 1}$ - this is the usual cup product on $H_{T}^{*}(X)$. All differentials d_{2} are derivations under this product on E_{2} - in particular $d_{2}^{p, 1}: H_{T}^{p}(X) \rightarrow H_{T}^{p+2}(X)$ satisfies the usual Lebniz rule.

Now let $1 \in H_{T}^{0}(X)$, but we relabel it as $\iota \in E_{2}^{0,1}$. Note that for any $x \in E_{2}^{p, 1}$ there exists a (unique) element $y \in E_{2}^{p, 0}$ such that $\iota y=x$ - this is a matter of relabeling as $E_{2}^{p, 0}=E_{2}^{p, 1}=H_{T}^{p}(X)$. Thus we can utilize the Lebniz rule for the differentials

$$
d_{2}^{p, 1}(x)=d_{2}^{p, 1}(\iota y)=d_{2}^{0,1}(\iota) y+\iota d_{2}^{p, 0}(y)
$$

but $d_{2}^{p, 0}=0$, so we are left with $d_{2}^{p, 1}(x)=d_{2}^{0,1}(\iota) y$. Since on the level of $H_{T}^{*}(X)$ we have $x=y$, then $d_{2}^{p, 1}$ considered as a map on $H_{T}^{*}(X)$ we have

$$
d_{2}^{p, 1}(x)=d_{2}^{0,1}(\iota) x
$$

where $d_{2}^{0,1}(\iota) \in H_{T}^{2}(X)$. We have thus shown that $d_{2}^{p, 1}$ can be identified with multiplication with some degree 2 element of $H_{T}^{*}(X)$. There is an obvious commutative diagram of fibrations

From this we get that the structural morhpism for equivariant cohomology $H_{T}^{*}(p t) \rightarrow H_{T}^{*}(X)$ commutes with derivations, i.e. we have

Since the horizontal arrows are ring morphisms, then $d_{2}^{0,1}(\iota)$ can be regarded as a degree 2 element in $H_{T}^{*}(X)$, which comes from $H_{T}^{*}(p t)$. Note that to see that this element is in fact the generator of $H_{T}^{*}(p t)$ we only need to look at $d_{2}^{0,1}$ for $X=p t$. Since we are working with \mathbb{Q}-cohomology, then for $d_{2}^{0,1}(1) \in H_{T}^{2}(p t)$ to be a generator we only need that it is non-zero. Suppose that $d_{2}^{*, 1}=0$ then. This would imply that $E_{2}=E_{\infty}$ as these are the only possibly non-zero differentials across all sheets of the Serre spectral sequence associated to $T \rightarrow E T \rightarrow B T=\mathbb{C} P^{\infty}$. Because of that we have

$$
0=H^{n}(E T)=H^{n}(B T) \oplus H^{n-1}(B T) \neq 0 \text { for } n>0
$$

which is a contradiction.

