zadanie

M.B. M.L.

Problem. The torus $T=\left(\mathbb{C}^{\times}\right)^{n+1}$ acts in the standard way on \mathbb{P}^{n}. Let $h=c_{1}^{T}(\mathscr{O}(1)) \in H_{T}^{*}\left(\mathbb{P}^{n}\right)$.
Using $A B-B V$ formula compute

$$
p_{*}\left(h^{n+m}\right) \in H_{T}^{*}(p t)=\mathbb{Z}\left[t_{0}, \ldots, t_{n}\right] .
$$

Solution:

By the AB-BV formula we have

$$
\int_{\mathbb{P}^{n}} h^{n+m}=\sum_{k=0}^{n} \frac{i_{k}^{*}(h)^{n+m}}{e\left(T_{p_{k}} \mathbb{P}^{n}\right)},
$$

where $i_{k}:\left\{p_{k}\right\} \hookrightarrow \mathbb{P}^{n}$ is the inclusion of the k-th fixed point. As was shown during the lecture or previous exercises, we have $i_{k}^{*}(h)=-t_{k}$ and $e\left(T_{p_{k}} \mathbb{P}^{n}\right)=\prod_{i \neq k}\left(t_{i}-t_{k}\right)$. Note that the k-th summand of the above sum can be rewritten as

$$
\frac{i_{k}^{*}(h)^{n+m}}{e\left(T_{p_{k}} \mathbb{P}^{n}\right)}=\frac{\left(-t_{k}\right)^{n+m}}{\prod_{i \neq k}\left(t_{i}-t_{k}\right)}=(-1)^{m} \operatorname{Res}_{z=t_{k}} \frac{z^{n+m}}{\prod_{i=0}^{n}\left(z-t_{i}\right)}
$$

The rest of this solution will be devoted to finding a better closed form for this sum. Let $f(z)=$ $z^{n+m} / \prod_{i=0}^{n}\left(z-t_{i}\right)$, where we consider t_{i} to be some points in \mathbb{C}. We can rewrite f as a series centered at 0

$$
f(z)=z^{m-1} \prod_{i=0}^{n} \frac{1}{1-\frac{t_{i}}{z}}=z^{m-1} \prod_{i=0}^{n} \sum_{j \geq 0}\left(\frac{t_{i}}{z}\right)^{j}=\sum_{j \geq 0} S_{j}\left(t_{0}, \ldots, t_{n}\right) z^{m-j-1}
$$

Thus

$$
\int_{\mathbb{P}^{n}} h^{n+m}=(-1)^{m} \sum_{k=0}^{n} \operatorname{Res}_{z=t_{k}} \frac{z^{n+m}}{\prod_{i=0}^{n}\left(z-t_{i}\right)}=(-1)^{m} \frac{1}{2 \pi i} \int_{C} f(z) d z=(-1)^{m} S_{m}\left(t_{0}, \ldots, t_{n}\right) .
$$

Problem. Let $L=\mathscr{O}(m), m \geq 0$. Using Riemann-Roch theorem and the localization theorem compute $\chi\left(\mathbb{P}^{n}, L\right)$. Check if it agrees with the formula well known for algebraic geometers:

$$
\chi\left(\mathbb{P}^{n} ; L\right)=\operatorname{dim} H^{0}\left(\mathbb{P}^{n} ; \mathscr{O}(m)\right)=\operatorname{dim} \mathbb{C}\left[t_{0}, \ldots, t_{n}\right]_{\operatorname{deg}=m}
$$

Solution:

We adopt notation from the previous solution $-h=c_{1}^{T}(\mathscr{O}(1))$ and $i_{k}:\left\{p_{k}\right\} \hookrightarrow \mathbb{P}^{n}$ is the inclusion of the k-th fixed point of \mathbb{P}^{n}. We will compute the equivariant Euler characteristic, which first by Riemann-Roch and then by the localization theorem is given by

$$
\begin{equation*}
\chi^{T}\left(\mathbb{P}^{n} ; L\right)=\int_{\mathbb{P}^{n}} \operatorname{td}\left(T \mathbb{P}^{n}\right) \operatorname{ch}(L)=\sum_{k=0}^{n} \frac{i_{k}^{*}\left(\operatorname{td}\left(T \mathbb{P}^{n}\right) \operatorname{ch}(L)\right)}{e\left(T_{p_{k}} \mathbb{P}^{n}\right)} \tag{1}
\end{equation*}
$$

the denominator is known $-e\left(T_{p_{k}} \mathbb{P}^{n}\right)=\prod_{i \neq k}\left(t_{i}-t_{k}\right)$. Since $\mathscr{O}(m)=\mathscr{O}(1)^{\otimes m}$, then the Chern character is given by

$$
\operatorname{ch}(L)=(\operatorname{ch}(\mathscr{O}(1)))^{m}=e^{m h}
$$

Since $h \mapsto-t_{k}$ under i_{k}^{*}, then we get $i_{k}^{*}(\operatorname{ch}(L))=e^{-m t_{k}}$. The restriction of the Todd class can be calculated in a similar fashion, since a torus representation decomposes into a sum of weight spaces

$$
i_{k}^{*}\left(\operatorname{td}\left(T \mathbb{P}^{n}\right)\right)=\operatorname{td}\left(T_{p_{k}} \mathbb{P}^{n}\right)=\prod_{i \neq k} \frac{t_{i}-t_{k}}{1-e^{t_{k}-t_{i}}}
$$

Plugging these expressions into (1) we get

$$
\chi^{T}\left(\mathbb{P}^{n} ; L\right)=\sum_{k=0}^{n} \frac{e^{-m t_{k}}}{\prod_{i \neq k}\left(1-e^{t_{k}-t_{i}}\right)}
$$

If we set $s_{i}=e^{-t_{i}}$, then we get back the same formula as for the previous exercise

$$
\chi^{T}\left(\mathbb{P}^{n} ; L\right)=\sum_{k=0}^{n} \frac{e^{-m t_{k}}}{\prod_{i \neq k}\left(1-e^{t_{k}-t_{i}}\right)}=\sum_{k=0}^{n} \frac{s_{k}^{m}}{\prod_{i \neq k}\left(1-\frac{s_{i}}{s_{k}}\right)}=S_{m}\left(s_{0}, \ldots, s_{n}\right)
$$

Inclusion of the trivial subtorus $\{1\} \hookrightarrow T$ induces a map on cohomology $H_{T}^{*}(X) \rightarrow H^{*}(X)$, which sends each t_{i} to 0 . Our characteristic is thus sent to

$$
\chi^{T}\left(\mathbb{P}^{n} ; L\right) \mapsto S_{m}(1, \ldots, 1)=\#\left\{t_{0}^{l_{0}} \ldots t_{n}^{l_{n}}: l_{0}+\cdots+l_{n}=m\right\}=\operatorname{dim} \mathbb{C}\left[t_{0}, \ldots, t_{n}\right]_{\operatorname{deg}=m}
$$

