zadanie

M.B. M.L.

First, observe that for if $p_{i} \in \mathbb{P}^{n}$ is a fixed point of the standard torus action on the projective space, then the map on equivaraint cohomology is the map $\mathbb{Z}\left[t_{0}, \ldots, t_{n}\right][h] / \prod_{i}\left(h+t_{i}\right) \rightarrow$ $\mathbb{Z}\left[t_{0}, \ldots, t_{n}\right]$ that sends $h \mapsto-t_{i}$. This follows from the fact that h corresponds to the equivariant first Chern class of the tautological bundle on \mathbb{P}^{n}, i.e. it corresponds to the first Chern class of the bundle $E T \times_{T} \mathscr{O}(1) \rightarrow E T \times_{T} \mathbb{P}^{n}$. The map on cohomology that comes form inclusion of a fixed point $\left\{p_{i}\right\} \hookrightarrow \mathbb{P}^{n}$ takes the first Chern class of our twisted tautological bundle to the stalk of this bundle at p_{i}, which is a torus representation of weight $-t_{i}$, hence the map $\mathbb{Z}\left[t_{0}, \ldots, t_{n}\right][h] / \prod_{i}\left(h+t_{i}\right) \rightarrow \mathbb{Z}\left[t_{0}, \ldots, t_{n}\right]$ sends $h \mapsto-t_{i}$.

Thus the map induced by $\left(\mathbb{P}^{n}\right)^{T} \hookrightarrow \mathbb{P}^{n}$ is the map of all evaluations

$$
\mathbb{Z}\left[t_{0}, \ldots, t_{n}\right][h] / \prod_{i}\left(h+t_{i}\right) \rightarrow \bigoplus_{i} \mathbb{Z}\left[t_{0}, \ldots, t_{n}\right] .
$$

Clearly, the image of this map lies in the set of polynomials $f=\left(f_{0}, \ldots, f_{n}\right)$ such that $\left(t_{i}-t_{j}\right) \mid\left(f_{i}-\right.$ f_{j}) for all i, j. On the other hand, fix a set of polynomials $\left(f_{0}, \ldots, f_{n}\right)$ such that $\left(t_{i}-t_{j}\right) \mid\left(f_{i}-f_{j}\right)$ for all i, j. By relation given on the cohomology of \mathbb{P}^{n} we know that any polynomial that is mapped to f is of degree (with respect to h) at most n. Therefore we are looking for polynomials g_{0}, \ldots, g_{n} such that

$$
w(h)=g_{0}+g_{1} h+\cdots+g_{n} h^{n} \mapsto\left(f_{0}, \ldots, f_{n}\right) .
$$

This is a simple polynomial interpolation problem, which can be done with basic linear algebra. Our requirement is equivalent to a system of equations over $\mathbb{Z}\left[t_{0}, \ldots, t_{n}\right]$

$$
\left[\begin{array}{cccc}
1 & -t_{0} & \cdots & \left(-t_{0}\right)^{n} \\
\vdots & \vdots & & \vdots \\
1 & -t_{n} & \cdots & \left(-t_{n}\right)^{n}
\end{array}\right]\left[\begin{array}{c}
g_{0} \\
\vdots \\
g_{n}
\end{array}\right]=\left[\begin{array}{c}
f_{0} \\
\vdots \\
f_{n}
\end{array}\right]
$$

The matrix is a Vandermonde matrix, so its determinant is $\prod_{i \geq j}\left(t_{i}-t_{j}\right)$. By Cramer's rule we know that

$$
g_{k}=\frac{1}{\prod_{i>j}\left(t_{i}-t_{j}\right)}\left|\begin{array}{ccccccc}
1 & \ldots & \left(-t_{0}\right)^{k-1} & f_{0} & \left(-t_{0}\right)^{k+1} & \ldots & \left(-t_{0}\right)^{n} \\
\vdots & & \vdots & \vdots & \vdots & & \vdots \\
1 & \ldots & \left(-t_{n}\right)^{k-1} & f_{n} & \left(-t_{n}\right)^{k+1} & \ldots & \left(-t_{n}\right)^{n}
\end{array}\right|
$$

If these turn out to be polynomials, then we are done. This can be easily seen - fix $i>j$. After subtracting the j-th row from the i-th row we can take $t_{i}-t_{j}$ out of the determinant.

