zadanie

M.B. M.L

The quadric in question is the image of the Segre embedding $\mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{3}$ given by

$$
\left(\left[u_{0}: u_{1}\right],\left[v_{0}: v_{1}\right]\right) \mapsto\left[u_{0} v_{0}: u_{0} v_{1}: u_{1} v_{0}: u_{1} v_{1}\right],
$$

The inverse is given by

$$
\left[z_{0}: z_{1}: z_{2}: z_{3}\right] \mapsto\left(\left[z_{0}: z_{2}\right],\left[z_{2}: z_{3}\right]\right)
$$

Thus, we can view X as $\mathbb{P}^{1} \times \mathbb{P}^{1}$ with the following torus action

$$
\left(t_{0}, t_{1}\right) \cdot\left(\left[u_{0}: u_{1}\right],\left[v_{0}: v_{1}\right]\right)=\left(\left[t_{0} u_{0}: t_{1}^{-1} u_{1}\right],\left[t_{1}^{-1} v_{0}: t_{0}^{-1} v_{1}\right]\right)=\left(\left[t_{0} t_{1} u_{0}: u_{1}\right],\left[t_{0} t_{1}^{-1} v_{0}: v_{1}\right]\right) .
$$

There is a natural $T^{\prime}=\left(\mathbb{C}^{\times}\right)^{4}$ action on $\mathbb{P}^{1} \times \mathbb{P}^{1}$:

$$
\left(s_{0}, s_{1}, s_{2}, s_{3}\right) \cdot\left(\left[u_{0}: u_{1}\right],\left[v_{0}: v_{1}\right]\right)=\left(\left[s_{0} u_{0}: s_{1} u_{1}\right],\left[s_{2} v_{0}: s_{3} v_{1}\right]\right)
$$

we will distinguish the two tori acting on the different \mathbb{P}^{1} 's by $T^{\prime}=T_{1} \times T_{2}$. We retrieve our desired torus action via the homomorphism $\left(t_{0}, t_{1}\right) \mapsto\left(t_{0} t_{1}, 1, t_{0} t_{1}^{-1}, 1\right)$. We can compute the equivariant cohomology ring $H_{T^{\prime}}^{*}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)$ easily, since this is a product of groups acting on a product of spaces. Hence

$$
H_{T_{1} \times T_{2}}^{*}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right) \cong H_{T_{1}}\left(\mathbb{P}^{1}\right) \otimes H_{T_{2}}^{*}\left(\mathbb{P}^{1}\right)
$$

Here we use the following easy fact
Proposition 1. Let G, H be Lie groups and X and Y be G - and H-spaces respectively. Then we have an isomorphism

$$
H_{G \times H}^{*}(X \times Y) \cong H_{G}^{*}(X) \otimes H_{H}^{*}(Y),
$$

where $G \times Y$ acts on $X \times Y$ in the natural fashion $(g, h) \cdot(x, y)=(g \cdot x, h \cdot y)$.
Proof. This follows from the fact that if we take universal bundles $E G \rightarrow B G$ and $E H \rightarrow B H$, then we can construct a universal bundle for $G \times H$ as the product bundle $E(G \times H)=E G \times E H \rightarrow$ $B G \times B H=B(G \times H)$. We can therefore describe the twisted product of $X \times Y$ with $E(G \times H)$:

$$
(E G \times E H) \times_{G \times H}(X \times Y) \cong\left(E G \times_{G} X\right) \times\left(E H \times_{H} Y\right),
$$

where the isomorphism is given by $[(e, f),(x, y)] \mapsto([e, x],[f, y])$. Thus we can use Künneth formula to compute the equivariant cohomology of the product

$$
H_{G \times H}^{*}(X \times Y) \cong H_{G}^{*}(X) \otimes H_{H}^{*}(Y),
$$

if our cohomology is not, say, over a field, then we would only get an exact sequence, as one usually gets with the Künneth formula.

In our case equivariant cohomology of \mathbb{P}^{1} with standard torus action is a free module over the polynomial ring, hence the Tor functors vanish, meaning that we can use the above Künneth formula even for cohomology over \mathbb{Z}. Explicitly, if $T=\left(\mathbb{C}^{\times}\right)^{2}$ acts on \mathbb{P}^{1} in the standard fashion, then we have

$$
H_{T}^{*}\left(\mathbb{P}^{1}\right) \cong \mathbb{Z}\left[t_{0}, t_{1}\right][h] /\left(h+t_{0}\right)\left(h+t_{1}\right) .
$$

Using this formula together with Proposition 1 we obtain

$$
\begin{gathered}
H_{T^{\prime}}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right) \cong \mathbb{Z}\left[t_{0}, t_{1}\right][\zeta] /\left(\zeta+t_{0}\right)\left(\zeta+t_{1}\right) \otimes \mathbb{Z}\left[t_{2}, t_{3}\right][\xi] /\left(\xi+t_{2}\right)\left(\xi+t_{3}\right)= \\
\quad=\mathbb{Z}\left[t_{0}, t_{1}, t_{2}, t_{3}, \xi, \zeta\right] /\left(\left(\zeta+t_{0}\right)\left(\zeta+t_{1}\right),\left(\xi+t_{2}\right)\left(\xi+t_{3}\right)\right)
\end{gathered}
$$

Now, the homomorphism of tori $T \rightarrow T^{\prime}$ induces a map on cohomology $H_{T^{\prime}}^{*}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right) \rightarrow H_{T}^{*}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)$; this map evaluates s_{i} at the weight that T acts on the i-th coordinate. In the end we get the following presentation of $H_{T}^{*}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)$

$$
H_{T}^{*}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right) \cong \mathbb{Z}\left[t_{0}, t_{1}, \xi, \zeta\right] /\left(\zeta\left(\zeta+t_{0}+t_{1}\right), \xi\left(\xi+t_{0}-t_{1}\right)\right)
$$

As \mathbb{P}^{1} has vanishing odd cohomology, then so does $\mathbb{P}^{1} \times \mathbb{P}^{1}$, making it equivariantly formal. Thus it's equivariant cohomology $H_{T}^{*}(p t)$-module is free.

