zadanie

M.B. M.L.

We will start by stating the only one formulation of the Leray-Hirsch theorem, which we will use; is taken straight from Hatcher's "Algebraic Topology":

Theorem 1 (Leray-Hirsch). Let $F \rightarrow E \xrightarrow{p} B$ be a fiber bundle such that, for some commutative ring coefficient R :

1. $H^{n}(F ; R)$ is a finitely generated free R-module for each n.
2. There exists classes $c_{j} \in H^{*}(E ; R)$ whose restrictions $i^{*}\left(c_{j}\right) \in H^{*}(F ; R)$ form a basis of $H^{*}(F ; R)$ for all inclusions of the fiber $i: F \rightarrow E$.

Then the map $\Phi: H^{*}(B ; R) \otimes_{R} H^{*}(F ; R) \rightarrow H^{*}(E ; R)$ given by $b \otimes i^{*}\left(c_{i}\right) \mapsto p^{*}(b) \cup c_{i}$ is an isomorphism.

In our case all cohomologies will be with coefficients in \mathbb{Q} and we are going to abbreviate $H^{*}(-; \mathbb{Q})$ by $H^{*}(-)$. We denote by $\gamma_{n}: E_{n} \rightarrow G r(k, n)$ the tautological vector bundle on the Grassmannian. We will not prove the fact that $B\left(U_{n}\right) \cong G r(n, \infty)$ and $H^{*}(G r(n, \infty)) \cong \mathbb{Q}\left[c_{1}, \ldots, c_{n}\right]$, where c_{i} are Chern classes of γ_{n}; note that the Chern class c_{i} is of degree $2 i$.

First observe that $B\left(U_{k} \times U_{n-k}\right) \cong B\left(U_{k}\right) \times B\left(U_{n-k}\right) \cong G r(k, \infty) \times G r(n-k, \infty)$, so its cohomology can be computed via the Künneth Formula

$$
H^{*}\left(B\left(U_{k} \times U_{n-k}\right)\right) \cong \mathbb{Q}\left[c_{1}^{\prime}, \ldots c_{k}^{\prime}, c_{1}^{\prime \prime}, \ldots, c_{n-k}^{\prime \prime}\right]
$$

where c_{i}^{\prime} are Chern classes of γ_{k} and $c_{i}^{\prime \prime}$ are Chern classes of γ_{n-k}, the grading is given by $\operatorname{deg}\left(c_{i}^{\prime}\right)=$ $\operatorname{deg}\left(c_{i}^{\prime \prime}\right)=2 i$. Now that we understand almost all cohomologies that appear in the problem we can turn to Leray-Hirsch and our fibration.

To see the corollary that we have in the hint we can observe that $H^{0}(B)=\mathbb{Q}$ and so this is the \mathbb{Q} that appears in the tensor product in the hint. The equation in the hint is in fact the same as

$$
H^{*}(F)=H^{*}(E) / H^{>0}(B) \cdot H^{*}(E)
$$

where the $H^{*}(B)$-module structure on $H^{*}(E)$ is of course given by multiplication with pullback $b \cdot e=p^{*}(b) \cup e$. Thus, tensoring $H^{*}(E)$ with $H^{0}(B)$ over $H^{*}(B)$ nullifies all higher gradations of $H^{*}(B)$ in $H^{*}(E)$. The Grassmannian being a complex, compact manifold has finitely dimensional vector spaces as its cohomology, thus the first part of requirements to use Leray-Hirsch is essentially for free. On the product of Grassmannians we can consider product bundles - three bundles worth mentioning here are:

1. Two bundles that arise as products of γ 's and trivial bundles

$$
\begin{aligned}
& \gamma_{k} \times 0: E_{k} \times G r(n-k, \infty) \rightarrow G r(k, \infty) \times G r(n-k, \infty) \\
& 0 \times \gamma_{n-k}: G r(k, \infty) \times E_{n-k} \rightarrow G r(k, \infty) \times G r(n-k, \infty)
\end{aligned}
$$

Chern classes of these bundles are exactly the c_{i}^{\prime} 's and $c_{i}^{\prime \prime}$'s that we have seen earlier.
2. The product of two tautological bundles $\gamma_{k} \times \gamma_{n-k}: E_{k} \times E_{n-k} \rightarrow G r(k, \infty) \times G r(n-k, \infty)$. This bundle is also the Whitney sum of the previously mentioned bundles

$$
\gamma_{k} \times \gamma_{n-k}=\left(\gamma_{k} \times 0\right) \oplus\left(0 \times \gamma_{n-k}\right)
$$

Now consider the pullback of $\gamma_{n}: E_{n} \rightarrow G r(n, \infty)$ with respect to our fibration $\pi: G r(k, \infty) \times$ $G r(n-k, \infty) \rightarrow G r(n, \infty)$ - this fibration sends (V, W) to $V \oplus W$, so in fact we have

$$
\pi^{*} \gamma_{n}=\gamma_{k} \times \gamma_{n-k}
$$

Over the Grassmannian $G r(k, n)$ we also have the tautological bundle $\gamma: E \rightarrow G r(k, n)$ and we also have the orthogonal bundle $\bar{\gamma}: \bar{E} \rightarrow G r(k, n)$; their Whitney sum is trivial and so their Chern classes have to be inverse to each other:

$$
c(\gamma) \cdot c(\bar{\gamma})=1
$$

We also know that $H^{*}(G r(k, n))$ has a basis given by Schubert varieties and these correspond to Schur polynomials evaluated at the Chern classes of γ. Inclusion of any fiber $G r(k, n) \rightarrow$ $G r(k, \infty) \times G r(n-k, \infty)$ can be thought of fixing an n-dimensional subspace $V \subset \mathbb{C}^{\infty}$ and mapping $V \supseteq W \mapsto\left(W, W^{\perp}\right)$, where we take the orthogonal complement of W in V. For any subspace $V \subset \mathbb{C}^{\infty}$ we have the inlusion of the vector subspace and projection onto the subspace itself which give us two maps that factor the identity on V

The inclusion gives us a map $G r(k, n) \rightarrow G r(k, \infty)$ simply mapping $W \subseteq V$ to $i(W) \in G r(k, \infty)$ and the projection induces a map $G r(k, \infty) \rightarrow \bigsqcup_{i=0}^{k} G r(i, n)$ given by $\mathbb{C}^{\infty} \supseteq W \mapsto p(W) \subseteq V$. Composition $\operatorname{Gr}(k, n) \rightarrow G r(k, \infty) \rightarrow \bigsqcup_{i=0}^{k} G r(i, n)$ is the map given by inclusion $G r(k, n) \subseteq$ $\bigsqcup_{i=0}^{k} G r(i, n)$. On cohomology we get maps

$$
\bigoplus_{i=0}^{k} H^{*}(G r(i, n)) \rightarrow H^{*}(G r(k, \infty)) \rightarrow H^{*}(G r(k, n))
$$

Composing these maps results in the natural projection from the direct sum, which is an epimorphism. Hence the map $H^{*}(G r(k, \infty)) \rightarrow H^{*}(G r(k, n))$ must be an epimorpism as well. Same argument for $H^{*}(\operatorname{Gr}(n-k, \infty))$ holds as well, but instead of inclusions of subspaces we would have to consider inclusions of orthogonal complements, but it is not important here.

Now note that the epimorphism $H^{*}(G r(k, \infty)) \rightarrow H^{*}(G r(k, n))$ sends the Chern classes of γ_{k} to Chern classes of $\gamma\left(\right.$ since γ_{k} pullbacks to $\left.\gamma\right)$ and similarly $H^{*}(G r(n-k, \infty)) \rightarrow H^{*}(G r(k, n))$ sends Chern classes of γ_{n-k} to Chern classes of $\bar{\gamma}$. By taking $S_{\lambda}\left(c_{1}, \ldots, c_{n}\right) \otimes 1$ we obtain elements of $H^{*}(G r(k, \infty) \times G r(n-k, \infty))$ that restrict to a basis on fibers, hence we can use Leray-Hirsch for our fibration.

In $H^{*}(G r(k, n))$ we thus set to 0 the pullbacks $\pi^{*}(q)$ of any element $q \in H^{*}\left(B U_{n}\right)=\mathbb{Q}\left[c_{1}, \ldots, c_{n}\right]$ which is a sum of elements of positive degree. Since π^{*} is a graded morphism, then this is equivalent to saying that $\pi^{*}\left(c_{1}+\cdots+c_{n}\right)=0$ in $H^{*}(G r(k, n))$. But we have just shown that

$$
\pi^{*}\left(c_{1}+\cdots+c_{n}\right)=\pi^{*}\left(c\left(\gamma_{n}\right)-1\right)=\pi^{*}\left(c\left(\gamma_{n}\right)\right)-1=c\left(\gamma_{k} \times 0\right) c\left(0 \times \gamma_{n-k}\right)-1
$$

In other words, in $H^{*}(G r(k, n))$ we have only one new relation

$$
1=c\left(\gamma_{k} \times 0\right) c\left(0 \times \gamma_{n-k}\right)=\left(1+c_{1}^{\prime}+\cdots+c_{k}^{\prime}\right)\left(1+c_{1}^{\prime \prime}+\cdots+c_{n-k}^{\prime \prime}\right)
$$

Thus we get the following presentation of the cohomology ring of the Grassmannian

$$
H^{*}(G r(k, n) ; \mathbb{Q}) \cong \mathbb{Q}\left[c_{1}^{\prime}, \ldots, c_{k}^{\prime}, c_{1}^{\prime \prime}, \ldots, c_{n-k}^{\prime \prime}\right] /\left(c^{\prime} c^{\prime \prime}-1\right)
$$

where $c^{\prime}=1+c_{1}^{\prime}+\cdots+c_{k}^{\prime}$ and $c^{\prime \prime}=1+c_{1}^{\prime \prime}+\cdots+c_{n-k}^{\prime \prime}$.

