1. Find a CW-decomposition of \mathbb{P}^n with the standard action of $(S^1)^{n+1}$.

Let us consider separately the cases n = 1 and n = 2.

For n = 1 we have

$$\mathbb{P}^1 = \{ [1:0] \} \cup \{ [0:1] \} \cup \{ [a_0:a_1] : a_0, a_1 \in \mathbb{C}^* \}.$$

We observe that the two distinguished points are fixed under the action of $(S^1)^2$. The remaining set is isomorphic to \mathbb{C}^* via

$$[a_0:a_1] = [1:a_1/a_0] \mapsto a_1/a_0.$$

The action of $(S^1)^2$ is given by

$$(\alpha_0, \alpha_1)[1:a] = [\alpha_0: \alpha_1 a] = [1: \frac{\alpha_1}{\alpha_0} a].$$

We see that the stabilizer of any of considered points is the diagonal of $(S^1)^2$ isomorphic to S^1 . The orbits are of the form

$$\{[1:a]:|a|=r\}$$

for any r > 0 and correspond to circles on the complex plane. We can now conclude that the 0-skeleton of our decomposition is

$$X_0 = \{D_0^0, D_1^0\} \times (S^1)^2 / (S^1)^2$$

(where D_0^0 corresponds to [1:0] and D_1^0 to [0:1]) and the 1-skeleton is

$$X_1 = D^1 imes (S^1)^2/S^1$$
 Tu powinien być podany charakter, którego jądrem jest S^1, tzn t 1-t 0

with the obvious inclusion of $\{D_1^0, D_2^0\}$ from X_0 on the boundary of D_1 from X_1 .

For n=2 we have

$$\mathbb{P}^2 = \{[1:0:0]\} \cup \{[0:1:0]\} \cup \{[0:0:1]\} \cup \{[a_0:a_1:0]:a_0,a_1 \in \mathbb{C}^*\} \cup \{[a_0:a_1:a_0]:a_0,a_1 \in \mathbb{C}^*\} \cup \{[a_0:a_0]:a_0,a_1 \in \mathbb{C}^*\} \cup \{[a_0:a_0]:a_0,a_0 \in \mathbb{C}^*\} \cup \{[a_0:$$

$$\{[a_0:0:a_2]:a_0,a_2\in\mathbb{C}^*\}\}\cup\{[0:a_1:a_2]:a_1,a_2\in\mathbb{C}^*\}\cup\{[a_0:a_1:a_2]:a_0,a_1,a_2\in\mathbb{C}^*\}.$$

We observe that the three distinguished points are fixed under the action of $(S^1)^3$. The action on the next set is given by

$$(\alpha_0, \alpha_1, \alpha_2)[0:1:a_2] = [0:\alpha_1:\alpha_2a_2] = [0:1:\frac{\alpha_2}{\alpha_1}a_2]$$

and one can easily see that the stabilizer of any points is isomorphic to $(S^1)^2$. The same argument goes for the next two sets. Now for the remaining one, we have

character t_2-t_1, other characters t_1-t_0

and t_2-t_0

$$(\alpha_0,\alpha_1,\alpha_2)[1:a_1:a_2] = [1:\frac{\alpha_1}{\alpha_0}a_1:\frac{\alpha_2}{\alpha_0}a_2]$$

and we see that, analogously as for n=1, the stabilizer of any point is the diagonal of $(S^1)^3$ and the orbits are isomorphic to spheres in $(\mathbb{C}^*)^2$. So we see that the 0-skeleton is

$$X_0 = \{D_0^0, D_1^0, D_2^0\} \times (S^1)^3 / (S^1)^3,$$

the 1-skeleton is

$$X_1 = D^1_{0,1} \times (S^1)^3/(S^1)^2 \cup D^1_{1,2} \times (S^1)^3 \cup D^1_{1,3} \times (S^1)^3/(S^1)^2$$

and the 2-skeleton is

$$X_2 = D^2 \times (S^1)^3/(S^1) \qquad \text{(S^1=diagonal torus)}$$

Now it should be clear how to proceed in the general case. For arbitrary n we have n+1 fixed points - these whose only one coordinate is non-zero. Hence we have the 0-skeleton

$$X_0 = \{D_0^0, D_1^0, \dots, D_n^0\} \times (S^1)^{n+1} / (S^1)^{n+1}.$$

Then we have elements with exactly two coordinates non-zero which gives us $\binom{n}{2}$ components in 1-skeleton:

$$X_1 = \bigcup_{i,j} D^1_{i,j} \times (S^1)^{n+1}/(S^1)^n$$

and so on until we obtain one component consisting of points with all coordinates non-zero which given us the n-skeleton

$$X_n = D^n \times (S^1)^{n+1} / S^1.$$