3. Let A be an algebra over a field \mathbb{F} and $X=\operatorname{Spec} A$. Defining an action of \mathbb{G}_{m} on X is equivalent to defining a \mathbb{Z}-gradation on A. Prove this correspondence and generalize it to an action of the algebraic torus \mathbb{G}_{m}^{r}.

Recall that given a scheme S, in the category of S-schemes an action of a group scheme G on a scheme X is a map

$$
\sigma: G \times_{S} X \rightarrow X
$$

satisfying the following two axioms:

1. associativity, i.e.

$$
\sigma \circ\left(\operatorname{Id}_{G} \times \sigma\right)=\sigma \circ\left(m \times \operatorname{Id}_{X}\right)
$$

where $m: G \times{ }_{S} G \rightarrow G$ is the group law on G;
2. unitality, i.e.

$$
\sigma \circ\left(e \times \operatorname{Id}_{X}\right)=\operatorname{Id}_{X}
$$

where $e: S \rightarrow G$ is the identity section of G.
In our case $S=\operatorname{Spec} \mathbb{F}, G=\mathbb{G}_{m}, X=\operatorname{Spec} A$ for some \mathbb{F}-algebra A. The map σ corresponds to some map of rings

$$
A \xrightarrow{\varphi} A \otimes_{\mathbb{F}} \mathbb{F}\left[t, t^{-1}\right] \simeq A\left[t, t^{-1}\right] .
$$

Analyzing further the corresponding maps of rings, we conclude that the associativity axiom says that the maps

$$
\begin{gathered}
A \xrightarrow{\varphi} A \otimes_{\mathbb{F}} \mathbb{F}\left[t, t^{-1}\right] \xrightarrow{\varphi \otimes \mathrm{Id}} A\left[t, t^{-1}, s, s^{-1}\right], \\
A \xrightarrow{\varphi} A \otimes_{\mathbb{F}} \mathbb{F}\left[t, t^{-1}\right] \xrightarrow{t \mapsto t s} A\left[t, t^{-1}, s, s^{-1}\right]
\end{gathered}
$$

have to coinside.
Analogically, the unitality axioms says that the map

$$
A \xrightarrow{\varphi} A\left[t, t^{-1}\right] \xrightarrow{t \mapsto 1} A
$$

must be the identity map of A.
Now suppose that we have a \mathbb{Z}-gradation $A=\bigoplus_{n \in \mathbb{Z}} A_{n}$. We can define an \mathbb{F}-linear map $\varphi: A \rightarrow$ $A \otimes_{\mathbb{F}} \mathbb{F}\left[t, t^{-1}\right]$ by putting

$$
\varphi(a)=a \otimes t^{n} \quad \text { for } \quad a \in A_{n}
$$

The definition of gradations ensures that it is a map of rings and one can easily check that it satiasfies the desired axioms.
Conversely, suppose that we have a $\operatorname{map} \varphi: A \rightarrow A \otimes_{\mathbb{F}} \mathbb{F}\left[t, t^{-1}\right]$ satisfying the above axioms. The natural way to proceed is to take

$$
A_{n}=\left\{a \in A: \varphi(a)=a \otimes t^{n}\right\}
$$

Clearly A_{n} 's are additive groups, $A_{n} \cap A_{m}=\{0\}$ for $n \neq m$, and $A_{n} A_{m} \subseteq A_{n+m}$. It remains to show that $A=\bigoplus_{n \in \mathbb{Z}} A_{n}$.
For any $a \in A$ there are uniquely determined $a_{n}, n \in \mathbb{Z}$ such that

$$
\varphi(a)=\sum_{n \in \mathbb{Z}} a_{n} \otimes t^{n}
$$

Observe that the associativity axioms implies the identity

$$
\sum_{n \in \mathbb{Z}} \varphi\left(a_{n}\right) s^{n}=\sum_{n \in \mathbb{Z}} a_{n} t^{n} s^{n}
$$

so $\varphi\left(a_{n}\right)=a_{n} \otimes t^{n}$, i.e. $a_{n} \in A_{n}$. Now the unitality axiom implies that

$$
a=\sum_{n \in \mathbb{Z}} a_{n}
$$

which completes the proof.
It is easy to see that in a more general situation $G=\mathbb{G}_{m}^{r}$ a group action is equivalent to a \mathbb{Z}^{r} gradation on A. The above proof works without any change. For a given map $\varphi: A \rightarrow A\left[t_{1}^{ \pm 1}, \ldots, t_{n}^{ \pm 1}\right]$ tha associated gradation is given by

$$
A_{s_{1}, \ldots, s_{n}}=\left\{a \in A: \varphi(a)=a t_{1}^{s_{1}} \cdots t_{n}^{s_{n}}\right\} .
$$

