
July 3, 2008 10:12 WSPC/103-M3AS 00295

Mathematical Models and Methods in Applied Sciences
Vol. 18, No. 7 (2008) 1073–1092
c© World Scientific Publishing Company

ON NON-NEWTONIAN FLUIDS WITH A
PROPERTY OF RAPID THICKENING UNDER

DIFFERENT STIMULUS

PIOTR GWIAZDA∗ and AGNIESZKA ŚWIERCZEWSKA-GWIAZDA†
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The paper concerns the model of a flow of non-Newtonian fluid with nonstandard growth
conditions of the Cauchy stress tensor. Contrary to standard power-law type rheology,
we propose the formulation with the help of the spatially-dependent convex function.
This framework includes e.g. rapidly shear thickening and magnetorheological fluids. We
provide the existence of weak solutions. The nonstandard growth conditions yield the
analytical formulation of the problem in generalized Orlicz spaces. Basing on the energy
equality, we exploit the tools of Young measures.
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1. Introduction

1.1. Physical motivation and formulation of the model

Our interest is directed to non-Newtonian fluids of strongly inhomogeneous behavior
with a high ability of increasing their viscosity under different stimulus, like the
shear rate, magnetic or electric field. There is a wide range of possible applications
of such fluids in numerous branches of industry, military and natural science, which
entitled the intense research in this direction in the last years. We recall various
potential applications and describe precisely the behavior of the fluids.

The recent development of advanced body armor is concerned with the so-called
liquid body armor — a solution, which will provide the armor to be both flexible
and lightweight. The improvement consists in soaking the existing armor materials
with special fluids, cf. Ref. 10. The two types of fluids used for liquid body armor
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are of our interest: magnetorheological fluids and shear thickening fluids (STF).
Although both solutions are on the level of laboratory research, the application of
STF for combat was planned by the end of 2007 and magnetorheological fluids will
require another few years until the technology is fully developed. Their common
feature is that they are both colloids and consequently react strongly in response
to a stimulus. Thus using them to impregnate e.g. kevlar armor provides that far
few layers of kevlar are necessary which improves flexibility of the protection and
reduces the weight significantly. Typically, to obtain the effect of bullet resistance
in kevlar armor, one needs between 20 and 30 layers of kevlar, which resolves in
vests of weight more than 4.5 kg, sometimes even increased by a ceramic insert
for improved protection. Such a protection is obviously limited only to chest and
head and limits the soldier’s mobility. Contrary to this solution, the kevlar material
soaked with the described fluids has an ability to transfer from flexible to completely
rigid. After the stimulus causing the change in viscosity is removed, the substance
retains its fluid state and the flexibility of the armor is regained. The first type
of fluids — the magnetorheological fluids — consists of ferrous particles, usually
spheres or ellipsoids, dispersed in oil. They form 20 to 40 percent of the fluid’s
volume and measure 3–10 microns. They are distributed randomly, see Fig. 1.

Nevertheless, their influence on the behavior of the fluid is significant. Once the
fluid is exposed to magnetic field, the iron particles form the chains or column-like
structures parallel to the applied magnetic field, which consequently hinder the
movement of the fluid in the direction perpendicular to the magnetic field. The
rheological properties of the fluid, like the viscosity or shape, change rapidly within
ca. 0.02 second. One can easily observe the anisotropic character of the fluid when
the magnetic field is applied. The schematic behavior of magnetorheological fluids
exposed to the magnetic field is presented at Fig. 2.

Another type of fluids is shear thickening fluids, which increase their viscosity
under the increase of the shear stress, like the impact of a bullet, knife or a nee-
dle. The fluid is capable of transferring from liquid to solid rapidly within a few
miliseconds. It consists of tiny particles suspended in a liquid, e.g. small particles of
silica in polyethylene glycol. They slightly repel each other, so they are able to float
easily throughout the liquid. Once the high shear stress is applied, the repulsive

Fig. 1. The magnetorheological fluid without magnetic field.
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Fig. 2. The chains of particles aligned along the lines of magnetic field.

forces among the particles are overwhelmed and the particles aggregate forming
the so-called hydroclusters.

The described liquids improve the resistance of materials to the bullet. However,
the most remarkable improvement appears in the resistance to the needle or knife
puncture. Thereby the studies on protective materials that prevent hypodermic
needle puncture are of high interest for medical stuff and veterinarians. For the
purpose of integrating theses materials into e.g. gloves, they must be thin and
flexible, which is provided by application of shear thickening fluids, cf. Ref. 8.

The seismic protection is another branch of application of magnetorheological
fluids, cf. Ref. 4. The devices called magnetorheological (MR) dampers play a role of
shock absorbers for buildings. The MR dampers are filled with a fluid that includes
suspended iron particles, hence they lessen the shaking by becoming solid. Once the
vibrations are detected, the magnetic field is activated through the MR dampers
and all of the iron particles align resulting in the increase of the viscosity of the
fluid.

The magnetorheological fluids are used in production of automotive advances,
like suspension system, clutches or crash-protection systems. Although these solu-
tions cannot be found in casual cars yet, but the users of e.g. Cadillac Seville or
Audi TT can recognize the dynamical shock absorbers in their suspension.

The behavior of the described fluids is non-Newtonian. Thus the flow is captured
by the equations

vt + v · ∇v − divS(x,Dv) + ∇p = f in Q,

div v = 0 in Q,
(1.1)

where v : Q → R
d denotes the velocity field, p : Q → R the pressure, f : Q → R

d

the given body forces, S the Cauchy stress–tensor,a Ω ⊂ R
d is a bounded domain

and we denote by Q = (0, T )× Ω with some given T > 0 and Dv = 1
2 (∇v + ∇Tv).

aWe call S the Cauchy stress–tensor, however formally by the Cauchy stress–tensor one should
mean the whole term S(x, Dv) + pI.
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The standard growth conditions of the Cauchy stress–tensor, namely polynomial
growth, see e.g. Refs. 11 and 12, i.e.

|S(x, ξ)| ≤ c(1 + |ξ|)q−1,

S(x, ξ) · ξ ≥ c|ξ|q, (1.2)

cannot capture the described situation. Note that the fluids of power-law type
rheology can be characterized by the constitutive relation S(Dv) = |Dv|q−2Dv.
The property of shear thickening is described by the case q > 2. However, we want
to describe the processes where the growth is faster than polynomial and possibly
different in various components of the shear rate. We are not aiming to provide
explicit constitutive relation for the stress–tensor S. We formulate the system of
conditions for S and provide examples of some functions satisfying these conditions.
Therefore we will formulate analogue conditions to (1.2) with the help of a general
convex function, the so-called N-function. A function M(x, ξ), M : Ω × R

d×d
sym →

R+ is called an N -function if it is a convex (w.r.t. ξ) Carathéodory function (i.e.
measurable function of x for all ξ ∈ R

d×d
sym and continuous function of ξ for a.a.

x ∈ Ω) such that M(x, ξ) = 0 only if ξ = 0, and M(x, ξ) = M(x,−ξ) a.e. in
Ω. Moreover, lim|ξ|→0 supx∈Ω

M(x,ξ)
|ξ| = 0 and lim|ξ|→∞ infx∈Ω

M(x,ξ)
|ξ| = ∞. The

complementary function M∗ to a function M is defined by

M∗(x, η) = sup
ξ∈R

d×d
sym

(ξ · η −M(x, ξ))

for η ∈ R
d×d
sym and a.a. x ∈ Ω. The complementary function M∗ is again an

N -function.
Now we are ready to formulate the assumptions on the Cauchy stress–tensor

S : Ω × R
d×d
sym → R

d×d
sym :

(S1) S(x, ξ) is a Carathéodory function and S(x, 0) = 0.
(S2) There exist positive constants c, α1, α2, an N -function M and its complemen-

tary function M∗ and an integrable non-negative function m(x) such that for
all ξ ∈ R

d×d
sym and a.a. x ∈ Ω it holds

S(x, ξ) · ξ ≥ c{M(x, α1ξ) +M∗(x, α2S(x, ξ))} −m(x). (1.3)

(S3) S is strictly monotone, i.e. for all ξ1, ξ2 ∈ R
d×d
sym , ξ1 �= ξ2 and a.a. x ∈ Ω

[S(x, ξ1) − S(x, ξ2)] · [ξ1 − ξ2] > 0.

In the above formulation, the condition (S2) captures the situation, when S

grows fast w.r.t. the shear rate which allows to describe the effects of (rapidly) shear
thickening fluids. The dependence on x provides the possibility of considering the
influence of magnetic (or electric) field into the system. The other significant issue
is that function M depends on the whole tensor Dv, not only on its absolute value.
This generality allows to include some effects exhibited e.g. by magnetorheological

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

20
08

.1
8:

10
73

-1
09

2.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
W

A
R

SA
W

 I
N

ST
IT

U
T

E
 O

F 
T

H
E

O
R

E
T

IC
A

L
 P

H
Y

SI
C

S 
- 

L
IB

R
A

R
Y

 o
n 

11
/3

0/
12

. F
or

 p
er

so
na

l u
se

 o
nl

y.



July 3, 2008 10:12 WSPC/103-M3AS 00295

On Rapidly Thickening Non-Newtonian Fluids 1077

fluids. As we mentioned before, the application of the magnetic field results in the
formation of chains oriented in the direction of the magnetic field. Due to this
orientation of the particles chains, the properties of the fluid (viscosity) changes
differently in the direction perpendicular and parallel to the vector of magnetic
field. The monotonicity condition (S3) is natural. It follows automatically in the
case of stress–tensors having strictly convex potential (see e.g. Ref. 12).

Let us briefly mention some examples of constitutive relations which are cap-
tured by (S1)–(S3), but cannot be described by (1.2). The first example is

S1(x, η) = (ηE(x)η)α1η + (ηG(x)η)α2η

with some constants 1 < α1 < α2, whereas

E(x) = (eijkl(x))di,j,k,l=1 , E : Ω → R
d×d
sym × R

d×d
sym

and

G(x) = (gijkl(x))di,j,k,l=1, G: Ω → R
d×d
sym × R

d×d
sym

satisfy for all i, j, k, l = 1, . . . , d and for all η ∈ R
d×d
sym , some constant c > 0 and a.a.

x ∈ Ω the conditions

E(x) > 0,

eijkl(x) = eklij(x),

eijkl(x) = ejikl(x),

G(x) ≥ 0,

gijkl(x) = gklij(x),

gijkl(x) = gjikl(x).

As other examples we mention

S2(x, η) = ηE(x)e(ηE(x)η)

or

S3(x, η) = α(x)ηE(x)(ηE(x)η)α(x)−1

with α: Ω → (1,∞) and E(x) defined as for S1.
Note that some authors, cf. Refs. 2 and 23, claim that one of the possible direc-

tions of describing the magnetorheological fluids is the Bingham-type response hav-
ing variable yield strength (or Herschley–Bulkley fluids, see e.g. Ref. 13). This issue
needs more general mathematical tools, which include implicit relations between
the Cauchy stress and the symmetric part of the velocity gradient, cf. Ref. 17.
The promising direction for such studies would be a generalization of the results
presented in Ref. 7. However, we will not consider this approach here.

1.2. Function spaces and main result

The growth conditions (1.2) naturally impose the formulation of the problem in Lq

spaces. The appropriate spaces to capture problem (1.1) with conditions (S1)–(S3)
are the Orlicz spaces. In particular, since we allow the stress–tensor to depend on
x, the generalized Orlicz spaces, often called Orlicz–Musielak spaces, cf. Ref. 16,
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are adequate. Let us introduce some notions. Our notation is already adjusted to
further application to the considered situation.

The generalized Orlicz class LM (Q) is the set of all measurable functions ξ:Q →
R
d×d
sym such that ∫

Q

M(x, ξ)dxdt <∞.

By LM (Q) we denote the generalized Orlicz space which is the set of all measurable
functions ξ : Q→ R

d×d
sym which satisfy∫

Q

M(x, λξ(x))dxdt → 0 as λ→ 0.

The generalized Orlicz space is a Banach space with respect to the Orlicz norm

‖ξ‖ = sup
{
|ηξ| : η ∈ LM∗(Q),

∫
Q

M∗(x, η)dxdt ≤ 1
}

or the equivalent Luxemburg norm

‖ξ‖ = inf
{
λ > 0:

∫
Q

M

(
x,
ξ

λ

)
dxdt ≤ 1

}
.

By EM (Q) we denote the closure of all bounded functions in LM (Q). The space
LM∗(Q) is the dual space of EM (Q).

The functional

ρ(ξ) =
∫
Q

M(x, ξ(x))dxdt

is a modular, see e.g. Ref. 16 for definition. We will say that a sequence {zj}
converges modularly to z in LM (Q) if there exists λ > 0 such that∫

Q

M

(
x,
zj − z

λ

)
dxdt → 0.

We will use the notation zj
M−→ z for the modular convergence in LM (Q). The

analytical properties of the spaces with M dependent on a vector-valued argument
ξ, not only on the absolute value |ξ|, were extensively studied in Ref. 20 and also
in Refs. 9 and 22.

We are interested in the case of rapidly growing N -functions where the
so-called ∆2-condition is not satisfied. We say that an N -function M satisfies
∆2-condition if for some non-negative, integrable in Ω function h and a constant
k > 0

M(x, 2ξ) ≤ kM(x, ξ) + h(x) for all ξ ∈ R
d×d
sym and a.a. x ∈ Ω. (1.4)

If this condition fails, we lose numerous properties of the space LM (Q) like separa-
bility, reflexivity, cf. Ref. 16 and many others.
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An example of generalized Orlicz spaces are the spaces Lq(x), namely the case
M(x, ξ) = |ξ|q(x). The framework of Lq(x) spaces is often exploit to capture the
description of electrorheological fluids, which are, next to magnetorheological flu-
ids, another type of smart fluids (i.e. fluids whose properties, for example the vis-
cosity, can be changed by applying an electric field or a magnetic field). The usual
assumptions on the variable exponent, cf. Ref. 19, namely 1 ≤ q0 ≤ q(x) < q∞ <∞,
provide the function M satisfies ∆2-condition.

An interesting obstacle in our analysis is the lack of the classical integration by
parts formula, which is the most direct tool for the proof of the energy equality. To
follow the lines of the proof of integration by parts formula, cf. Ref. 6 (Sec. 4.1), we
would essentially need that LM (Q) = LM (0, T ;LM(Ω)). Unfortunately this is not
the case. We recall the proposition from Ref. 3 (although it is stated for Orlicz spaces
with M = M(|ξ|)). One can conclude that (1.5) means that M must be equivalent
to some power q, 1 ≤ q ≤ ∞. Hence, if (1.5) should hold, very strong assumptions
must be satisfied by M . Surely they would provide LM (Ω) to be separable and
reflexive.

Proposition 1.1. Let I be the time interval and Ω ⊂ R
d, M an N -function, and

LM (I × Ω), LM (I;LM (Ω)) the Orlicz spaces on I × Ω and the vector valued Orlicz
space on I respectively. Then

LM (I × Ω) = LM (I;LM (Ω)),

if and only if there exist constants k0, k1 such that

k0M
−1(s)M−1(x) ≤M−1(sx) ≤ k1M

−1(s)M−1(x) (1.5)

for every s ≥ 1/|I| and x ≥ 1/|Ω|.
Secondly, we have to face the problem, that C∞-functions are not dense in

LM (Ω), unless M satisfies ∆2-condition, whereas the density of C∞ in the consid-
ered function space is necessary in the classical proof of the integration by parts
formula. We can observe the efforts to generalize the formula for Orlicz spaces
already in Ref. 3, and later in Ref. 5. The advantage that the authors of Ref. 5 pos-
sessed was independence of M on x, which enabled the regularization w.r.t. space
and time variables. Then the result on the modular convergence of solution and
time derivative, cf. Ref. 5 (Theorem 1), automatically resolved the case to classical
integration. This is, however, impossible in our case. Moreover, it is not clear how
to obtain that the solution and its time-derivative are in dual spaces. Besides the
dependence on x in the N -function, we deal with the divergence-free projections
of the functions. We overcome the problem without a direct characterization of
the term

∫
vt · v. Only in very particular cases, the Helmholtz decomposition is

well-defined in spaces more general than Lq spaces. Namely in the spaces with vari-
able exponent Lq(x) if we know that q is log-Hölder continuous, then the maximal
operator is continuous from Lq(x)(Rd) to Lq(x)(Rd).
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Our proof is completed with the tools of Young measures generated by the
approximate sequence of the symmetric gradients {Dvn}. We are using the strict
monotonicity of the stress–tensor due to show that the Young measure is a Dirac
measure, which yields the assertion.

Before we state our main result, let us present the notation. By D(Ω) we mean
the set of C∞-functions with compact support in any set Ω. Let V(Ω) be the set of
all functions belonging to D(Ω) and are divergence-free. Moreover by Lq,W 1,q we
mean the standard Lebesgue and Sobolev spaces, by L2

div the closure of V w.r.t.
the ‖ · ‖L2 norm. By q′ we mean the conjugate exponent to q, namely 1

q + 1
q′ = 1.

We assume the initial and boundary conditions to Eq. (1.1)

v(0, x) = v0 in Ω,

v(t, x) = 0 on (0, T ) × ∂Ω.
(1.6)

Now we can define weak solutions to (1.1), (1.6) and state the existence result.

Definition 1.1. We call v a weak solution to (1.1), (1.6) if v ∈ L∞(0, T ;L2
div (Ω))∩

Lq(0, T ;W 1,q
0 (Ω)), Dv ∈ LM (Q) and the following is satisfied for all ϕ ∈

D(−∞, T ;V(Ω))∫
Q

(−vϕt + v · ∇v · ϕ+ S(x,Dv) ·Dϕ)dxdt +
∫

Ω

v0ϕdx =
∫
Q

fϕdxdt. (1.7)

Theorem 1.1. Let M be an N -function satisfying for some c > 0 and

q ≥ 3d+ 2
d+ 2

(1.8)

the condition

M(x, ξ) ≥ c|ξ|q. (1.9)

Given f ∈ W−1,q′(Q) and v0 ∈ L2
div (Ω) there exists a weak solution to (1.1), (1.6).

Note that condition (1.8) has a technical character. However, since we direct
our interest on shear thickening fluids, it does not restrict generality of our consid-
erations.

The abstract parabolic equations with growth conditions formulated in Orlicz
spaces defined by an N -function not satisfying the ∆2-condition were considered
in Refs. 3 and 5. However, to our best knowledge, the framework presented here
is more general (space dependent and vector argument N -function) and new for
the models of non-Newtonian fluids. Besides the analytical results on the existence
of weak solutions, the proof of the main theorem provides information that the
Young measure generated by the approximate sequences of gradients reduces to
the Dirac measure. This excludes the oscillations of the sequence (stability of a
weakly convergent sequence), which is of high interest for numerical analysis.
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2. Preliminaries

2.1. Generalized Orlicz spaces

We start with an elementary estimate, see Ref. 16.

Proposition 2.1. (Fenchel-Young Inequality) Let M be an N -function and M∗ a
complementary to M . Then the following inequality is satisfied

|ξ · η| ≤M(x, ξ) +M∗(x, η)

for all ξ, η ∈ R
d×d
sym and a.a. x ∈ Ω.

Next, we recall an analogue to the Vitali’s lemma, however for the modular
convergence instead of the strong convergence in Lq.

Lemma 2.1. Let zj : Ω → R
d be a measurable sequence. Then zj

M−→ z in LM (Ω)
modularly if and only if zj → z in measure and there exist some λ > 0 such that
the sequence {M(·, λzj)} is uniformly integrable, i.e.

lim
R→∞

(
sup
j∈N

∫
{x:|M(x,λzj)|≥R}

M(x, λzj)dx

)
= 0.

Proof. Note that zj → z in measure if and only if M(·, zj−z
λ ) → 0 in measure

for all λ > 0. Moreover, the convergence zj → z in measure implies that for all
measurable sets A ⊂ Q it holds

lim inf
j→∞

∫
A

M(x, zj)dxdt ≥
∫
A

M(x, z)dxdt.

Note also that the convexity of M implies∫
A

M

(
x,
zj − z

λ

)
dxdt ≤

∫
A

M

(
x,
zj

2λ

)
dxdt+

∫
A

M
(
x,

z

2λ

)
dxdt.

Hence by the classical Vitali’s lemma for f j(x) = M(x, z
j−z
λ ) we obtain that f j → 0

strongly in L1(Q).

The following technical facts will be used in a sequel.

Lemma 2.2. Let M be an N -function and for all j ∈ N let
∫
ΩM(x, zj) ≤ c. Then

the sequence {zj} is uniformly integrable.

Proof. Let us define δ(R) = min|ξ|=R
M(x,ξ)

|ξ| . Then for all j ∈ N it holds∫
{x:|zj(x)|≥R}

M(x, zj(x))dx ≥ δ(R)
∫
{x:|zj(x)|≥R}

|zj(x)|dx.

Since the left-hand side is bounded, we then obtain

sup
j∈N

∫
{x:|zj(x)|≥R}

|zj(x)|dx ≤ c

δ(R)
.
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Proposition 2.2. Let M be an N -function and M∗ its complementary function.
Suppose that the sequences ψj : Q → R

d and φj : Q → R
d are uniformly bounded

in LM (Q) and LM∗(Q) respectively. Moreover, ψj M−→ψ modularly in LM (Q) and

φj
M∗−→φ modularly in LM∗(Q). Then ψj · φj → ψ · φ strongly in L1(Q).

Proof. Due to Lemma 2.1 the modular convergence of {ψj} and {φj} implies the
convergence in measure of these sequences and consequently also the convergence
in measure of the product. Hence it is sufficient to show the uniform integrability
of {ψj · φj}. Notice that it is equivalent with the uniform integrability of the term
{ψj

λ1
· φj

λ2
} for any λ1, λ2 > 0. The assumptions of the proposition show that there

exist some λ1, λ2 > 0 such that the sequences{
M

(
x,
ψj

λ1

)}
and

{
M∗

(
x,
φj

λ2

)}

are uniformly integrable. Hence let us use the same constants and estimate with
the help of Fenchel–Young inequality∣∣∣∣ψjλ1

· φ
j

λ2

∣∣∣∣ ≤M

(
x,
ψj

λ1

)
+M∗

(
x,
φj

λ2

)
.

Obviously the uniform integrability of the right-hand side provides the uniform
integrability of the left-hand side and this yields the assertion.

Proposition 2.3. Let �j be a standard mollifier, i.e. � ∈ C∞(R), � has a compact
support and

∫
R
�(τ)dτ = 1, �(t) = �(−t). We define �j(t) = j�(jt). Moreover, let ∗

denote a convolution in the variable t. Then for any function ψ : Q→ R
d such that

ψ ∈ L1(Q) it holds

(�j ∗ ψ)(t, x) → ψ(t, x) in measure.

Proof. For a.a. x ∈ Ω the function ψ(·, x) ∈ L1(0, T ) and �j ∗ ψ(·, x) → ψ(·, x) in
L1(0, T ) and hence �j ∗ ψ → ψ in measure on the set [0, T ]× Ω.

Proposition 2.4. Let �j be defined as in Proposition 2.3. Given an N -function M
and a function ψ : Q → R

d such that ψ ∈ LM (Q) the sequence {M(x, �j ∗ ψ)} is
uniformly integrable.

Proof. We start with an abstract fact concerning the uniform integrability.
Namely, the following two conditions are equivalent for any measurable sequence
{zj}

(a) ∀ ε > 0, ∃ δ > 0: sup
j∈N

sup
|A|≤δ

∫
A

|zj(x)|dxdt ≤ ε,

(b) ∀ ε > 0, ∃ δ > 0: sup
j∈N

∫
Q

∣∣∣∣|zj(x)| − 1√
δ

∣∣∣∣
+

dxdt ≤ ε,
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where we use the notation

|ξ|+ = max{0, ξ}.
The implication (a) ⇒ (b) is obvious. To show that (b) ⇒ (a) also holds let us
estimate

sup
j∈N

sup
|A|≤δ

∫
A

|zj|dxdt ≤ sup
|A|≤δ

|A| · 1√
δ

+ sup
j∈N

∫
Q

∣∣∣∣|zj| − 1√
δ

∣∣∣∣
+

dxdt

≤
√
δ + sup

j∈N

∫
Q

∣∣∣∣|zj| − 1√
δ

∣∣∣∣
+

dxdt.

Notice that since M is a convex function, then the following inequality holds for all
δ > 0 ∫

Q

∣∣∣∣M(x, ψ) − 1√
δ

∣∣∣∣
+

dxdt ≥
∫
Q

∣∣∣∣M(x, �j ∗ ψ) − 1√
δ

∣∣∣∣
+

dxdt. (2.1)

Finally, since ψ ∈ LM (Q), then also
∫
Q |M(x, ψ) − 1√

δ
|+dxdt is finite and hence

taking supremum over j ∈ N in (2.1) we prove the assertion.

2.2. Preliminaries on Young measures

We assume the basic facts on existence and properties of Young measures are known
to the reader. The fundamental theorem on Young measures may be found in e.g.
Refs. 1 and 15 and many others. We only recall the properties concerning the
Carathéodory functions, which is the case of the stress–tensor S. Lemma 2.4 pro-
vides the relation between the support of the Young measure and convergence
in measure, which is used to show the modular convergence of the approximate
sequences of gradients. In the following by M(Rd) we mean the space of bounded
Radon measures. For the proofs of the next lemmas we refer to Ref. 15 (Corollar-
ies 3.2 and 3.3).

Lemma 2.3. Suppose that the sequence of measurable functions zj : Ω → R
d gen-

erates the Young measure ν : Ω → M(Rd). Let F : Ω × R
d → R be a Carathéodory

function. Let also assume that the negative part F−(x, zj(x)) is weakly relatively
compact in L1(Ω). Then

lim inf
j→∞

∫
Ω

F (x, zj(x))dx ≥
∫

Ω

∫
Rd

F (x, λ)dνx(λ)dx.

If, in addition, the sequence of functions x �→ |F |(x, zj(x)) is weakly relatively
compact in L1(Ω) then

F (·, zj(·)) ⇀
∫

Rd

F (x, λ)dνx(λ) in L1(Ω).

Remark 2.1. The second part of the above lemma can be easily extended to
vector-valued functions F .
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Lemma 2.4. Suppose that a sequence of measurable functions zj : Ω → R
d

generates the Young measure ν : Ω → M(Rd). Then

zj → z in measure if and only if νx = δz(x) a.e.

3. Proof of Theorem 1.1

We construct Galerkin approximations to (1.1). For details on the Galerkin method
we refer to Refs. 12 and 14. First, we describe the chosen basis {ωi}. Assume
that

s >
d

2
+ 1 (3.1)

and denote

Vs ≡ the closure of V w.r.t. the W s,2(Ω)-norm.

Let then the scalar product in Vs be denoted by ((·, ·))s and {ωi} be the set of
eigenvectors to the problem

((ωi, ϕ))s = λi(ωi, ϕ) for all ϕ ∈ Vs.

Notice that condition (3.1) provides

W s−1,2(Ω) ↪→ L∞(Ω) (3.2)

which we will use in the sequel. We define vn =
∑n

i=1 α
n
i (t)ωi, where αni (t) solve

the system∫
Ω

d

dt
vn · ωi +

∫
Ω

vn · ∇vn · ωidx+
∫

Ω

S(x,Dvn) ·Dωidx = 〈f, ωi〉,

vn(0) = Pnv0,

(3.3)

where i = 1, . . . , n and by Pn we denote the orthogonal projection of L2
div (Ω)

on conv{ω1, . . . , ωn}. Multiplying each equation of (3.3) by αni (t), summing over
i = 1, . . . , n and remembering that since div vn = 0, then

∫
Ω v

n · ∇vn · vndx = 0,
we obtain

1
2
d

dt
‖vn‖2

L2(Ω) +
∫

Ω

S(x,Dvn) ·Dvndx = 〈f, vn〉. (3.4)

To estimate the right-hand side of the above, observe first that due to the regu-
larity theory of linear elasticity equations (i.e. Lame equation), see e.g. Ref. 21,
there exists an F ∈ Lq

′
(Q), such that F is a symmetric matrix and solves the

equation

divF = f. (3.5)

Moreover if (1.9) holds, then one easily shows there exists some c > 0 such that

M∗(x, ξ) ≤ c|ξ|q′ . (3.6)
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Consequently we conclude that F ∈ LM∗(Q) and estimate

〈divF, vn〉 ≤
∫

Ω

∣∣∣∣ 2
cα1

F · cα1

2
Dvn

∣∣∣∣ dx
F−Y≤

∫
Ω

M∗
(
x,

2
cα1

F

)
dx+

∫
Ω

M
(
x,
cα1

2
Dvn

)
dx

≤
∫

Ω

M∗
(
x,

2
cα1

F

)
dx+

c

2

∫
Ω

M (x, α1Dv
n) dx. (3.7)

Integrating (3.4) over the time interval (0, t), using estimate (3.7) and the coercivity
conditions on S (1.3) we obtain

1
2
‖vn(t)‖2

L2(Ω) +
c

2

∫ T

0

∫
Ω

M(x, α1Dv
n)dxdt + c

∫ T

0

∫
Ω

M∗(x, α2S(x,Dvn))dxdt

≤
∫ T

0

∫
Ω

M∗
(
x,

2
cα1

F

)
dxdt +

1
2
‖v0‖2

L2(Ω) +
∫ T

0

‖m‖L1(Ω)dt. (3.8)

Condition (1.9) provides that {α1Dv
n} is uniformly bounded in the space Lq(Q)

for q ≥ 3d+2
d+2 and hence there exists a subsequence such that

Dvn ⇀ Dv weakly in Lq(Q).

Provided that M is an N -function, then M∗ is also an N -function. This allows
to apply Lemma 2.2 to M∗ and conclude the uniform integrability, and hence the
weak precompactness of the sequence {α2S(x,Dvn)} in L1(Q) and consequently
{S(x,Dvn)} in L1(Q). Namely there exists a χ ∈ L1(Q) such that

S(·, Dvn) ⇀ χ weakly in L1(Q).

To establish the uniform bound for dvn

dt , we take a test function ϕ ∈ L∞(0, T ;Vs)
and using (3.2) to estimate the following integrals∣∣∣ ∫ T

0

∫
Ω

S(x,Dvn) ·D(Pnϕ)dxdt
∣∣∣ ≤ ∫ T

0

‖S(·, Dvn)‖L1(Ω)‖D(Pnϕ)‖L∞(Ω)dt

≤
∫ T

0

‖S(·, Dvn)‖L1(Ω)‖Pnϕ‖Vsdt

≤
∫ T

0

‖S(·, Dvn)‖L1(Ω)‖ϕ‖Vsdt

≤ ‖S(·, Dvn)‖L1(Q)‖ϕ‖L∞(0,T ;Vs)

and ∣∣∣∣∣
∫ T

0

∫
Ω

vn · ∇vn · Pnϕdxdt
∣∣∣∣∣ =

∣∣∣∣∣
∫ T

0

∫
Ω

(vn ⊗ vn) · ∇Pnϕdxdt
∣∣∣∣∣ dt

≤
∫ T

0

‖vn ⊗ vn‖L1(Ω)‖∇Pnϕ‖L∞(Ω)dt
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≤
∫ T

0

‖vn‖2
L2(Ω)‖Pnϕ‖Vsdt

≤
∫ T

0

‖vn‖2
L2(Ω)‖ϕ‖Vsdt

≤ ‖vn‖2
L2(Q)‖ϕ‖L∞(0,T ;Vs).

To handle the right-hand side term, recall (3.5)∣∣∣∣∣
∫ T

0

〈divF, Pnϕ〉dt
∣∣∣∣∣ =

∣∣∣∣∣
∫ T

0

∫
Ω

F ·D(Pnϕ)dxdt

∣∣∣∣∣
≤
∫ T

0

‖F‖L1(Ω)‖D(Pnϕ)‖L∞(Ω)dt

≤
∫ T

0

‖F‖L1(Ω)‖Pnϕ‖Vsdt

≤
∫ T

0

‖F‖L1(Ω)‖ϕ‖Vsdt

≤ ‖F‖L1(Q)‖ϕ‖L∞(0,T ;Vs).

Hence we conclude that dvn

dt is bounded in L1(0, T ;V ∗
s ). Because of the low regu-

larity of the time derivative, we recall the following generalization of the classical
Aubin–Lions lemma, cf. Ref. 18. We use the notation

W 1,p,q(I;X1, X2) :=
{
u ∈ Lp(I;X1);

du

dt
∈ Lq(I;X2)

}

forX1 a Banach space andX2 a locally convex space,X1 ⊂ X2. By du
dt we denote the

distributional derivative, ↪→ means the continuous embedding and ↪→↪→ a compact
embedding.

Lemma 3.1. (Aubin–Lions, generalized) Let X1, X2 be Banach spaces, and X3 be
a metrizable Hausdorff locally convex space, X1 be separable and reflexive, X1 ↪→↪→
X2, X2 ↪→ X3, 1 < p <∞, 1 ≤ q ≤ ∞. Then W 1,p,q(I;X1, X3) ↪→↪→ Lp(I;X2).

Since the sequence vn is bounded in W 1,q,1(0, T ;W 1,q
div (Ω), V ∗

s ) and
W 1,q,1(0, T ;W 1,q

div (Ω), V ∗
s ) ↪→↪→ Lq(0, T ;L2

div (Ω)), hence

vn → v strongly in Lq(0, T ;L2
div (Ω)). (3.9)

This allows to conclude that for a fixed i ∈ N we have

lim
n→∞

∫ T

0

∫
Ω

vn · ∇vn · ωidxdt =
∫ T

0

∫
Ω

v · ∇v · ωidxdt.
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Letting n→ ∞ in (3.3)1 provides

∫ T

0

〈vt, ωi〉dt+
∫ T

0

∫
Ω

v · ∇v · ωidxdt+
∫ T

0

∫
Ω

χ ·Dωidxdt =
∫ T

0

∫
Ω

f · ωidxdt.
(3.10)

Let �j be a standard mollifier as described in Proposition 2.3. Let us then choose
a test function

vj = �j ∗ ((�j ∗ v)1l(s0,s1)),

with 1/j < min{s0, T − s1}. We observe that such test functions are uniformly
bounded in the space C∞((0, T );W 1,q

0 (Ω)) and Dvj in LM (Q). With the standard
estimates one can show that this is an admissible class of test functions. Hence for
all 0 < s0 < s1 < T it follows that

∫ T

0

〈vt · vj〉dt =
∫ T

0

〈vt, �j ∗ ((�j) ∗ v)1l(s0,s1)〉dt

=
∫ s1

s0

∫
Ω

(�j ∗ vt) · (�j ∗ v)dxdt

=
∫ s1

s0

∫
Ω

(�j ∗ v)t · (�j ∗ v)dxdt

=
1
2

∫ s1

s0

d

dt
‖�j ∗ v‖2

L2(Ω)dt

=
1
2
‖�j ∗ v(s1)‖2

L2(Ω) −
1
2
‖�j ∗ v(s0)‖2

L2(Ω). (3.11)

We pass to the limit with j → ∞ and obtain for almost all s0, s1, namely for all
Lebesgue points of the function v(t)

lim
j→∞

∫ T

0

〈vt, vj〉dt =
1
2
‖v(s1)‖2

L2(Ω) −
1
2
‖v(s0)‖2

L2(Ω). (3.12)

Next, we concentrate on the convergence of the term
∫ s1
s0

∫
Ω
v ·∇v ·vjdxdt. Con-

dition (1.9) provides that Dv ∈ Lq(0, T ;Lq(Ω)) and hence due to Korn’s inequality
∇v ∈ Lq(0, T ;Lq(Ω)). With the standard arguments we conclude that the sequence
{�j ∗ ((�j) ∗ ∇v)1l(s0,s1)} is also uniformly bounded in Lq(0, T ;Lq(Ω)). For q satis-
fying (1.8) the trilinear form

∫ T
0

∫
Ω v · ∇v · vjdxdt is continuous and hence letting

j → ∞ it converges to zero.
Observe now the term∫ T

0

∫
Ω

χ · (�j ∗ ((�j) ∗Dv)1l(s0,s1))dxdt =
∫ s1

s0

∫
Ω

(�j ∗ χ) · (�j ∗Dv)dxdt.
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Both sequences {�j ∗χ} and {�j ∗Dv} converge in measure in Q due to Lemma 2.3.
Moreover, since M and M∗ are convex functions, then the weak lower semiconti-
nuity and estimate (3.8) provide that the integrals∫ T

0

∫
Ω

M(x, α1Dv)dxdt and
∫ T

0

∫
Ω

M∗(x, α2χ)dxdt

are finite. Hence Lemma 2.4 implies that the sequences {�j ∗ (α2χ)} and {�j ∗
(α1Dv)} are uniformly bounded and hence according to Lemma 2.1 we have

�j ∗Dv M−→ Dv in LM (Q),

�j ∗ χ M∗
−→ χ in LM∗(Q).

(3.13)

Applying Lemma 2.2 allows to conclude

lim
j→∞

∫ s1

s0

∫
Ω

(�j ∗ χ) · (�j ∗Dv)dxdt =
∫ s1

s0

∫
Ω

χ ·Dvdxdt. (3.14)

In the same manner we treat the source term. Since f = divF , then∫ T

0

〈f, �j ∗ ((�j) ∗ v)1l(s0,s1)〉dt =
∫ T

0

〈divF, �j ∗ ((�j) ∗ v)1l(s0,s1)〉dt

= −
∫ s1

s0

∫
Ω

(�j ∗ F ) ·D(�j ∗ v)dxdt

= −
∫ s1

s0

∫
Ω

(�j ∗ F ) · (�j ∗Dv)dxdt. (3.15)

Hence

lim
j→∞

∫ s1

s0

∫
Ω

(�j ∗ F ) · (�j ∗Dv)dxdt =
∫ s1

s0

∫
Ω

F ·Dvdxdt = −
∫ s1

s0

〈f, v〉dt.
(3.16)

Combining (3.12), (3.14) and (3.16) we may pass to the limit in (3.10) and obtain

1
2
‖v(s1)‖2

L2(Ω) +
∫ s1

s0

∫
Ω

χ ·Dvdxdt =
∫ s1

s0

〈f, v〉dt+
1
2
‖v(s0)‖2

L2(Ω) (3.17)

for almost all 0 < s0 < s1 < T .
In the last step we concentrate on characterizing the limit χ. Since S is monotone

and S(x, 0) = 0, then trivially the negative part is weakly relatively compact in
L1(Q). Hence due to Lemma 2.3

lim inf
n→∞

∫ s1

s0

∫
Ω

S(x,Dvn(x)) ·Dvndxdt ≥
∫ s1

s0

∫
Ω

∫
R

d×d
sym

S(x, ξ) · ξdνt,x(ξ)dxdt,

(3.18)

where νt,x is the Young measure generated by the sequence {Dvn}. From (3.9) it
follows that

‖vn(s)‖L2(Ω) → ‖v(s)‖L2(Ω) for a.a. s ∈ (0, T ). (3.19)
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Hence integrating (3.4) over the interval (s0, s1) allows one to conclude that

lim
n→∞

∫ s1

s0

∫
Ω

S(x,Dvn) ·Dvndxdt =
∫ s1

s0

〈f, v〉dt+
1
2
‖v(s0)‖2

L2(Ω)

− 1
2
‖v(s1)‖2

L2(Ω). (3.20)

Combining (3.17), (3.18) and (3.20) results∫ s1

s0

∫
Ω

∫
R

d×d
sym

S(x, ξ) · ξdνt,x(ξ)dxdt ≤
∫ s1

s0

∫
Ω

χ ·Dvdxdt. (3.21)

Since the above inequality holds for a dense set (s0, s1)×Ω in Q, we conclude that
it is true in the whole Q. The monotonicity of S provides that∫

Q

∫
R

d×d
sym

h(t, x, ξ)dνt,x(ξ)dxdt ≥ 0, (3.22)

where h is defined by

h(t, x, ξ) := [S(x, ξ) − S(x,Dv)] · [ξ −Dv]. (3.23)

Since {Dvn} and {S(·, Dvn)} are weakly relatively compact in L1(Q) and S is a
Carathéodory function, then

Dv =
∫

R
d×d
sym

ξdνt,x(ξ) and χ =
∫

R
d×d
sym

S(x, ξ)dνt,x(ξ). (3.24)

Hence integrating h(t, x, ξ) yields∫
Q

∫
R

d×d
sym

h(t, x, ξ)dνt,x(ξ)dxdt =
∫
Q

∫
R

d×d
sym

S(x, ξ) · ξdνt,x(ξ)dxdt −
∫
Q

χ ·Dvdxdt,

(3.25)

which is nonpositive due to (3.21). Combining (3.21), (3.22) and (3.25) implies that∫
R

d×d
sym

h(x, ξ)dνt,x(ξ) = 0 for a.a. (t, x) ∈ Q. Moreover, since νt,x ≥ 0 is a probability
measure and S(x, ·) is strongly monotone, we conclude that

supp{νt,x} a.e.= {Dv(t, x)}
and thus νt,x = δDv(t,x) a.e. Finally (3.24) yields χ a.e.= S(x,Dv(t, x)), which com-
pletes the proof of the existence of solutions.

We additionally prove the modular convergence and continuity of solutions in
L2

div (Ω), namely v ∈ C([0, T );L2
div (Ω)). These properties of solutions are formu-

lated in the two lemmas below.

Lemma 3.2. Let v be a weak solution to (1.1), (1.6) and {vn} be a solution to
approximate problem (3.3). Then the following holds

(1) Dvn
M−→Dv in LM (Q),

(2) S(·, Dvn) M∗−→S(·, Dv) in LM∗(Q).
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Proof. 1 and 2. A direct application of Lemma 2.4 implies that Dvn → Dv in
measure. To apply Lemma 2.1 we recall (1.3) and establish the uniform integrability
of the term {S(x,Dvn) ·Dvn}. Observe that

S(x,Dvn) ·Dvn ≥ −m(x), S(x,Dv) ·Dv ∈ L1(Q).

Moreover,

lim
n→∞

∫
Q

S(x,Dvn) ·Dvn dxdt =
∫
Q

S(x,Dv) ·Dv dxdt

and

S(x,Dvn) ·Dvn → S(x,Dv) ·Dv a.e. in Q

hold. Noticing that∫
Q

|S(x,Dvn) ·Dvn − S(x,Dv) ·Dv| dxdt

=
∫
Q

(S(x,Dvn) ·Dvn − S(x,Dv) ·Dv) dxdt

+ 2
∫
Q

|S(x,Dv) ·Dv − S(x,Dvn) ·Dvn|+ dxdt,

we conclude by Lebesgue’s Dominated Convergence Theorem that

S(x,Dvn) ·Dvn → S(x,Dv) ·Dv in L1(Q).

This implies the uniform integrability, which together with coercivity conditions
(1.3) provides the uniform integrability of the sequences {M(x, α1Dv

n)} and
{M∗(x, α2S(x,Dvn))}, which completes the proof.

Lemma 3.3. Let v be a weak solution to (1.1). Then v ∈ C([0, T );L2
div (Ω)).

Proof. Since vt ∈ L1(0, T ;V ∗
s ), then we conclude that v(tk)

tk→t−−−→ v(t) strongly, and
also weakly, in V ∗

s . Moreover, we know that v ∈ L∞(0, T ;L2
div (Ω)) thus v(tk) ⇀ v(t)

in L2(Ω). In addition we observe from (3.12) and (3.17) that d
dt‖v(·)‖L2 ∈ L1(0, T ),

hence ‖v(·)‖L2 is continuous. Combining the facts that v(tk) ⇀ v(t) in L2(Ω) and
‖v(tk)‖L2 → ‖v(t)‖L2 , we conclude that v(tk) → v(t) strongly in L2(Ω), which
yields the assertion.
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