Equivariant Ideals of Polynomials

Arka Ghosh

Sławek Lasota

University of Warsaw

LICS'24

 $X \leftarrow \longrightarrow$ set of variables $\mathbb{Q}[X] \leftarrow \longrightarrow$ polynomials in X with rational coefficients

$$I \subseteq \mathbb{Q}[X]$$
 is an ideal if

1.
$$I \neq \emptyset$$

$$2. f, g \in I \implies f + g \in I$$

3.
$$f \in I$$
, $h \in \mathbb{Q}[X] \implies h \cdot f \in I$

$$X \leftarrow \longrightarrow$$
 set of variables $\mathbb{Q}[X] \leftarrow \longrightarrow$ polynomials in X with rational coefficients

$$I \subseteq \mathbb{Q}[X]$$
 is an ideal if

1.
$$I \neq \emptyset$$

$$2. f, g \in I \implies f + g \in I$$

3.
$$f \in I$$
, $h \in \mathbb{Q}[X] \implies h \cdot f \in I$

Example

 $I={\it polynomials}$ whose coefficients sum up to 0

$$x^2 - 3y + 2x$$

Example

I= polynomials whose coefficients sum up to $0=\langle\{1-x\mid x\in X\}\rangle$

Hilbert's basis theorem

X is finite \implies every ideal in $\mathbb{Q}[X]$ is finitely generated

Application:

- 1. Zeroness of polynomial automata.
- 2. Reachability in reversible Petri nets.

An ideal $I \subseteq \mathbb{Q}[X]$ is **equivariant** if it is invariant under renaming of variables using automorphisms of X.

$$x^2 - yz \longrightarrow \pi(x)^2 - \pi(y)\pi(z)$$

An ideal $I \subseteq \mathbb{Q}[X]$ is **equivariant** if it is invariant under renaming of variables using automorphisms of X.

$$x^2 - yz \longrightarrow \pi(x)^2 - \pi(y)\pi(z)$$

Example

X= dense linear order automorphisms = order preserving bijections I= polynomials whose coefficients sum up to 0

equivariant ideal $\langle G \rangle$ generated by $G \subseteq \mathbb{Q}[X]$

the smallest equivariant ideal containing G

equivariant ideal $\langle G \rangle$ generated by $G \subseteq \mathbb{Q}[X]$ || the smallest equivariant ideal containing G

Example

X = dense linear order

 $I = \text{polynomials whose coefficients sum up to } 0 = \langle 1 - x \rangle$ for any $x \in X$

An ideal $I \subseteq \mathbb{Q}[X]$ is **equivariant** if it is invariant under renaming of variables using automorphisms of X.

Hilbert's basis property

Every equivariant ideal in $\mathbb{Q}[X]$ is finitely generated

Which structures have Hilbert's basis property?

$Fin(X) = Finite induced substructures of X labelled by <math>\mathbb{N}$ ordered by embeddings

Example:

X = dense linear order

 $Fin(X) = \mathbb{N}^*$, subsequence ordering

$Fin(X) = Finite induced substructures of X labelled by <math>\mathbb{N}$ ordered by embeddings

Example:

X = dense linear order

 $Fin(X) = \mathbb{N}^*$, subsequence ordering

conjecture

Theorem: Fin(X) is WQO and X is totally ordered X has Hilbert's basis property Pouzet's ?

Fin(X) is WQO

Cohen (1967)

\boldsymbol{X}	Finite induced substructures	Hilbert's basis property
Equality domain	Finite sets	
Dense linear order	Finite linear orders	
Random graph	Finite graphs	

Preserved by lexicographic product Cohen (1967) Finite induced Hilbert's basis substructures property Equality domain Finite sets Dense linear order Finite linear orders Finite graphs Random graph

Equivariant Ideal Membership Problem

Input: $f \in \mathbb{Q}[X]$ and finite $G \subseteq \mathbb{Q}[X]$.

Question : Is $f \in \langle G \rangle$?

Equivariant Ideal Membership Problem

Input : $f \in \mathbb{Q}[X]$ and finite $G \subseteq \mathbb{Q}[X]$. Question : Is $f \in \langle G \rangle$?

Theorem: Fin(X) is WQO and X has Hilbert's basis property X is totally ordered

> conjecture Fin(X) is WQO

Equivariant Ideal Membership Problem

Input: $f \in \mathbb{Q}[X]$ and finite $G \subseteq \mathbb{Q}[X]$.

Question : Is $f \in \langle G \rangle$?

Theorem: Fin(X) is WQO and X is well ordered and computable Decidable

Hillar, Sullivant (2012)

\boldsymbol{X}	Finite induced substructures	Decidability of ideal membership
Equality domain	Finite sets	
Dense linear order	Finite linear orders	
Random graph	Finite graphs	

Hillar, Sullivant (2012)

Preserved by lexicographic product

\boldsymbol{X}	Finite induced substructures	Decidability of ideal membership
Equality domain	Finite sets	
Dense linear order	Finite linear orders	
Random graph	Finite graphs	

Applications

- 1. Decidability of reachability of reversible data Petri nets for equality and ordered data.
- 2. Increasing chains of equivariant vector subspaces stabilise.

 Bojańczyk, Klin, Moerman (LICS'21)
- 3. Decidability of zeroness of weighted register automata. Bojańczyk, Klin, Moerman (LICS'21)
- 4. Solvability of orbit-finite systems of linear equations. G., Hofman, Lasota (LICS'22)

$Fin(X) = Finite induced substructures of X labelled by <math>\mathbb{N}$ ordered by embeddings

Example:

X = dense linear order

 $Fin(X) = \mathbb{N}^*$, subsequence ordering

Previous results

On the laws of a metabelian variety.

Daniel E Cohen (1967)

Closure relations, Buchberger's algorithm, and polynomials in infinitely many variables.

Daniel E Cohen (1987)

Finite generation of symmetric ideals.

Matthias Aschenbrenner, Christopher J. Hillar (2007)

An Algorithm for Finding Symmetric Gröbner Bases in Infinite Dimensional Rings. *Matthias Aschenbrenner, Christopher J. Hillar (2008)*

Finite Gröbner bases in infinite dimensional polynomial rings and applications Christopher J. Hillar, Seth Sullivant (2012)

Equivariant Gröbner bases

Christopher J. Hillar, Robert Kroner, Anton Leykin (2016)

known before

X	Finite induced substructures	Hilbert's basis property?
Equality domain	Finite sets	
Dense linear order	Finite linear orders	
Random graph	Finite graphs	
Infinite dimensional vector space on finite fields	Finite dimensional vector subspaces	
Dense tree	Finite trees/forests	

known before

Preserved by lexicographic product

\boldsymbol{X}	Finite induced substructures	Hilbert's basis property?
Equality domain	Finite sets	
Dense linear order	Finite linear orders	
Random graph	Finite graphs	
Infinite dimensional vector space on finite fields	Finite dimensional vector subspaces	
Dense tree	Finite trees/forests	

Known before

Preserved by lexicographic product

\boldsymbol{X}	Finite induced substructures	Decidability of ideal membership	
Equality domain	Finite sets		
Dense linear order	Finite linear orders		
Rado graph	Finite graphs		
Infinite dimensional vector space on finite fields	Finite dimensional vector subspaces		
Dense tree	Finite trees/forests	Ongoing work	

Fin(X) = Finite induced substructures of X labelled by N

Elements in Fin(X) are ordered by embeddings

$$X = \{x_1, x_2, \dots\}$$

$$X = \{x_1, x_2, \dots\}$$

 $\langle x_1, x_2, \ldots \rangle$ is not a finitely generated ideal

$$X = \{x_1, x_2, \dots\}$$

 $\langle x_1, x_2, \ldots \rangle$ is not a finitely generated ideal

Proof by contradiction:

F, an arbitrary finite subset of $\langle x_1, x_2, \ldots \rangle$

 $F' = \{x_i \mid x_i \text{ appears in some } f \in F\}$

$$\langle F \rangle \subseteq \langle F' \rangle \subsetneq \langle x_1, x_2, \dots \rangle$$

$$X = \{x_1, x_2, \dots\}$$

 $\langle x_1, x_2, \ldots \rangle$ is not a finitely generated ideal

Proof by contradiction:

F, an arbitrary finite subset of $\langle x_1, x_2, \ldots \rangle$

 $F' = \{x_i \mid x_i \text{ appears in some } f \in F\}$

$$\langle F \rangle \subseteq \langle F' \rangle \subsetneq \langle x_1, x_2, \dots \rangle$$

We need to look at an appropiate class of ideals

X edges of an infinite clique

X

 $\mathsf{Emb}(X)$ injections of edges induced by injections of vertices

$$\left\langle \bigcup_{n>3} C_n \right\rangle$$
 is not finitely generated

$$C_n = \{e_1 \cdot \ldots \cdot e_n \mid e_1 \cdots e_n \text{ is a simple cycle } \}$$

X edges of an infinite clique X Emb(X) injections of edges induced by injections of vertices

Is this notion of ideals useful?

reachability of reversible Petri net

polynomial ideal membership problem

Commutative Ring: $(R, +, \cdot)$

Commutative Ring : $(R, +, \cdot)$

Examples

- 1. Integers
- 2. R[X] = Polynomials with variables X and coefficients from the ring R

 $I \subseteq R$ is called an ideal if

1. $a+b \in I$ for all $a,b \in I$

2. $a \cdot c \in I$ for all $a \in I$ and $c \in R$

Commutative Ring : $(R, +, \cdot)$

Examples

- 1. Integers
- 2. R[X] = Polynomials with variables X and coefficients from the ring R

 $I \subseteq R$ is called an ideal if

Commutative Ring : $(R, +, \cdot)$

1.
$$a+b \in I$$
 for all $a,b \in I$

2. $a \cdot c \in I$ for all $a \in I$ and $c \in R$

Examples

1. Integers

2. R[X] = Polynomials with variables X and coefficients from the ring R

Examples

- 1. Even integers
- 2. Polynomials which vanish at x = 0, y = 1

 $(m_{\rm f} - m_{\rm i})$ is in the ideal generated by binomials of the form $(ac-b^2)$ for a < b < c

Ideal with non-equivariant solutions

$$x^2 + y^2 - 2$$