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How do we solve it?
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Lemma : There is a solution  which 
uses finitely set of atoms  ,


          if and only if


there is a finite solution  which is 
invariant under permutations of 


Proof :

              Trivial
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1. Consider a finite support 


2. Merge variables related by permutations 
of ,                           


                      

                      equivalently


     add columns whose indices are 

     related by permutations of 


3. Fact : Inequalities/rows with indices 
related by permutations of  are the same


4. Fact : The number of row and column 
indices up to permutation of  is 
independent of  when  is large enough


5. We get a finite system
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         subject to 


     with  as a parameter


6. The optimum value is defined by
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7. Solve this “parametric” system


F ⊆ 𝔸

F

F

F

F
F F

⃗c(n) ⋅ ⃗x
M(n) ⋅ ⃗x ≥ b⃗(n)

n = |F |

optimumM,b(d) d′￼≥ d
n ⃗x

M(n) ⋅ ⃗x ≥ b⃗(n)

⃗c(n) ⋅ ⃗x ≥ d′￼

minimise 




 are orbit-finite

cT ⋅ x
subject to M ⋅ x ≥ b, x is finite

M, b, c

orbit-finite sets

Existence of orbit-
finite solutions and finite 
solutions are equivalent 
as decision problems

Fact : It 
doesn’t matter 
whether  is 
real or integer!
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• decision procedures 
for real arithmetic


• Fourier-Mozkin 
elimination

register automatacomputation with infinite alphabets
sets with atoms

orbit-finite dimensional vector spaces

equivariant linear algebra
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