Orbit-finite Linear Programming

Arka Ghosh, Piotr Hofman, Sławomir Lasota

minimise $\quad \sum_{\alpha \in \mathbb{A}} \mathbf{x}(\alpha)$
subject to $\sum_{\alpha \in \mathbb{A} \backslash\{\beta\}} \mathbf{x}(\alpha) \geq 1, \beta \in \mathbb{A} \quad$ subject to $\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ & \vdots & \end{array}\right.$
subject to $\left[\begin{array}{cccccc}0 & 1 & 1 & & & \\ 1 & 0 & 1 & . & . & . \\ 1 & 1 & 0 & & & \\ & \vdots & & . & & \\ & . & & & .\end{array}\right] \cdot \mathbf{x} \geq\left[\begin{array}{c}1 \\ 1 \\ 1 \\ \vdots\end{array}\right]$
x is finite
\mathbf{x} is finite
minimise $\left[\begin{array}{lllll}1 & 1 & 1 & \cdot & \cdot\end{array}\right] \cdot \mathbf{x}$

How do we solve it?

1. Consider a finite support $F \subseteq \mathbb{A}$
2. Merge variables related by permutations of F,

equivalently

add columns whose indices are related by permutations of F
3. Fact : Inequalities/rows with indices related by permutations of F are the same
4. Fact : The number of row and column indices up to permutation of F is independent of F when F is large enough
5. We get a finite system
minimise $\vec{c}(n) \cdot \vec{x}$
subject to $M(n) \cdot \vec{x} \geq \vec{b}(n)$
with $n=|F|$ as a parameter
6. The optimum value is defined by
optimum $_{M, b}(d)=$ for all $d^{\prime} \geq d$

Fact: It

doesn't matter whether n is real or integer!
there exists n and \vec{x}
such that
$M(n) \cdot \vec{x} \geq \vec{b}(n)$
and
$\vec{c}(n) \cdot \vec{x} \geq d^{\prime}$
7. Solve this "parametric" system
decision procedures for real arithmetic

Fourier-Mozkin elimination

The optimum may not be achieved
$\frac{1}{|F|-1} \cdot \mathbf{1}_{F}$ is a solution for the constraints for any finite $F \subseteq A$, with objective $\frac{|F|}{|F|-1}$

For any x satisfying the above
$\sum_{\alpha \in \mathbb{A}} \mathbf{x}(\alpha) \geq 1+\max \{\mathbf{x}(\alpha) \mid \alpha \in \mathbb{A}\} \quad>1$

orbit-finite sets
orbit-finite dimensional vector spaces

