Improving BDD-based Attractor Detection
for Synchronous Boolean Networks

Hongyang Qu~
Department of Automatic Control & Systems
Engineering, University of Sheffield, UK

h.qu@sheffield.ac.uk

Jun Pang?
Faculty of Science, Technology and
Communication, University of Luxembourg,
Luxembourg

jun.pang@uni.lu

ABSTRACT

Boolean networks are an important formalism for modelling
biological systems and have attracted much attention in re-
cent years. An important direction in Boolean networks is to
exhaustively find attractors, which represent steady states
when a biological network evolves for a long term. In this
paper, we propose a new approach to improve the efficiency
of BDD-based attractor detection. Our approach includes
a monolithic algorithm for small networks, an enumerative
strategy to deal with large networks, and two heuristics on
ordering BDD variables. We demonstrate the performance
of our approach on a number of examples, and compare it
with one existing technique in the literature.

Categories and Subject Descriptors

G.1.0 [Mathematics of Computing]: General—Numeri-
cal algorithms; D.2.4 [Software]: Software/Program Verifi-
cation —Formal methods

General Terms
Algorithms

Keywords
Boolean networks, systems biology, binary decision diagram,
attractor, verification algorithms

*Supported by the EPSRC project EP/J011894/2 and the
Royal Society project 1E141180.

fSupported by the National Research Fund, Luxembourg
(grant 7814267).

tPartially supported by the State Key Laboratory for Novel
Software Technology at Nanjing University, China.

Qixia Yuant
Faculty of Science, Technology and
Communication, University of Luxembourg,
Luxembourg

gixia.yuan@uni.lu

Andrzej Mizera
Faculty of Science, Technology and
Communication, University of Luxembourg,
Luxembourg

andrzej.mizera@uni.lu

1. INTRODUCTION

A gene regulatory network (GRN) is a collection of genes,
proteins and other regulatory molecules that interact with
each other indirectly, govern the expression of genes and ul-
timately regulate the cellular behaviours. The expression
of genes is a fundamental process in living cells, both eu-
karyotic and prokaryotic. It has attracted much attention
to acquire insights into the dynamics of GRNs.

Many formalisms have been proposed in the literature to
study the dynamics of GRNs, including directed graphs,
Bayesian networks, Boolean networks (BNs) [13] and prob-
abilistic Boolean networks (PBNs) [23, 25|, ordinary and
partial differential equations, stochastic equations, and rule-
based formalisms. Among them, BNs are broadly applied
to represent GRNs, e.g., see [21, 7]. BN models the state of
a gene as binary values and the interaction between genes
as Boolean functions, known as predictor functions. BN re-
duces the complexity of a network by avoiding the expensive
model of the kinetic information in the network and grasp
only the wiring of the network. Despite of the highly simpli-
fied representation of the model, BN is still able to cope with
one of the most important dynamic properties in GRN, i.e.,
attractors. Attractors are hypothesised to characterise cel-
lular phenotypes [13] and correspond to functional cellular
states such as proliferation, apoptosis, or differentiation [11].

In the BN framework, algorithms for detecting attractors
have been extensively studied in the literature. One im-
portant type of algorithms among them is based on the Bi-
nary Decision Diagram (BDD). In this paper, we concentrate
on improving the BDD-based attractor detection algorithm
demonstrated in [10] for synchronous BNs, which was devel-
oped by Abhishek et al. in 2007. The algorithm starts from
one (randomly selected) initial state and detects attractors
by computing the successor states and predecessor states
of this initial state. It works well for small BNs, but be-
comes inefficient for large BNs. We propose to use different
attractor detection strategies for networks of different sizes
to improve the efficiency of the BDD-based approach. For
small BNs, we propose to use a monolithic algorithm which
searches for attractors from the whole state space, instead of

one initial state, to reduce the time for attractor detection.
For large BNs, we improve the algorithm in [10] by com-
puting the predecessor states of each individual state in a
detected attractor, instead of computing the predecessors of
the whole attractor, when pruning the searching space for
detecting other attractors. Moreover, as the performance
of BDD operations is largely affected by the order of BDD
variables, we propose two heuristics on ordering BDD vari-
ables based on the structure of BNs to further improve the
attractor detection algorithm. We have implemented our al-
gorithms and the BDD variable order heuristics in the tool
MCMAS [16] and demonstrated with extensive experiments
that our proposed algorithms and heuristics can improve the
efficiency of the BDD-based attractor detection algorithm
and outperform the existing tool GenYsis [10].

2. RELATED WORK

In this section we review algorithms for attractor detection
in the framework of BNs.

The simplest way to detect attractors is to enumerate all
the possible states and to run simulation from each one un-
til an attractor is reached [24]. This method ensures that all
the attractors are detected but it has exponential time com-
plexity and therefore its applicability is highly restricted by
the network size. Another approach is to take a sample from
the whole state space and simulate from it until an attrac-
tor is found [17]. However, this technique cannot guarantee
to find all the attractors of a BN. Irons in [12] proposed
a method by analysing partial states involving parts of the
nodes. This method improves the efficiency from exponen-
tial time to polynomial time; however, it is highly dependent
on the topology of the underlying network and the network
size manageable by this method is still restricted to 50.

Next, the efficiency and scalability of attractor detection
techniques are further improved with the integration of two
techniques. This first technique is based on Binary Deci-
sion Diagram (BDD), a compact data structure for repre-
senting Boolean functions. Algorithms proposed in [6, 10,
9] explore BDDs to encode the Boolean functions in BNs,
use BDD operations to capture the dynamics of the net-
works, and to build their corresponding transition systems.
The efficient operations of BDDs are used to compute the
forward and backward reachable states. Attractor detec-
tion is then reduced to finding self-loops or simple cycles in
the transition systems, which highly relies on the compu-
tation of forward and backward reachable states. Garg et
al. in [10] proposed a method for detecting attractors for
asynchronous BNs. Later, in [9], the synchronous BNs were
considered and a combined synchronous-asynchronous mod-
elling approach was proposed to improve the performance of
attractor detection algorithms in asynchronous BNs. In a re-
cent work [26], Zheng et al. developed an algorithms based
on reduced-order BDD (ROBDD) data structure, which fur-
ther speeds up the computation time of attractor detection.
These BDD-based solutions only work for GRNs of a hun-
dred of nodes and suffer from the infamous state explosion
problem, as the size of the BDD depends both on the regu-
latory functions and the number of nodes in the GRNs.

The other technique represents attractor detection in BNs as
a satisfiability (SAT) problem [5]. The main idea is inspired

by SAT-based bounded model checking: the transition rela-
tion of the GRN is unfolded into a bounded number of steps
in order to construct a propositional formula which encodes
attractors and which is then solved by a SAT solver. In ev-
ery step a new variable is required to represent a state of
a node in the GRN. It is clear that the efficiency of these
algorithms largely depends on the number of unfolding steps
and the number of nodes in the GRN.

3. PRELIMINARIES

3.1 Boolean networks

Boolean networks (BNs) are a class of discrete dynamical
systems in which interactions over a set of Boolean vari-
ables are considered. They were first introduced by Stuart
Kauffman in 1969 as a simple model class for the analysis of
the dynamical properties of gene regulatory networks [14],
where projection of gene states to a ON/OFF pattern of
binary states was considered. Formally, a Boolean Network
G(V, f) is defined as a set of binary-valued variables, also
referred to as nodes or genes, V = {z1,x2,...,2zn} and a vec-
tor of Boolean functions f = (f1, f2,..., fn). The time is
discrete and in fact the consecutive time points correspond
to switching events between states of the genes. At each
time point ¢ (¢ = 0,1,...), the state of the network is de-
fined by the vector x(t) = (z1(¢t),z2(t),...,zn(t)), where
z;(t) is the value of variable z; at time ¢, i.e., z;(t) € {0,1}
(i=1,2,...,n).

For each variable x;, there exists a predictor set (parent
nodes set) {Zi,, iy, - - -, Tiy ;) }» and a Boolean predictor func-
tion (or simply predictor) f; being the i-th element of f that
determines the value of x; at the next time point, i.e.,

zi(t+ 1) = fi(zi, (), Ty (£), - -, Lig(5) (), (1)

where 1 < 41 < i2 < -+ < ig) < n. Since the predictor
functions of f are time-homogenous, the notation can be
simplified by writing fi(zi,, i, - .., iy,). A node z;; with
1 < j < k(7) in the parent nodes set is called a parent node
of z; and z; is called a child node of Ti; The parent node
set can be further divided into two sets, i.e., activator set
which contains genes that can activate z; and inhibitor set
which contains genes that can inhibit x;. In general, the
Boolean functions can be formed by combinations of any
logical operators. However, in the context of GRNs usually
the set of possible Boolean functions is restricted (see e.g., [9,
20]). Here the following three types of Boolean functions are
considered:

m(t 1) = (\/ xm), 3)
m(t+1) =~ (_\/ xé-"(t)) , @)

where x; € {0,1}; 2% and xi* are the set of activators and
inhibitors of x;; A, V and — represent logical AND, OR and
NEGATION respectively. Equation 2 is used when there are
both activators and inhibitors for a gene z;. Equation 3 is
used when gene z; only has activators as its parent nodes

and Equation 4 is used in the case that gene z; only has
inhibitors as its parent nodes. The BNs are divided into
two types based on the time evolution of its states, i.e.,
synchronous and asynchronous. In synchronous BNs, the
values of all the variables are updates simultaneously; while
in asynchronous BNs, one variable is updated at a time. In
this paper, we focus on synchronous BNs. The vector f
of predictor functions determines the time evolution of the
states of a synchronous BN, i.e.,

w(t+1) = f(z(t)). (4)

Thus, the BN’s dynamics is fully deterministic. The only po-
tential uncertainty lies in the selection of the initial starting
state of the network.

Starting from an initial state, after a finite number of steps,
a Boolean network will reach an attractor: either a fixed
state or a set of states through which it will repeatedly cy-
cle forever. Each fixed state is referred to as a singleton
attractor and each cyclicly revisited set of states is called
a cyclic attractor. The number of states in a cyclic attractor
is the cycle length of that attractor. The attractor structure
of a BN is given by all its singleton and cyclic attractors
together with their cycle lengths. The states constituting
an attractor are called attractor states. The remaining states
are called transient and are visited at most once on any net-
work trajectory. An attractor and all the transient states
that lead into it constitute its basin of attraction. In conse-
quence, all basins of attraction of a BN form a partition of
its state space. The attractor structure of a Boolean network
characterises its long-run behaviour [23], and is of particu-
lar interest as, for instance, attractors are hypothesised to
characterise cellular phenotypes [13].

The density of a BN is measured with its parent nodes
number. For a BN G, its density is defined as D(G) =
LS~ k(i), where k(i) is the number of parent nodes of
the i-th predictor function.

3.2 Binary Decision Diagram

A Binary Decision Diagram (BDD) is a directed acyclic
graph (DAG) used to represent a Boolean function. It was
originally introduced by Lee in [15] and Akers in [1]. It
consists of a root node, (intermediate) decision nodes, and
two terminal nodes, i.e., O-terminal and 1l-terminal. Each
variable of a Boolean function is represented as a decision
node in the BDD. Each decision node contains two outgoing
edges, representing the two possible evaluations 0 and 1 of
the variable. A path from the root node to the 1-terminal
represents variable evaluations that give the Boolean func-
tion true; while a path from the root node to the O-terminal
represents variable evaluations that give the Boolean func-
tion false. For example, a BDD represents the Boolean func-
tion f = (a OR ¢) AND b is shown in Figure la. In this
figure, root node and terminal nodes are represented with
squares while decision nodes are represented with circles.
A solid arrow starting from an decision node represents an
evaluation of 1 for that node while a dashed arrow start-
ing from an decision node represents an evaluation of 0 for
that node. Each path from the root node to one of the ter-
minal nodes represents an assignment of the variables, e.g.,
the path f — a LeLhebha represents the assignment
a=1, b =1, ¢ =1 for which the Boolean function takes

the value true. If the value of a variable in a certain evalu-
ation does not affect the value of the Boolean function, the
variable can be simply removed from the path. After re-
moving those unnecessary variables for the above BDD, we
get a reduced BDD, as shown in Figure 1b. The number of
decision nodes in the BDD is reduced from 7 to 4. There
are two paths leading to the 1-terminal node. The first path
f—a Loyba represents two possible assignments, i.e.,
a=1b=1 c=1landa =1, b =1, ¢ = 0; and the
second path f — a SpLheb represents the assignment
a=0,b=1, c=1.

Different orders of BDD variables will result in different
number of decision nodes in the reduced BDD representa-
tion. For example, if we represent the above Boolean func-
tion in the order of a — ¢ — b, as shown in Figure lc,
we could reduce the number of decision nodes from 4 to 3.
This reduction of decision nodes directly affects the size of
the BDD representation and the time cost of BDD opera-
tions. To find an optimal variable ordering for constructing
a minimum-size BDD is known to be an NP-complete prob-
lem [2]. As a consequence, using heuristic to construct a
near optimal reduced ordered BDD is crucial for achieving
good performance in BDD-based operations.

3.3 Encoding Boolean networks in BDDs
Boolean networks can be easily modelled as transition sys-
tems, which then can be encoded in BDDs. A transition
system T'S is a tuple (S, So, T) where

1. S is a finite set of states,
2. So C S is the set of initial states, and

3. T C S xS is the transition relation, which specifies
how the system evolves among states. In a transition
(s1,s2) € T, state s; is called source state and s target
state.

Given a Boolean network G(V, f), a transition system T'S =
(S, So, T can be generated as follows.

1. Each state of the network is a state in S. Thus, S
contains 2" states;

2. Each state of the network is an initial state in T'S.
Therefore, in the transition system, we have So = S;

3. Each time evolution of the states in the network is a
transition in 7. That is, Equation (5) can be trans-
lated in to a transition (si,s2) € T, where s1 = x(t)
and s2 = x(t + 1). As the network is deterministic,
each state in T'S has only one outgoing transition and
one successor state.

A Boolean network G(V, f) can be encoded in BDDs in or-
der to be stored efficiently for further processing. Each vari-
able in V' can be represented by a binary BDD variable. By
slightly abusing the notation, we use V' to denote the set of
BDD variables. In order to encode the transition relation,
another set V' of BDD variables, which is the copy of V,

|
I
i
o |

(a) Full BDD

(b) Reduced BDD

(c¢) Ordered reduced BDD

Figure 1: A BDD representing f = (a OR ¢) AND b.

is needed so that V encodes the source states, and V' en-
codes the target states. Hence, the transition relation can
be seen as a function T': V — V’. Our attractor detection
algorithms also need two functions as the basis.

1. Image(X,T) = {s € S| 3’ € X such that (s',s) €
T} returns the set of target states that can be reached
from a state in X C S following a transition in 7.

2. Preimage(Y,T) = {s € S| 3s’ € Y such that (s,s) €
T} returns the set of source states that can reach a
state in Y C S following a transition in 7.

4. ATTRACTOR DETECTION ALGORITHMS

In this section, we present our algorithms for detecting at-
tractors in BNs. We propose a monolithic attractor detec-
tion algorithm for dealing with small networks and an enu-
merative search algorithm for large networks.F

4.1 Monolithic attractor detection algorithm

The first algorithm is called monolithic algorithm. The idea
is to apply the transition relation to a set of states itera-
tively. The set shrinks after each iteration and the process
terminates when the size of the set cannot be reduced any
more. The final set is a fizpoint, and includes all attractors
in the initial set. If the initial set contains all states in the
network, then all attractors in the network are discovered.

Algorithm 1: Monolithic(Z): Monolithic attractor detec-
tion on the set of Z of states
X =2Z;Y =
while Y # X do
| Y :=X; X :=Image(X,T);
end
return X

Given a set Z of states in the network, Algorithm 1 com-
putes the set X of successor states of Z under the transition
relation 7', and then successor states of X. This process
is repeated until a fixpoint is reached. The fixpoint con-
tains all attractors in Z. This algorithm utilises the fact
in synchronous BNs that every loop is an attractor because
each state has only one outgoing transition. The following
theorem shows the correctness of Algorithm 1.

THEOREM 1. Given a set Z of states, let A = {A1, -+, A}
be the set of attractors in Z. Algorithm 1 returns the set X
of states such that X = A1 U---U An,.

PRrOOF. First of all, we prove that each A; € A is con-
tained in X. When the while loop starts, A; is in X as
X = Z. Let X' be the set of successor states returned by
the I'mage function. Each state s in A; is contained in X’
because there exists a state s’ € A; such that s — s. There-
fore, we have A; U---U A, C X'

Now we prove that for each state s € X, there exists a state
s’ € X such that s’ — s. This can be done by contradiction.
Assume there is no such s” in X. Then we apply the function
I'mage again on X and obtain X’ = I'mage(X,T). Clearly,
X’ does not contain s, which is in conflict with the premise
that X is a fixpoint.

Let X = X\A1U---UAg. Since the final set X is a fixpoint,
from each state s € X, we can have an infinite sequence of
states such that p = sps1s2--- where so = s, s; € X and
Si+1 — s; for all i« > 0. Let k be the largest index in p
such that s; € X for all 0 < i < k and sp11 € X. Assume
X # 0. As X is finite, there must exist an attractor A; € A
in p such that sx11 € Aj. Therefore, there are two outgoing
transitions from si1: one goes to sx and the other to a state
in A;. This is in conflict with the semantics of synchronous
BNs. Hence, X =0. O

4.2 Enumerative search attractor detection al-

gorithm
Algorithm 1 begins with the whole set of states in the BN.
Its performance can deteriorate dramatically as the size of
the network increases. To remedy this, we propose an enu-
merative search strategy to deal with networks of large size.
To achieve this, we first introduce an algorithm, i.e., Al-
gorithm 2, for detecting a loop from an arbitrary initial
state. Algorithm 2 computes the set X of states that can
be reached from a state s and the attractor A contained
in X. This algorithm iteratively uses forward reachability,
i.e., the function Image to compute A. In each iteration, the
newly discovered successor states are stored in Z. Actually,
Z contains only one state because each state in synchronous
BNs has exactly one outgoing transition. The last newly

Algorithm 2: Search(s):
from state s
X = {sh Y = %
while Y # 0 do

| Z:=Image(Y,T);Y =2Z\X; X =XUY;
end
A= Z,
while Z # () do

| Z:=1Image(Z,T); Z=Z\A; A==AUZ,
end
return A

Search for the loop reachable

Algorithm 3: Predecessor(Z): Compute predecessors for
the set Z of states
Y =7, X =7
while Y # () do
| Y := Preimage(Y,T); Y =Y\ X; X =XUY;
end
return X

discovered state is a state in the attractor, from which the
whole attractor can be identified, which is performed in the
second while loop of Algorithm 2. As an example of how
this algorithm works, consider the part of the state space
of some synchronous BN presented in Figure 2. After call-
ing Search(s1), Z in the first while loop will consecutively
consist of sz, s3, s4, S5, S6, and finally s3 again. With this
the first while loop will end. The state s3 is a member of
the attractor {ss, sa, ss, s6}. This attractor is constructed
iteratively in the second loop and returned as A.

LN\
NN

.86

S9
®— .

Figure 2: Part of the state space of some synchronous BN.
The remaining states of the state space not shown in the
figure are indicated by incoming arrows with ... to states
s1, S7, s, and sg. These arrows stand for potentially more
than one incoming transition to the four states.

After identifying the reachable attractor from an arbitrary
initial state, we continue to compute the predecessors of the
attractor. This is done with Algorithm 3, which can com-
pute the set X of states that can reach a given set Z of
states in the network via the transition relation. By slightly
abusing the notation, the states in X are the predecessors
of those in Z. X is computed by iteratively applying the
Preimage function.

For any two states s and s’ in a cyclic attractor A, their pre-
decessors are the same (Predecessor(s) = Predecessor(s') =

Algorithm 4: SplitPre(Z): Compute predecessors of the
set Z of states in a divide-and-conquer manner
X =17
foreach s € Z do
Y = Preimage({s},T); Y =Y \ Z;
X := X U Predecessor(Y);
end
return X

Predecessor(A)). Therefore, the above mentioned Algo-
rithm 3 will repeat unnecessary Preimage operations when
computing the predecessors for a cyclic attractor. We im-
prove on this by considering individual states in Z, one at
a time. For each individual state, the set of states that can
reach it are computed as shown in Algorithm 4.

In Algorithm 4, the statement Y := Preimage({s}, T) com-
putes the set Y of source states that can reach state s in
one transition. As this algorithm is called in Algorithm 5
with the input Z being the set of states that form an at-
tractor, Y contains not only transient states, but also a
state s’ in the attractor. Thus, we need the next state-
ment Y := Y \ Z to remove s’ from Y because s’ will be
processed separately in the foreach loop. As an exam-
ple, we follow the steps of Algorithm 4 run on the attrac-
tor states in Figure 2, i.e., SplitPre({ss, s4, ss5,s6}). Each
of the four attractor states is considered one-by-one. For
s3, we have Preimage(ss,T) = {s2,s6}. The state sg is
an attractor state, so it is not considered in Y which be-
comes {s2}. Finally, the predecessors of Y are computed
with the use of Algorithm 3, i.e., state s; and all its pre-
decessors in the state space not shown in Figure 2. Sim-
ilarly, for s4 we have Preimage(ss,T) = {ss}, ¥ = 0,
and the predecessors of Y is an empty set. For s5 we have
Preimage(ss,T) = {sa,s7,88}, Y = {s7,ss}, and the pre-
decessors of Y are all the states in the state space that lead
to states s7 and ssg (not shown in Figure 2). Finally, for se
we have Preimage(ss,T) = {s5,59}, Y = {s9}, and the pre-
decessors of Y are all the states in the state space that lead
to state sg (not shown in Figure 2). The basic idea of Al-
gorithm 4 is based on the following property of synchronous
BNs: each state has only one outgoing transition. This guar-
antees that the sets returned by the Predecessor function
in each iteration of the foreach loop are pair-wise disjoint.
In our above example, Predecessor({s2}), Predecessor (),
Predecessor({s7, ss}), and Predecessor({s9}) are all pair-
wise disjoint.

With Algorithm 2 and Algorithm 4, we form our enumer-
ative search strategy, shown in Algorithm 5, for detecting
all the attractors in the set Z of states. Algorithm 5 starts
with a randomly chosen state s in Z and computes the set
X of all states reached from s and the attractor contained
in X. After removing X from Z, it continues to find other
attractors in the remaining states.

The algorithm in GenYsis is very similar to Algorithm 5.
The difference is that GenYsis computes all predecessors
that reach an attractor in one fixpoint computation, i.e., us-
ing Algorithm 3. Algorithm 5 utilises Algorithm 4 instead.
The intuition behind Algorithm 4 is that by splitting a sim-

Algorithm 5: Enumerative(Z): Compute all attractors in
the set Z of states
As = 0;
while Z # () do
pick up a state s € Z; A := Search(s);
Y = SplitPre(A); As = AsUA; Z:=Z\Y;
end
return As

ple attractor into individual states and by computing their
predecessors separately can better explore the regularity of
the BDDs in the system and accelerate the computation.

S. HEURISTICS ON BDD VARIABLE OR-

DERS

The order of the input variables of a BDD can largely af-
fect the constructed BDD size and the corresponding oper-
ations [3]. In consequence, the performance of the BDD at-
tractor detection algorithm also heavily relies on the BDD
variable orders. It is known to be an NP-complete prob-
lem [2] to find an optimal variable ordering for constructing
a minimum-size BDD. However, a lot of efficient heuristics
have been proposed in literature to establish near-optimal
variable orderings for BDDs. In general, there are two types
of heuristic techniques for establishing efficient variable or-
ders for BDD: static variable ordering and dynamic variable
ordering. Static variable ordering forms an order before the
construction of the BDD while dynamic variable ordering at-
tempts to form an optimal order dynamically during the con-
struction process. As the order is formed before construction
of the BDD, static variable ordering cannot guarantee a good
quality resulting order. On the contrary, dynamic variable
ordering allows adjusting the variable order during the con-
struction of the BDD, which is more effective in finding a
good variable order. However, this dynamic reordering pro-
cess is usually time-consuming and therefore less practical.
In this paper, we concentrate on the static variable ordering
heuristics and propose two BDD order heuristics based on
the structure of BNs.

Each node of a BN is represented with one variable in the
corresponding BDD. For simplification, we treat ordering
the variables of a BDD as ordering the nodes of a BN. As
shown in [8, 4], variables that are topologically close within
the original network should be ordered relatively close to-
gether in the BDD. In a BN, a node is closer to its parent
nodes and its children nodes comparing to others. Based on
this consideration, we form the following two heuristics: (I)
put a node’s parent nodes right after the node; (II) put a
node’s child nodes right after the node. For heuristic (I), we
order the nodes with the following steps.

1. From all the unordered nodes, find the one with the
fewest child nodes and order it as the next one.

2. For each of the ordered nodes, find its unordered par-
ent nodes and order them as the next ones. If a node
has more than one unordered parent node, those un-
ordered parent nodes can be ordered in an arbitrary
way.

3. Repeat Step 2 until all the parent nodes of ordered
nodes have been ordered.

4. If all the nodes have been ordered, the process is fin-
ished; otherwise, go to step 1.

For heuristic (II), we order the nodes with the following
steps.

1. From all the unordered nodes, find the one with the
most child nodes and order it as the next one.

2. For each of the ordered nodes, find its unordered child
nodes and order them as the next ones. If a node has
more than one unordered child node, those unordered
child nodes can be ordered in an arbitrary way.

3. Repeat Step 2 until all the child nodes of ordered nodes
have been ordered.

4. If all the nodes have been ordered, the process is fin-
ished; otherwise, go to step 1.

Heuristic (I) will put the node which has the fewest child
nodes in the beginning; while, on the opposite, heuristic
(IT) will put the node which has the most child nodes in the
beginning. The node with the most children nodes is consid-
ered as the most influential node in the BN. It is suggested
in [18] that the more influential node should be put earlier
in the ordering. However, in the case of BNs, our experience
leads us to the conclusion that topological closeness plays a
more important role than the influential of nodes. This can
be demonstrated by the experimental results in Section 6.

6. EVALUATION

We have implemented the algorithms presented in Section 4
in the model checker MCMAS [16]. In this section, we
demonstrate with experiments that our algorithms can out-
perform the existing BDD-based attractor detection algo-
rithm in [10] and our proposed BDD variable order heuristics
can improve the performance even further.

All the experiments are conducted in a high-performance
computing (HPC) cluster with Intel Xeon L5640@Q2.26GHz
processor. The BNs we use for the experiments are randomly
generated with ASSA-PBN [19], which can generate random
BNs complying with specified parameters, e.g., the number
of nodes in the BN and the maximal number of variables of
the predictor functions.

6.1 Evaluation for small BNs

We first compare MCMAS with GenYsis for detecting at-
tractors of small BNs. We generate BNs with nodes number
from the set {20, 30,40, 50} and for each number in the set,
we generate three BNs of different densities. We divide the
BNs into three different classes with respect to their density:
class d, short for dense, refers to BNs whose density is over
3.1; class i, short for in-between, refers to BNs whose den-
sity is in the range [2.0, 3.1]; and class s, short for sparse,
refers to BNs whose density is in the range [1.0, 2.0). Note
that if the density of a BN is below 1.0, there exists at least
one node without predictor function (see Section 3.1). We

do not consider BNs containing such nodes since they can
be removed from the BN without changing the meaning of
a BN.

We name the model with the following format “number of
nodes_density class_model index”. We show in Table 1 the
number of detected singleton and cyclic attractors and the
time cost of the two tools (in seconds). To compare the per-
formance of the proposed BDD orders, we also perform the
attractor detection algorithms with different BDD orders.
We set the maximum running time to one hour and mark as
“—"in the table if the program fails to detect the attractors
within this time bound.

It is clear from Table 1 that using the proposed monolithic
attractor detection algorithm MCMAS performs much faster
than GenYsis in detecting attractors for small BNs. Our
proposed BDD variable order heuristics can further improve
the performance in most cases. In particular, MCMAS re-
duces the time cost by about 81 times for the 30-node dense
BN by ordering the BDD variables with heuristic (II); Gen-
Ysis fails to handle dense BNs of more than 40 nodes while
MCMAS still manages to handle those BNs. In general,
the monolithic algorithm gains better performance for BNs
with nodes number less than 50. For large models, we shall
use different algorithms and we demonstrate the results in
the next section. In fact, BNs with around 50 nodes seem
to be the borderline models. In our evaluation, for BNs
with 50 nodes, the monolithic algorithm (Algorithm 1) per-
forms better for the dense and in-between networks, while
the enumerative algorithm (Algorithm 5) performs better for
the sparse one (see the performance of MCMAS for 50-node
BNs in Table 1 and Table 2).

6.2 Evaluation for large BNs

For large BNs, MCMAS applies the enumerative algorithm
(Algorithm 5). The main difference from the algorithm
of GenYsis is that MCMAS explores the predecessors of
each state of a cyclic attractor separately when pruning the
searching state space. We demonstrate the efficiency of this
strategy by experiments on a number of large BNs.

We present in Table 2 the time cost of MCMAS and GenYsis
for detecting attractors of large BNs with node number in
the set {50, 60, 80,100, 120, 300, 400}. For each of the node
number, three BNs with different densities are generated.
With the node number increasing, it becomes difficulty for
both the MCMAS and GenYsis to detect attractors within
one hour. Therefore, we increase the time to three hours.
We omit the data if both methods fail to detect the attrac-
tors within this limit. In total, we obtain data for 12 (out
of 21) BNs.

In 11 out of these 12 cases, MCMAS is faster than GenYsis
using the enumerative search strategy and a random BDD
order. Moreover, if we order the BDD variables according to
heuristic (I), MCMAS performs better than GenYsis in all
the compared 12 cases. Notably, GenYsis fails to handle the
80-node sparse BN while MCMAS still detects its attrac-
tors in 6.09 seconds using heuristic (I). As the performance
of BDD operations is sensitive to BDD orders it would be
better if we can compare the performance of MCMAS and
GenYsis under the condition that they use the same BDD

variables order. However, the source code of GenYsis is not
available and the BDD variables order used in GenYsis is
unclear to us. Nevertheless, it is still clear from Table 2
that MCMAS performs better than GenYsis for large BNs
using the enumerative algorithm and the BDD variable or-
der heuristic (I).

In 10 out of 12 of the compared cases, our proposed heuristic
(I) can result in a better performance for MCMAS than the
random order; while for heuristic (II), the number of better
performance cases is only 7 out of 12. Besides, heuristic
(I) performs better than heuristic (II) in 9 out of 12 cases.
In general, both heuristics can improve the performance of
MCMAS for large BNs while heuristic (I) performs better
in most of the cases.

The missing data in Table 2 are mainly for dense and in-
between networks. Both MCMAS and GenYsis fail to han-
dle dense BNs with over 80 nodes and in-between networks
with over 100 nodes in 3 hours. Increasing the density will
not increase the state space of a BN, but on the other hand
it exponentially increases the size of Boolean functions in
the BN and the corresponding BDD representation becomes
much more complex. Developing more efficient algorithms
to handle large dense models is part of our future work.

7. CONCLUSION AND FUTURE WORK

In this paper, we present several strategies for improving
the BDD-based attractor detection algorithm shown in [10]
for synchronous BNs. Firstly, we propose to use different
strategies for detecting attractors of different size BNs. For
small BNs, we propose to use a monolithic algorithm which
searches for attractors from the whole state space, instead
of one initial state, to reduce the time for attractor detec-
tion. For large BNs, we improve the algorithm in [10] by
computing the predecessor states of each individual state in
a detected attractor, instead of computing the predecessors
of the whole attractor, when pruning the searching space
for detecting other attractors. Besides, we introduce two
heuristics on ordering BDD variables based on the structure
of BNs to further improve the attractor detection algorithm.
Experimental results show that the proposed strategies can
improve the BDD-based attractor detection algorithm [10]
for both small and large BNs. In certain cases, the efficiency
is improved by more than an order of magnitude.

As part of our future work, we will compare our algorithms
with the SAT-based approaches (e.g., see [5]). We also want
to extend our algorithms to deal with asynchronous BNs.
Both MCMAS and GenYsis perform inefficiently for large
dense BNs. One possible direction is to develop composi-
tional approaches to deal with large dense BNs [22].

8. REFERENCES

[1] AKERS, S. B. Binary decision diagrams. IEEE
Transactions on Computers 100, 6 (1978), 509-516.

[2] BoLLiG, B., AND WEGENER, L. Improving the
variable ordering of OBDDs is NP-complete. IEEE
Transactions on Computers 45, 9 (1996), 993-1002.

[3] BRYANT, R. E. Symbolic boolean manipulation with
ordered binary-decision diagrams. ACM Computing
Surveys 24, 3 (1992), 293-318.

[4]

[5]

7# MCMAS monolithic

model attractor detection time(s) GenYsis

name sin. eye. r%r;élgfl heurIistic heuﬁs‘cic time(s)

20_d_01 0 1 0.13 0.09 0.12 0.65
20102 0 4 0.04 0.04 0.06 0.32
20_5_03 0 3 0.04 0.03 0.03 0.08
30_d_04 1 0 5.25 6.81 3.80 243.56
30_2_05 0 10 0.59 0.45 0.48 4.62
30_5_06 0 3 0.22 0.22 0.22 1.02
40_d_07 0 2 407.38 302.89 576.26 —
40__08 4 4 23.90 24.39 25.70 64.77
40_s_09 2 12 2.51 1.33 3.30 6.81
50_d_10 0 1 270.87 360.75 391.32 —
50211 1 0 181.83 398.96 121.86 —
50_s_12 1 29 1.179 1.261 1.048 7.91

Table 1: Performance of MCMAS and GenYsis for small BNs.

7# MCMAS split search
model attractor detection time(s) GenYsis
name sin. cye. r%r;ggn heuliistic heulr%stic time(s)
50_d_10 0 1 || 3070.11 1341.28 5398.86 —
50411 1 0 || 6683.67 915.516 2801.74 —
50_s5-12 1 29 1.02 0.87 1.16 7.91
60_d_13 0 5 2032.16 3117.18 1236.45 —
60_i_14 1 1 560.95 67.86 542.39 120.23
60_s_15 0 5 0.51 0.22 0.27 0.99
80_:_16 6 124 224.94 84.22 248.54 275.84
80_s_17 0 4 9.99 6.09 11.82 —
100_s-18 1 13 12.65 12.15 10.61 54.02
120_s_19 0 16 24.72 14.76 33.15 38.79
300_s_20 0 64 96.57 65.07 81.42 5895.26
400_s_21 4 700 || 5971.18 9533.18 5866.03 —

Table 2: Performance of MCMAS and GenYsis for large BNs.

DRECHSLER, R. Verification of multi-valued logic
networks. In Proc. 26th Symposium on

Multiple- Valued Logic (1996), IEEE, pp. 10-15.
DuBROVA, E., AND TESLENKO, M. A SAT-based
algorithm for finding attractors in synchronous
Boolean networks. IEEE/ACM Transactions on
Computational Biology and Bioinformatics 8, 5
(2011), 1393-1399.

DuBRrOVA, E., TESLENKO, M., AND MARTINELLI, A.
Kauffman networks: Analysis and applications. In
Proc. 2005 IEEE/ACM International Conference on
Computer-Aided Design (2005), IEEE CS,

pp. 479-484.

FERRrRAZZI, F., ENGEL, F. B., WU, E., MOSEMAN,
A. P., KoHaNE, I. S., BELLAZZI, R., AND RAMONI,
M. F. Inferring cell cycle feedback regulation from
gene expression data. Journal of Biomedical
Informatics 44, 4 (2011), 565-575.

Fuirra, M., Fujisawa, H., AND MATSUNAGA, Y.
Variable ordering algorithms for ordered binary
decision diagrams and their evaluation. IEEE
Transactions on Computer-Aided Design of Integrated
Clircuits and Systems 12, 1 (1993), 6-12.

[9]

(10]

(11]

(12]

(13]

(14]

GARG, A., D1 Cara, A., XENARIOS, 1., MENDOZA,
L., AND DE MIcCHELI, G. Synchronous versus
asynchronous modeling of gene regulatory networks.
Bioinformatics 24, 17 (2008), 1917-1925.

GARG, A., XENARIOS, L., MENDOZA, L., AND
DEMICHELI, G. An efficient method for dynamic
analysis of gene regulatory networks and in silico gene
perturbation experiments. In Proc. 11th Annual
Conference on Research in Computational Molecular
Biology (2007), vol. 4453 of LNCS, Springer,

pp. 62-76.

Huang, S. Genomics, complexity and drug discovery:
insights from Boolean network models of cellular
regulation. Pharmacogenomics 2, 3 (2001), 203-222.
Irons, D. J. Improving the efficiency of attractor
cycle identification in Boolean networks. Physica D:
Nonlinear Phenomena 217, 1 (2006), 7-21.
KAUFFMAN, S. Homeostasis and differentiation in
random genetic control networks. Nature 224 (1969),
177-178.

KAUFFMAN, S. A. Metabolic stability and epigenesis
in randomly constructed genetic nets. Journal of
Theoretical Biology 22, 3 (1969), 437-467.

[15]

[16]

[22]

[23]

[24]

[26]

LEeE, C.-Y. Representation of switching circuits by
binary-decision programs. Bell System Technical
Journal 38, 4 (1959), 985-999.

Lomuscio, A., Qu, H., AND RaiMoNDI, F. MCMAS:
An open-source model checker for the verification of
multi-agent systems. International Journal on
Software Tools for Technology Transfer (2015).

Luc, R. Dynamics of Boolean networks controlled by
biologically meaningful functions. Journal of
Theoretical Biology 218, 3 (2002), 331-341.

MALIK, S., WANG, A. R., BrayTON, R. K., AND
SANGIOVANNI-VINCENTELLI, A. Logic verification
using binary decision diagrams in a logic synthesis
environment. In Proc. IEEE International Conference
on Computer-Aided Design (1988), IEEE, pp. 6-9.
MIzERA, A., PANG, J., AND YUAN, Q. ASSA-PBN: a
tool for approximate steady-state analysis of large
probabilistic Boolean networks. In Proc. 13th
International Symposium on Automated Technology
for Verification and Analysis (2015), vol. 9364 of
LNCS, Springer, pp. 214-220. Software available at
http://satoss.uni.lu/software/ASSA-PBN/.
MUSHTHOFA, M., TORRES, G., DE PEER, Y. V.,
MARcCHAL, K., AND Cock, M. D. ASP-G: an
ASP-based method for finding attractors in genetic
regulatory networks. Bioinformatics 30, 21 (2014),
3086-3092.

NEeEDHAM, C. J., MANFIELD, I. W., BuLpITT, A. J.,
GILMARTIN, P. M., AND WESTHEAD, D. R. From
gene expression to gene regulatory networks in
arabidopsis thaliana. BMC Systems Biology 3, 1
(2009), 85.

Ravi, K., McMiLLaN, K. L., SHIPLE, T. R., AND
SoMENZI, F. Approximation and decomposition of
binary decision diagrams. In Proc. 35th Annual Design
Automation Conference (1998), ACM, pp. 445-450.
SHMULEVICH, 1., AND DOUGHERTY, E. R. Probabilistic
Boolean Networks: The Modeling and Control of Gene
Regulatory Networks. SIAM Press, 2010.

Somoayi, R., AND GRELLER, L. D. The dynamics of
molecular networks: applications to therapeutic
discovery. Drug Discovery Today 6, 24 (2001),
1267-1277.

TRAIRATPHISAN, P., MIZERA, A., PANG, J., TANTAR,
A .-A., SCHNEIDER, J., AND SAUTER, T. Recent
development and biomedical applications of
probabilistic Boolean networks. Cell Communication
and Signaling 11 (2013), 46.

ZHENG, D., Yang, G., L1, X., WANG, Z., Liu, F.,
AND HE, L. An efficient algorithm for computing
attractors of synchronous and asynchronous Boolean
networks. PLoS ONE 8, 4 (2013), e60593.

