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Abstract

The heat shock response (HSR) is a highly evolutionarily conserved defence
mechanism allowing the cell to promptly react to elevated temperature con-
ditions and other forms of stress. It has been subject to intense research
for at least two main reasons. First, it is considered a promising candidate
for deciphering the engineering principles underlying regulatory networks.
Second, heat shock proteins (main actors of the HSR) play crucial role in
many fundamental cellular processes. Therefore, profound understanding of
the heat shock response would have far-reaching ramifications for the cell
biology.

Recently, a new deterministic model of the eukaryotic heat shock response
has been proposed in the literature. It is very attractive since it consists of
only the minimum number of components required by any functional regu-
latory network, while yet being capable of biological validation. However,
it admits small molecule populations of some of the considered metabolites.
In this paper a stochastic model corresponding to the deterministic one is
constructed and the outcomes of these two models are confronted. The aim
with this comparison is two show that, in the case of the heat shock response,
the approximation of a discrete system with a continuous model is a reason-
able approach. This is not always the truth, especially when the numbers of
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molecules of the considered species are small. By making the effort of per-
forming and analysing 1000 stochastic simulations, we investigate the range
of behaviour the stochastic model is likely to exhibit. We demonstrate that
the obtained results agree well with the dynamics displayed by the continuous
model, which strengthens the trust in the deterministic description. A proof
of the existence and uniqueness of the stationary distribution of the Markov
chain underlying the stochastic model is given. Moreover, the obtained view
of the stochastic dynamics and the performed comparison to the outcome
of the continuous formulation provide more insight into the dynamics of the
heat shock response mechanism.
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1. Introduction

The heat shock response is the most highly evolutionarily conserved de-
fence mechanism (Lindquist and Craig, 1988). It exists in all eukaryotic cells,
protects them from the damaging influence of elevated temperature and al-
lows them to promptly react to other forms of environmental stress. The
heat shock response has been subject to intense research recently, see (Chen
et al., 2007; Powers and Workman, 2007; Voellmy and Boellmann, 2007),
for at least two reasons. On one hand, as a well-conserved mechanism, it is
considered a promising candidate for deciphering the engineering principles
underlying regulatory networks. On the other hand, heat shock proteins play
crucial roles in many fundamental cellular processes such as protein biogen-
esis, dismantling of damaged proteins, activation of immune responses and
signalling, see (Kampinga, 1993; Pockley, 2003). Therefore, profound under-
standing of the heat shock response would have far-reaching ramifications
for the cell biology and could potentially allow for treatment of a number
of diseases, such as neurodegenerative and cardiovascular disorders, cancer,
ageing, see (Balch et al., 2008; Liu et al., 2002; Lukacs et al., 2000; Morimoto,
2008; Workman and de Billy, 2007).

Although a number of mathematical models describing the heat shock
response both in eukaryotes as well as in bacteria have been presented in the
literature, see Donati et al. (1990); Jones et al. (1993); Parsell and Lindquist
(1993); Peper et al. (1997); Petre et al. (2009b); Remondini et al. (2006);
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Rieger et al. (2005); Szymańska and Żylicz (2009), still a comprehensive
mechanistic understanding of this process is lacking. In Petre et al. (2009b)
a new model of the eukaryotic heat shock response together with an asso-
ciated continuous mathematical model based on ordinary differential equa-
tions have been discussed. The novelty of the model in Petre et al. (2009b) is
due to the fact that, unlike other previous models, it is based solely on well-
documented reactions and does not incorporate modelling “blackboxes” such
as hypothetical, experimentally unsupported cellular mechanisms whose only
purpose is to enforce appropriate behaviour. The simplified version of the
model (see Petre et al. (2009a) for details) includes the temperature-induced
protein misfolding, all three forms of heat shock factors: monomers, dimers
and trimers, the backregulation of the transactivation of the heat shock pro-
tein encoding gene and the chaperone activity of heat shock proteins. At the
same time, it contains as few reactions and reactants as possible. It is worth
noticing that the model consists of only the minimum number of components
required by any functional regulatory network: an activation mechanism and
a feedback mechanism. Nonetheless, the associated continuous model pre-
dictions correlate well with experimental observations on the heat-induced
transactivation of the hsp-encoding genes at different temperatures from the
range 37 ◦C − 43 ◦C (in particular, the prolonged transcription at 43 ◦C is
confirmed) and the return to the original level of hsp production once the
stress is removed (publication in preparation). Moreover, the model perfectly
illustrates the experimentally observed process of “self-learning” of the HSR
system: the response to a second consecutive heat shock is significantly lower.
This is due to a transient increase in the free hsp level caused by the prelimi-
nary heat shock. In other words, the increase is a form of temporary memory
of the fact that the cell was recently exposed to heat shock conditions.

However, the undertaken modelling approach that utilises ordinary differ-
ential equations is just one of many other modelling paradigms (e.g. stochas-
tic formulation, process calculi, Petri nets, etc.), which could be exploited in
the context of the heat shock response. In this paper we follow one of the
other formalisms: we develop a stochastic model associated with the simpli-
fied version of the model from Petre et al. (2009b) which has been described
in Petre et al. (2009a). According to current scientific knowledge, ignoring
quantum mechanical effects, biological systems can be viewed as determinis-
tic of their very nature, with their dynamics entirely specified, given sufficient
information on the state of the system (position, orientation and momentum
of every single molecule) and a complete understanding of the chemistry and
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physics of the interactions between biomolecules. Unfortunately, we are still
unable to model biological systems of realistic complexity and size using such
a molecular dynamic approach (Wilkinson (2006)). Therefore the current
models admit far-reaching simplifications, which result in a higher level view
of the system being modelled. However, these abstractions change the char-
acter of the dynamics, which becomes intrinsically stochastic and requires
consideration of statistical physics to describe the stochastic process govern-
ing it. Especially at low concentrations of the involved reactants, random
fluctuations may have a significant impact on the reaction dynamics, but the
deterministic approach to chemical kinetics fails to capture such phenomena,
see McAdams and Arkin (1999); Srivastava et al. (2002). For example, let
us consider the famous Lotka-Volterra system of coupled ordinary differen-
tial equations describing an ecological predator-prey model. The solutions
of this system are known to be periodic (except for the stationary point)
independently of the initial size of predator and prey populations. However,
in the stochastic formulation there exists a ”catastrophic“ sequence of events
which leads to depletion of preys by predators and, in consequence, to the
extinction of predators as well. When running the model long enough, the
probability of not executing this catastrophic sequence drops to zero. This
leads to radical qualitative differences in the trajectories obtained by these
two approaches: in the deterministic case the trajectory in the predator ver-
sus prey phase space is an ellipse, while in the stochastic case the trajectory
eventually reaches the trivial steady state of no predators and no prey indi-
viduals in the system. The expected time it takes to reach this state depends
on the initial number of species. Such discrepancy in the trajectories is es-
pecially easily observed when the initial population sizes are small.

Another significant impact of random fluctuations can be observed in the
model of T cell receptor signalling presented in Lipniacki et al. (2008), where
it is shown that, because of bistability of the system and the fact that the
T cell activation is due to a small number of foreign peptides, the responses
are highly stochastic. This results in stochastic trajectories not following
the deterministic trajectory, which converges to a steady state. Instead, the
stochastic realisations may occasionally jump between the basins of attrac-
tion of two possible states. In particular, as was shown in Lipniacki et al.
(2008), stochastic noise can cause a transition from the higher stable state to
the lower one and most of the stochastic trajectories are trapped in the basin
of attraction of the latter steady state in contrast to the deterministic case.
As a result, the qualitative behaviour revealed by the stochastic approach
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differs significantly from the behaviour obtained from the deterministic de-
scription. For details we refer the reader to Lipniacki et al. (2008).

Although for a complex system detailed mathematical analysis based
on the “chemical master equation” is intractable (Wilkinson (2006)), it is
possible to gain insight into the system’s dynamics by performing a series
of stochastic simulations of the time-evolution of such system by so called
Gillespie algorithm (Gillespie (1976)). The algorithm is a well-established
procedure for generating a stochastic realisation of the system’s temporal
behaviour. However, due to reasons such as computational efficiency, avail-
ability of dedicated simulation software with analysis tools (steady-state, sen-
sitivity analysis, etc.), and expertise in the theory of differential equations,
the deterministic modelling approach is commonly used in examination of
biological systems, although the stochastic formulation in many cases would
be more justified.

Bearing in mind the above mentioned merits of the new simplified heat
shock response model described in Petre et al. (2009a), the aim of this paper
is to show that in this particular case approximating a discrete system with
a continuous model is a valid approach. A stochastic model complementary
to the deterministic one is developed. An effort to perform 1000 stochastic
simulations is made in order to investigate whether the qualitative results
of the stochastic model agree with the deterministic outcome. Having the
problem of small number of molecules of some of the reactants in mind (ini-
tial number concentrations of hsf, hsf2, hsf3, hsf3 : hse, hse, hsp : mfp, see
Petre et al. (2009a) for details), as explained above, one could expect the
time-course trajectories obtained with the stochastic model to be substan-
tially different from the trajectories computed in the deterministic formalism.
However, we show that the influence of the random fluctuations does not in-
validate the continuous approach and the obtained results support the use of
the deterministic formulation in this case. In particular, we investigate the
number of steady states of the deterministic model and compare the obtained
results with the dynamics demonstrated by the stochastic model. We show
that the underlying stochastic process of our model has a unique stationary
distribution and that the performed stochastic simulation results reveal no
evidence of multistationarity, which is consistent with the deterministic de-
scription. Additionally, this analysis let us gain some more insight into the
dynamics of the heat shock response mechanism. The question about the
stationarity and stability, i.e. the number of steady-states and whether they
are stable or unstable, is important in the examination of the dynamics of bi-
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ological systems. For example, bistability in biological systems is, in general,
accompanied by hysteresis, which in turn promotes robustness (Karmakar
and Bose (2007); Lipniacki et al. (2008)).

The paper is organised as follows. In Section 2 we briefly describe the
simplified deterministic model (named deterministic model for compactness
in the continuation) of the heat shock response in eukaryotic cells which
was proposed in Petre et al. (2009a). Next, in Section 3, we discuss the
Markov jump process which constitutes the corresponding stochastic model
and show that it has a unique stationary distribution. Further, in Section 4,
the stochastic simulation results are discussed and a comparison between
the deterministic and stochastic model is presented. Finally, we end with
conclusions in Section 5.

2. Deterministic model

The model of the eukaryotic heat shock response consists of four main
modules: the heat-induced protein misfolding, the dynamic transactivation
of the genes encoding heat shock proteins, their backregulation and the chap-
erone activity of the heat shock proteins.

At elevated temperatures proteins tend to misfold and create aggregates,
which has disastrous effects on the cell. In order to survive, the cell has to
promptly increase the level of heat shock proteins (hsp), which is the main
task of the heat shock response mechanism. Heat shock proteins act as chap-
erones: they interact with the misfolded proteins (mfp) and assist them in
refolding to their native conformation (prot). The control over the defence
mechanism against the temperature-induced harmful phenomena is imple-
mented through the regulation of the transactivation of the hsp-encoding
gene. Activation of the transcription proceeds along the following scheme:
heat shock factors (hsf) trimerize (through a transient dimerization) and in
this form bind to the heat shock element (hse), i.e. the promoter of the hsp-
encoding gene. Once the hsf-trimer (hsf3) is bound to the specific DNA
sequence (hsf3 : hse), the gene is transactivated and new hsp molecules are
eventually synthesised. Finally, when the level of hsps is high enough to cope
with the thermal stress, the production is switched off: hsps bind both to free
hsfs and hsfs that occur in compound forms (hsf2, hsf3, hsf3 : hse), which,
in consequence, get disassembled. As a result, DNA transcription of hsp-
encoding gene is turned off and the formation of new hsf trimers is blocked.
The full list of molecular reactions constituting the model is presented in
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Table 1. By assuming the law of mass-action for all reactions (R1)–(R17),
the associated mathematical model based on ordinary differential equations
is obtained. The rate coefficient of protein misfolding with respect to the
temperature (ϕ(T )) in reaction (R14) is given by the following formula:

ϕ(T ) = (1− 0.4

eT−37
) · 1.4T−37 · 1.45 · 10−5 s−1, (1)

where T is the numerical value of the temperature of the environment in
Celsius degrees. The formula is valid for 37 ≤ T ≤ 45. It is based on
experimental investigations in Lepock et al. (1993), Lepock et al. (1988) and
was originally proposed in Peper et al. (1997). Expression (1) in its current
form was obtained by adapting the original formula to the time unit of the
discussed mathematical model (see Petre et al. (2009a)). In our survey the
temperature is set to 42 ◦C, i.e. the cells are exposed to heat shock conditions.

As shown in Petre et al. (2009a), there are three mass-conservation re-
lations in the model: the total number of heat shock factor molecules, heat
shock elements and protein molecules (either misfolded or in native confor-
mation) is conserved in time. This can be written formally as

C1 = hse(t) + 3 hsf3 : hse(t) (2)

C2 = hsf(t) + 2 hsf2(t) + 3 hsf3(t)

+3 hsf3 : hse(t) + hsp : hsf (3)

C3 = prot(t) + mfp(t) + hsp : mfp(t) (4)

for all t ≥ 0, where C1, C2, C3 ≥ 0 are some constants determined by initial
conditions, i.e. right-hand side expressions at t = 0 in the above equations
(2)-(4).

The described model of eukaryotic heat shock response is based solely
on well-documented reactions and does not include any “artificial” elements
such as experimentally unsupported components or biochemical reactions.
For a detailed discussion of the model, we refer the reader to Petre et al.
(2009a).

3. Stochastic model

Stochastic modelling of biochemical networks is today well-established.
The time-evolution of a reaction system can be regarded as a stochastic
process (cf. Wilkinson (2006)). In particular, the dynamics of a biochemical
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network can be viewed as a continuous-time Markov process. A continuous-
time stochastic process {X(t), t ≥ 0} with discrete state space S is said to
be a continuous-time Markov chain (CTMC for short) if

P{X(tn) = in |X(t0) = i0, . . . , X(tn−1) = in−1}
= P{X(tn) = in |X(tn−1) = in−1}

for all 0 ≤ t0 < · · · < tn−1 < tn and i0, . . . , in−1, in ∈ S. The Markov property
expresses that the conditional distribution of a future state given the present
and past states depends only on the present state and is independent of the
past.

We consider a time-homogeneous Markov chain for which the transition
probability P{X(t+u) = j |X(u) = i} is independent of u. Let Q = (qij)i,j∈S
be the infinitesimal transition rate matrix of the continuous-time Markov
chain {X(t)} such that the following assumption is satisfied.

Assumption 1. νi =
∑

j 6=i qij are positive and bounded in i ∈ S.

As stated in Tijms (2003), if Assumption 1 is fulfilled, it can be shown
that the infinitesimal transition rates determine a unique continuous-time
Markov chain which is precisely a Markov jump process constructed in the
following way:

a) if the system jumps to state i, it then stays in state i for an expo-
nentially distributed time with mean 1/νi independently of how the
system reached state i and how long it took to get there (this explains
the name sojourn-time rates used for {νi});

b) if the system leaves state i, it jumps to state j (j 6= i) with probability
pij independently of the duration of the stay in state i.

Further, let {Xn, n = 0, 1, . . . } be the embedded Markov chain, i.e. Xn is de-
fined as the state of {X(t)} just after the n-th transition with the convention
that X0 = X(0). The one-step transition probabilities of the discrete-time
Markov chain {Xn} are given by

pij =

{
qij/νi j 6= i,
0 j = i,

for all i, j ∈ S (e.g. see Tijms (2003)).
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The corresponding stochastic formulation of the HSR molecular model
presented in Section 2 is a system of 10 chemically active species Si, (i =
1, . . . , 10), (S1 ≡ hse, S2 ≡ hsf, S3 ≡ hsf2, S4 ≡ hsf3, S5 ≡ hsf3 : hse,
S6 ≡ hsp, S7 ≡ hsp : hsf, S8 ≡ hsp : mfp, S9 ≡ mfp, S10 ≡ prot) that
participate in 17 chemical reactions (R1) – (R17) in some volume V . More
specifically, in our case the abstract volume V is simply a eukaryotic cell.
The system’s state space S ⊂ N10 is defined as

S = {(s1, . . . , s10)T : ∀i∈{1,...,10} si ∈ N,
s1 + s5 = C1,
s2 + 2 s3 + 3 s4 + 3 s5 + s7 = C2,
s8 + s9 + s10 = C3,
s6 + s7 + s8 ≤ K},

(5)

where C1 ≥ 1, C2 ≥ 3 and C3 ≥ 1 are constants describing the fixed in time
total number of hse, hsf and protein (either misfolded or in native confor-
mation) molecules present in the system, respectively. The last inequality,
i.e. s6 + s7 + s8 ≤ K, requires some comment. In the absence of it the model
would make allowance for any unbounded number of free hsp molecules to
co-exist. However, this is certainly contrary to the fact that any living cell
has a limited volume and, in consequence, can only contain a finite number of
hsp molecules. Thus, in order to make the model more realistic, a big enough
(in the sense that it allows for the appropriate number of free hsp molecules
to be present in the system) constant K is introduced and an upper bound
on the value of the S6 variable is imposed by the last inequality. The direct
consequence of adding it is that the state space S becomes finite.

The system is in state s = (s1, . . . , s10)
T at time t if and only if the number

of molecules of species Si at time t is si for all i = 1, . . . , 10. The conditions
posed on the constants C1, C2 and C3 ensure that the HSR mechanism is
operational, i.e. that at least one hse molecule is present in the system, that
the system is able to produce at least one hsf3 molecule that can bind to the
DNA and, in consequence, initiate the transcription and translation of hsp.
Finally, that at least one generic protein prone to misfolding exists in the
system.

Each reaction Rµ is characterised by a stochastic rate constant cµ (µ =
1, . . . , 17), see Table 3. The values were obtained from the deterministic
model (Petre et al., 2009a). In the case of reaction R1, the deterministic
rate constant value was multiplied by 2 in order to obtain the value for the
corresponding stochastic rate constant.
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Let vµ be the µ-th column of the stoichiometry matrix of the HSR system
presented in Table 2. Reaction Rµ causes the system to make a transition
from some state i ∈ S to state j = i + vµ. The fundamental hypothesis of
the stochastic formulation of chemical kinetics (Gillespie, 1976) is that the
reaction parameter cµ can be defined as follows.

cµ dt ≡ average probability, to first order in dt,
that a particular combination of Rµ re-
actant molecules will react accordingly
in the next time interval dt.

As shown by Gillespie in Gillespie (1976), cµ is dependent on the radii of
the molecules involved in the reaction and their average relative velocities,
where the average relative velocity is a function of the temperature of the
system and the individual molecular masses. Further, it is shown that the
probability of reaction Rµ occurring in V in the time interval (t, t+dt), given
that the system is in state i at time t, has the form hiµ cµ dt. hiµ denotes the
number of possible combinations of reactant molecules involved in reaction
Rµ when the system is in state i. However, since the total number of hsp
molecules that might co-exist in a cell is limited, no further hsp production
(reaction (R7)) should take place when the system is in any of the states in
which the limit is reached. Let us denote all these states by SK , i.e.

SK = {s | s6 + s7 + s8 = K}. (6)

Thus, the probability of reaction R7 occurring in V in the time interval
(t, t+ dt) when the system is in i ∈ SK should be 0. Hence

hi7 =


No. of combinations of

reactant molecules of R7 i ∈ S \ SK ,

0 i ∈ SK .

(7)

Due to the fact that the reaction hazards depend only on the current
state of the system, the time-evolution of the state of the reaction system
can be regarded as a CTMC. Since the state space S is finite, Assumption 1
is fulfilled and hence the chain is a Markov jump process constructed as de-
scribed above. The infinitesimal transition rates of the Markov jump process
are

qij = hiµ cµ, (8)
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where j = i+ vµ.
Now, let us consider the reaction probability density function P i(τ, µ) dτ

of the HSR system, which forms the basis for the Gillespie’s simulation algo-
rithm. It is defined by

P i(τ, µ) dτ ≡ probability at time t (when the system is in state i ∈ S)
that the next reaction in V will occur in the differential time interval
(t+ τ, t+ τ + dτ), and will be an Rµ reaction.

As shown in Gillespie (1976), the density function can be expressed as

P i(τ, µ) dτ = hiµ cµ · exp

[
−

17∑
ν=1

hiνcντ

]
dτ . (9)

The superscript i ∈ S indicates that in fact we deal with a whole family of
such functions. Which of them is considered at time t depends on the state
of the system at time t. In the continuation, in order to lighten the language,
“probability at time t” will be a shorthand for “probability at time t when
the system is in state i”. Let P i

1(τ) dτ denote the probability at time t that
the next reaction will occur between times t+ τ and t+ τ + dτ , irrespective
of which reaction it might be. By the definition of P i(τ, µ) we have that

P i
1(τ) =

17∑
µ=1

P i(τ, µ) (10)

= (
17∑
k=1

hik ck) · exp[−(
17∑
k=1

hik ck) · τ ].

Hence, the sojourn-time rates νi of the Markov jump process are given by

νi =
17∑
k=1

hik ck. (11)

The probability of the transition from state i to state j = i+vµ of the Markov
jump process (and, in consequence, of the embedded Markov chain {Xn}) is
the probability at time t that the next reaction in V will be an Rµ reaction.
Using equation (9), it can be expressed as

pij =

∫ ∞
0

P i(τ, µ) dτ =
hiµ cµ∑17
k=1 h

i
k ck

(12)

if j 6= i and pii = 0 for all i ∈ S.
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Lemma 1. The embedded Markov chain {Xn} is irreducible.

Before presenting the proof let us divide the species into two groups. The
first one, called elementary species group (denoted by Gelementary), contains
hsf, hse, hsp, mfp and prot species. The other one, denoted by Gcompound

and named compound species group, is made of all the remaining species.

Proof of Lemma 1. Let i, j be any two states from the state space S. By
i j we denote that the state j is reachable from the state i, i.e. that there
exists a sequence of reactions (R1)–(R17) which leads the system from the
state i to the state j.

In order to prove that {Xn} is irreducible it is enough to show that i j,
since i and j are two arbitrarily chosen states. Let hsp(k), mfp(k) and prot(k)
be the total number of hsp, mfp and prot molecules present in the system
when in the state k, respectively. Further, let

z = (C1, C2, 0, 0, 0, hsp(i), 0, 0,mfp(i), prot(i))T .

z is obtained from i by disassembling all compound species from Gcompound.
Thus, in the state z the number of molecules of any species from Gcompound

is 0 and the number of molecules of any s ∈ Gelementary is equal to the total
number of s molecules in the system in the state i. Clearly z ∈ S and i z,
since for any s ∈ Gcompound there exists a sequence of reactions (R1)–(R17)
which disassembles s into elements from Gelementary.

Let
z′ = (C1, C2, 0, 0, 0, hsp(j), 0, 0,mfp(i), prot(i))T

and
z′′ = (C1, C2, 0, 0, 0, hsp(j), 0, 0,mfp(j), prot(j))T .

z′ ∈ S and we continue to show that z  z′. There are three cases:
hsp(i) = hsp(j), hsp(j) < hsp(i) or hsp(j) > hsp(i). In the first case z = z′

and trivially z  z′. If hsp(j) < hsp(i), z′ can be reached from z by ap-
plying reaction (R13) hsp(i) − hsp(j) times. If finally hsp(j) > hsp(i), first
hsf3 : hse is produced (this is doable since C1 ≥ 1 and C2 ≥ 3). Next, by ap-
plying reaction (R7) hsp(j)− hsp(i) times the required number of additional
hsp molecules is produced. Finally, hsf3 : hse is disassembled by applying
a sequence of reactions <(R6), (R3), (R2)>. Hence z  z′.

We continue to show that z′  z′′. There are two cases. Either mfp(i) >
mfp(j) or prot(i) ≥ prot(j) since mfp(k) + prot(k) = C3 for any state k ∈ S.
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In the first case, if hsp(j) = 0, first one hsp molecule is produced by applying
reaction sequence <(R1), (R3), (R5), (R7), (R6), (R4), (R2)>, which leads
to state (C1, C2, 0, 0, 0, 1, 0, 0, mfp(i), prot(i))T . Then, by applying reaction
sequence <(R15), (R17)> mfp(i)−mfp(j) times the system reaches state:

(C1, C2, 0, 0, 0, 1, 0, 0,mfp(j), prot(j))T

since, as mentioned before, mfp(k) + prot(k) = C3 for any state k ∈ S.
Finally, the only hsp molecule is degraded by applying reaction (R13) and
the system arrives in state z′′. If hsp(j) is greater than 0, state z′′ can be
reached by less steps since neither production nor degradation of the one
additional hsp molecule is required.

In the second case, when prot(i) ≥ prot(j), state z′′ can be reached by
applying misfolding reaction (R14) prot(i)− prot(j) times. Hence z′  z′′.

At last z′′  j. State j is reached by producing the appropriate num-
bers of molecules of all compound species. Since in state z′′ the required
number of molecules of all elementary species is already present, by apply-
ing appropriate reactions all compound species molecules can be produced.
The mass-conservation law ensures that the numbers of elementary species
molecules will be decreased appropriately and that the system will reach
state j. Hence {Xn} is irreducible.

The irreducibility of the embedded chain {Xn} implies the irreducibility
of the continuous-time Markov chain {X(t)}. Since the state space S is finite,
it follows that the CTMC {X(t)} is positive recurrent. In consequence, it has
an invariant measure η which is unique up to multiplicative factors and can
be found as the solution of the equation ηT Q = 0. Moreover,

∑
i∈S ηi < ∞

since S is finite and there exists a unique stationary distribution π of {X(t)}
given by

π =

(
ηi∑
k∈S ηk

)
i∈S

. (13)

For the theoretical details we refer the reader to, e.g., Norris (1998); Resnick
(1992).

4. Results and discussion

The deterministic approach, based on the law of mass action, yields a sys-
tem of ordinary differential equations for molecular concentrations. In con-
sequence, the biochemical system is modelled as being continuous. But such

13



description does not capture effects that occur due to either the discrete-
ness of molecular quantities or the stochastic nature of chemical reactions
(McAdams and Arkin (1999); Pahle (2009); Sandmann (2008); Wilkinson
(2006)). As discussed in Section 1, random fluctuations may have a signifi-
cant impact on the reaction dynamics, especially as the numbers of molecules
of some reactants become smaller (McAdams and Arkin, 1999; Srivastava
et al., 2002). This is the case of the deterministic heat shock response model
being discussed: except for prot, hsp, hsp : hsf and mfp, all the other species
have very small initial number of molecules (Table 3) and, as can be seen
from the continuous simulation results, stay at the low level throughout the
time of simulation. This might be the main objection to the continuous ap-
proach applied in Petre et al. (2009a,b). Since the stochastic modelling seems
more reasonable in this case, we made the effort to run 1000 stochastic simu-
lations in order to check whether the dynamics of the continuous description
agrees qualitatively with the behaviour demonstrated by the discrete sys-
tem. The results of 1000 independent stochastic simulation runs (blue and
green points) for 5 species: hsf3 : hse, hsp, mfp, hsp : hsf and hsp : mfp,
overlaid with the deterministic outcome (yellow line) are shown in Figure 1.
The mean together with the mean +/− standard deviation are shown in
Figure 2. The ratios of the sample standard deviation to the sample mean
were computed for the 5 considered species and are depicted in Figure 3.
According to Gillespie (1976), since the ratios are small (less than 0.12 in the
case of mfp and hsp, see Fig. 3c and 3b) and very small (less than 0.035 for
hsp : mfp and less than 0.007 for hsp : hsf, see Fig. 3e and 3d, respectively),
the results of independent runs of the system are expected not to vary much
and the presented outcomes of 1000 stochastic simulations together with the
estimated mean should provide a statistically adequate picture of the evo-
lution of the chemical system in time. One might argue that the ratio for
hsf3 : hse is however quite big: it peaks at about 1.1 and stabilises below 0.6
(see Fig. 3a). In this particular case the mean converges to approximately 3
molecules of hsf3 : hse and the standard deviation is around 1.6, which all
in all gives a narrow range of possible values of molecule number and hence
this result can be accepted.

We first investigated the number of steady-states of the deterministic
model. Since our attempts to analytically solve the algebraic system of steady
state equations obtained from the differential ones did not bring any results,
we performed some numerical investigations. We randomly chose 10000 sets
of initial particle numbers for the continuous model from a wide range of val-
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ues, but in such a way that the total amounts of hse, hsf and proteins in the
resulting system would always be the same as in the case of the original de-
terministic model presented in Petre et al. (2009a). For each of these sets we
run numerical time-course simulations and waited for the considered system
to stabilize. In all these cases the systems converged to exactly the same state
as the original model, i.e. no other steady states were found by this method.
Additionally, bifurcation analysis performed with the AUTO software (XP-
PAUT was used as the front-end, Doedel et al. (1997); Ermentrout (2002))
with respect to parameter values did not reveal multistationarity (data not
shown). These results suggest that the heat shock response mechanism is
rather monostable.

Next, we were interested in investigating the range of behaviour the
stochastic model was likely to exhibit. As shown in Section 3, there ex-
ists only one stationary limit distribution π given by Eq. (13), which governs
the transitions of the Markov jump process when the number of iterations
goes to infinity. In particular, we analysed the unimodality of the hsp level
by computing some appropriate statistics from the performed 1000 stochastic
realisations.

First, we computed the median m(t) of the 1000 stochastic realisations
on the time interval T = {130000s, . . . , 150000s}. It is depicted in Fig. 4 as
the middle black line. The upper and lower black lines are m(t) +/− 1

4
· s

respectively, where s is the range of dynamics the model exhibits in the 1000
realisations on the considered time interval, i.e.

s = max
t∈T, i∈I

{ri(t)} − min
t∈T, i∈I

{ri(t)},

where I = {1, . . . , 1000} and ri is the i-th realisation. The mean (brown line)
basically coincides with the median on the whole time interval.

Next, in order to check whether the realisations ri, i = 1, . . . , 1000, can
be divided into subgroups such that the means of the subgroups would differ
significantly from each other, we applied the following procedure. We defined
two subsets:

SU = {ri : ∀t∈T ri(t) > m(t)− s

4

∧ ∃t∈T ri(t) > m(t) +
s

4

}
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and

SL = {ri : ∀t∈T ri(t) < m(t) +
s

4

∧ ∃t∈T ri(t) < m(t)− s

4

}
.

In our case, there are 253 realisations in SU and 189 in SL. The means com-
puted from the realisations of each of these subsets are depicted by red lines
in Fig. 4. The means are close to the global mean on the whole considered
time interval and since the numbers of elements in the SU and SL subsets
are rather small, i.e. approximately 1/4 and 1/5 of all the 1000 considered
realisations, this result does not indicate any significant split.

Further, a clustering algorithm was applied in order to determine whether
some subsets of realisations could be isolated and the computed means would
point to potential multimodality. To this aim, we utilised the Agnes algo-
rithm (implementation of an agglomerative hierarchical clustering method,
Kaufman and Rousseeuw (1990)) with the manhattan metric, i.e. the dis-
tance between two realisations ri and rj is defined as d(ri, rj) =

∑
t∈T |ri(t)−

rj(t)|, thus the realisations are treated as points in a |T |-dimensional space.
By applying this metric the characteristics of the realisations on the whole
considered time interval are taken into account, hence they are compared
in a “global” sense. The obtained dendrogram is presented in Fig. 5. The
agglomerative coefficient (AC), which measures the clustering structure of
the dataset, is 0.82. This indicates that the clustering algorithm did find
some rather clear structuring1. We isolated two groups of realisations that
stand out on the obtained dendrogram. They are marked in Fig. 5 by two
rectangles which enclose the dendrogram branches constituting these groups.
The two resulting subclusters are at almost the same height in the clustering
tree. The means of the stochastic realisations belonging to these two groups
at time point t = 150000s are 757 (left subcluster) and 794 (right subcluster).
Although the agglomerative coefficient indicates some clustering structure of
the realisations, the mean values are very close to each other and agree well
with the steady state value of the deterministic model (767).

Finally, as suggested in (Wilkinson, 2006), we investigated the empirical
probability mass function by drawing histograms of the realisations at some

1AC is a dimensionless quantity, varying between 0 and 1 – AC close to 1 shows that
a very clear structure has been found, while value 0 implies that the data consists of only
one big cluster, see e.g. Kaufman and Rousseeuw (1990) for details.
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time point in the considered time interval T . Figure 6 shows the histograms
overlaid with the normal distribution curve with mean and standard devia-
tion computed from all 1000 realisations at time point t = 150000s. In the
case of Fig. 6a, where the bin width is set to 20, the obtained results indicate
that the distribution is unimodal. Changing the bin size to 10 (Fig. 6b) does
not change the picture significantly.

Although due to the small particle numbers of some of the reagents the
stochastic modelling is more reasonable, the presented results do not reveal
any qualitative discrepancy in the dynamics of the two considered models
of the heat shock response. The range of behaviour the stochastic model is
likely to exhibit, which can be observed based on the performed 1000 sim-
ulations, confirms the dynamics of the continuous model. The performed
analysis of the stochastic realisations does not reveal any clear signs of mul-
tistationarity of the HSR mechanism. Although unimodality of a stationary
probability density function does not necessarily imply the uniqueness of the
stable steady state of the deterministic approximation (as well as bimodality
does not determine the existence of bistability, etc.), usually this is the case
and to this extent the stochastic results agree with the deterministic out-
comes indicating that there exists only one stable steady state. This shows
that the approximation of a discrete system with a continuous model is valid
and strengthens the trust in the deterministic description. Additionally, the
presented stochastic formulation, together with the performed analysis of its
behaviour and comparison to the continuous description, let us gain more
insight into the dynamics of the HSR mechanism, especially in respect of the
number of steady states, which, as discussed previously, is important from
a biological point of view.

5. Conclusions and Further research

In this paper we presented a stochastic model associated with a previ-
ously described (Petre et al., 2009a) model of the heat shock response in
eukaryotic cells. The stochastic model was viewed as a Markov jump process
and the existence and uniqueness of the stationary distribution was shown.
Further, the model was compared to the deterministic description of heat
shock response (Petre et al., 2009a). The aim with the comparison was to
show that in this particular case the approximation of a discrete system with
a continuous model is reasonable. This is not true in general, especially when
the numbers of metabolites in the considered biochemical system are small.
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The presented results indicate that the stochastic and deterministic models
provide a qualitatively consistent picture of the dynamics of the heat shock
response mechanism. Additionally, the development of the stochastic model
and the effort of performing 1000 stochastic simulations enabled gaining some
more information about the dynamics of the heat shock response. The out-
comes of the analysis of the stochastic realisations lead towards the conclu-
sion that the heat shock response mechanism is a rather monostable system.
Moreover, this is in agreement with the results of the analysis performed on
the deterministic model. All in all, the presented results strengthen the trust
in the deterministic description of the HSR mechanism in eukaryotic cells
proposed in Petre et al. (2009a).

Although it was shown in Section 3 that the Markov jump process has
a unique stationary distribution, there is no certainty that it was reached
already in the considered time interval T = {130000s, . . . , 150000s}. It was
chosen based on the results of many stochastic simulations, which suggest
that the process stabilises relatively long before the time point t = 130000s.
Nevertheless, some assessment of the convergence to the stationary distribu-
tion in this case would be desired. One of possible approaches is to measure
the rate of convergence by the mixing time (Sinclair, 1992). For ergodic
Markov chains the rate is governed by the second largest eigenvalue in ab-
solute value λ2, in particular the spectral gap 1 − λ2 is both a necessary
and sufficient condition for rapid mixing, see Sinclair (1992) for details. The
problem of determining λ2 of the presented Markov chain underlying the
stochastic model of heat shock response is subject of further research.

The rate constant values for the presented stochastic model were ob-
tained from the corresponding values of the deterministic model presented
in Petre et al. (2009b), which in turn were fitted to available experimen-
tal data. As suggested in Wilkinson (2006), another way of deducing the
rate constant values for the stochastic model could utilise methods that are
based on Bayesian inference and take advantage of Markov Chain Monte
Carlo (MCMC) algorithms such as the Metropolis-Hastings algorithm or the
Gibbs Sampler. However, such methods demand high-quality, calibrated,
high-resolution time-course measurements for a reasonably large subset of
model metabolites (Wilkinson, 2006). Unfortunately, experimental data of
such quality are still seldom if ever available and make a challenge for exper-
imental biology.

18



Acknowledgements

Both deterministic and stochastic models were implemented and run in
Copasi, a software application for simulation and analysis of biochemical net-
works (Hoops et al., 2006). The stochastic simulations were performed using
the Gibson and Bruck algorithm (Gibson and Bruck, 1998). The obtained
time-course data were analysed and plotted in R, a software environment for
statistical computing and graphics (R Development Core Team, 2008).

The authors give special thanks to Anna Gambin from the Faculty of
Mathematics, Informatics and Mechanics, University of Warsaw for helpful
advice as well as thorough and detailed comments.

Andrzej Mizera would like to express his gratefulness to Jan Westerholm,
Mats Aspnäs and Evren Yurtesen from the Department of Information Tech-
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2 hsf → hsf2 (R1)

hsf2 → 2 hsf (R2)

hsf + hsf2 → hsf3 (R3)

hsf3 → hsf + hsf2 (R4)

hsf3 + hse→ hsf3 : hse (R5)

hsf3 : hse→ hsf3 + hse (R6)

hsf3 : hse→ hsf3 : hse + hsp (R7)

hsp + hsf → hsp : hsf (R8)

hsp : hsf → hsp + hsf (R9)

hsp + hsf2 → hsp : hsf + hsf (R10)

hsp + hsf3 → hsp : hsf +2 hsf (R11)

hsp + hsf3 : hse→ hsp : hsf + hse +2 hsf (R12)

hsp→ (R13)

prot→ mfp (R14)

hsp + mfp→ hsp : mfp (R15)

hsp : mfp→ hsp + mfp (R16)

hsp : mfp→ hsp + prot (R17)

Table 1: The simplified model for the eukaryotic heat shock response
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(a) hsf3 : hse (b) hsp

(c) mfp (d) hsp : hsf

(e) hsp : mfp

Figure 1: Results of 1000 independent discrete stochastic simulation runs. The trajectories
of individual realisations are plotted with blue and green points (each run with separate
shade). The red points show the average taken over all runs and the yellow line is the
outcome of the continuous deterministic simulation.
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(a) hsf3 : hse (b) hsp

(c) mfp (d) hsp : hsf

(e) hsp : mfp

Figure 2: The mean taken over the outcome of 1000 independent stochastic simulations
of the system (red points) and the mean +/− standard deviation (upper/lower brown
points).
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(d) hsp : hsf

0 50000 100000 150000

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0
0.

03
5

Time [s]

H
S

P
:M

F
P

st
an

da
rd

 d
ev

ia
tio

n/
m

ea
n

(e) hsp : mfp

Figure 3: The ratios of the standard deviation to the sample mean at each considered time
point.



0 0 0 0 −1 1 0 0 0 0 0 1 0 0 0 0 0
−2 2 −1 1 0 0 0 −1 1 1 2 2 0 0 0 0 0
1 −1 −1 1 0 0 0 0 0 −1 0 0 0 0 0 0 0
0 0 1 −1 −1 1 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 1 −1 1 −1 −1 −1 −1 0 −1 1 1
0 0 0 0 0 0 0 1 −1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1


Table 2: The stoichiometry matrix of the heat shock response model. The columns cor-
respond to reactions (R1)–(R17) and the rows to metabolites in the order: hse, hsf, hsf2,
hsf3, hsf3 : hse, hsp, hsp : hsf, hsp : mfp, mfp, prot.
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Param. Reaction Value Unit Metabolite Init. no.
k+1 (R1) 6.98 V

#·s hsf 0

k−1 (R2) 0.19 s−1 hsf2 0
k+2 (R3) 1.07 V

#·s hsf3 0

k−2 (R4) 10−9 s−1 hse 29
k+3 (R5) 0.17 V

#·s hsf3 : hse 2

k−3 (R6) 1.21 · 10−6 s−1 hsp 766
k4 (R7) 8.3 · 10−3 s−1 hsp : hsf 1403
k+5 (R8) 9.74 V

#·s mfp 517

k−5 (R9) 3.56 s−1 hsp : mfp 71
k6 (R10) 2.33 V

#·s prot 1.15 · 108

k7 (R11) 4.31 · 10−5 V
#·s

k8 (R12) 2.73 · 10−7 V
#·s

k9 (R13) 3.2 · 10−5 s−1

k10 (R14) ϕ(42) = 7.77 · 10−5 s−1

k+11 (R15) 3.32 · 10−3 V
#·s

k−11 (R16) 4.44 s−1

k12 (R17) 13.94 s−1

Table 3: The numerical values of the parameters and the initial numbers of molecules
in the stochastic model. The numerical quantities are obtained by adopting the corre-
sponding values in Petre et al. (2009a): the initial numbers of molecules are truncated to
natural numbers, the value of the rate constant k+1 is twice the value of the corresponding
deterministic rate constant. # denotes the number of molecules, V is the cell volume and
s - second.
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Figure 4: The median of the 1000 realisations on the time interval T =
{130000s, . . . , 150000s} (middle black line). The upper and lower black lines are the
median ±1/4 of the range of dynamics the model exhibits in the 1000 realisations on the
considered time interval. The mean of all the realisations, of the subset SU and SL plotted
with brown, upper red and lower red lines, respectively.
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Figure 5: The clustering tree (dendrogram) obtained with the agnes clustering algorithm
with the average method and the manhattan metric applied to the 1000 stochastic realisa-
tions considered on the time interval 130000 – 150000 seconds. The leaves of the clustering
tree are the original realisations. Two branches come together at the distance between
the two clusters being merged. The agglomerative coefficient equals 0.82. The rectangles
distinguish two subclusters discussed in Section 4.
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Figure 6: Histograms overlaid with the normal distribution curve with mean and standard
deviation computed at time point t = 150000s from all 1000 realisations: (a) bin width
set to 20, (b) bin width set to 10.
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