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Zadanie 1. Znajdź liczbę całkowitą dodatnią mającą cztery dzielniki dodatnie, jeśli wiadomo, że jednym z tych
dzielników jest 49.

Rozwiązanie. Niech n = 49k będzie szukaną liczbą, gdzie k jest pewną liczbą całkowitą dodatnią. Próbujemy
wypisać jakieś dzielniki liczby 49k. Na pewno należą do nich 1, k oraz 49k, ale też 7k, 7, 49. Wypisaliśmy w ten
sposób sześć liczb. Oznacza to, że któreś z nich są takie same. Na pewno nie są takie same żadne z trzech liczb:
1, 7, 49, ani też żadne z trzech liczb: k, 7k, 49k. Trzeba więc zbadać pozostałe możliwości. Dla k = 1 nasza liczba
to 49, która ma tylko trzy dzielniki: 1, 7, 49. Jeśli k = 7, to mamy liczbę 343 = 73. Ona ma tylko cztery dzielniki.
Są to 1, 7, 49, 343. Możliwość, że 7 = 7k odpada, bo wtedy k = 1, a to już wykluczyliśmy. Wreszcie, może 49
równe jest k, 7k lub 49k? Jeśli k = 49, to nasza liczba to 74. A zatem ma ona... 5 dzielników! Są to 1, 7, 72, 73, 74.
Przypadki, gdy 49 równa jest 7k lub 49k już rozważyliśmy. A zatem jest tylko jedna liczba spełniająca warunki
zadania – 343. �

Zadanie 2. Znajdź wszystkie liczby całkowite dodatnie podzielne przez 5 i mające dokładnie 5 dzielników natu-
ralnych.

Rozwiązanie. Skoro mamy pięć dzielników, to jeden z dzielników jest pierwiastkiem szukanej liczby. Szukamy
więc kwadratu podzielnego przez 5. Każdy kwadrat podzielny przez 5 musi być podzielny przez 25. Rzeczywiście:
5k = n2. A więc n jest podzielne przez 5, a n2 przez 25. Czyli szukana przez nas liczba jest podzielna przez 25.
Ma zatem dzielniki: 1, 5, 25, i jeszcze inne dwa. Jedno rozwiązanie widzimy od razu: liczba 54 ma 5 dzielników.
Czy są inne rozwiązania? �

Zadanie 3. Wykaż, że dodatnia liczba całkowita ma nieparzystą liczbę dodatnich dzielników wtedy i tylko wtedy,
gdy jest kwadratem liczby całkowitej.

Rozwiązanie. Niech d będzie dzielnikiem liczby n. Wóczas n/d również jest dzielnikiem liczby n. Istnieje co
najwyżej jedno d takie, że n/d = d. Jeśli więc istnieje, to n = d2, a jeśli nie, to n nie jest kwadratem. �

Zadanie 4. (Szwecja, 2006) Liczby całkowite dodatnie a oraz b mają odpowiednio po 99 oraz 101 dodatnich
dzielników. Czy iloczyn ab może mieć dokładnie 150 dodatnich dzielników?

Rozwiązanie. Liczby a i b muszą być kwadratami, a zgodnie z założeniem ab nie może być kwadratem, bo
ma parzyście wiele dzielników. Ale iloczyn dwóch kwadratów to kwadrat, czyli z jednej strony ab musi być
kwadratem, z drugiej – nie może. Sprzeczność. Nie ma zatem takich liczb a, b. �

Zadanie 5. (Szwajcaria, 1998) Znajdź wszystkie liczby pierwsze p takie, że liczba p2 + 11 ma dokładnie sześć
dzielników dodatnich.

Rozwiązanie. Zauważmy, że p2 + 11 jest dla p > 4 podzielne przez 3 i przez 4. A to znaczy, że p2 + 11 jest
podzielne przez 12, które ma 6 dzielników. Istotnie, liczba pierwsza p > 4 ma postać 6k + 1 lub 6k + 5, dla
pewnego k. Stąd:

(6k + 1)2 = 36k2 + 12k + 1, (6k + 5)2 = 36k2 + 60k + 25.

Obydwa powyższe wyrażenia powiększone o 11 dają liczbę podzielną przez 12 (i nie równą 12, bo p > 4). Zatem
p2 + 11 ma więcej dzielników, niż 12, czyli ma ich więcej niż 6, co jest niemożliwe. Pozostaje rozpatrzyć p = 2
oraz p = 3.
�

Zadanie 6. Niech a będzie najmniejszą oraz A – największą z n różnych liczb całkowitych dodatnich. Pokaż, że
najmniejsza wspólna wielokrotność owych n liczb jest nie mniejsza niż iloczyn n · a oraz, że największy wspólny
dzielnik owych n liczb jest nie większy niż iloraz An .



Rozwiązanie. Uporządkujmy owe n liczb całkowitych dodatnich: a = a1 < a2 < . . . , < an = A. Niech m
będzie ich najmniejszą wspólną wielokrotnością, zaś d ich największym wspólnym dzielnikiem. S
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Mamy więc dwa rosnące ciągi złożone z n liczb całkowitych a zatem zarówno m/a, jak i A/d musza być równe
co najmniej n. Stąd m ­ na oraz d ¬ A/n. �

Zadanie 7. (Gazetka OMJ Kwadrat #11) Mały majsterkowicz Kazio przygotował na szkolną dyskotekę efekty
świetlne własnego pomysłu. Tysiąc żarówek, ponumerowanych liczbami od 1 do 1000, było włączanych i wyłącza-
nych specjalnym przełącznikiem. Na początku dyskoteki wszystkie żarówki były wyłączone. Pierwsze naciśnięcie
przełącznika zapaliło wszystkie żarówki, drugie naciśnięcie zgasiło wszystkie żarówki o numerach parzystych,
trzecie zmieniło stan żarówek o numerach podzielnych przez 3 itd. Ogólniej, kolejne, k-te naciśnięcie przełącz-
nika zmieniło stan wszystkich żarówek o numerach podzielnych przez k. Które żarówki świeciły pod koniec, jeśli
w trakcie dyskoteki Kazio nacisnął przełącznik 1000 razy?

Rozwiązanie. Zauważmy, że jeśli spojrzymy na przykład na żarówkę o numerze 100, to które przełączenia jej
dotyczyły? Oczywiście pierwsze, bo wtedy zapalono wszystkie światła. Potem drugie, bo 100 dzieli się przez 2,
a więc w drugiej operacji zgaszono żarówkę o numerze 100. Trzecie przełączenie nie dotyczyło 100, bo 3 nie
jest dzielnikiem 100. Czwarte przełączenie zmieniło stan żarówki o numerze 100. Włączyło ją ponownie, bo 4
jest dzielnikiem 100. Czy widzicie Państwo zależność? Żarówka o numerze 100 została przełączona tyle razy, ile
dzielników ma liczba 100. I to dotyczy każdej innej żarówki. Ale to nie wszystko. Udało nam się jakoś połączyć
problem z liczbą dzielników, ale jak rozpoznać żarówki, które po 1000 przełączeń pozostały zapalone? Otóż skoro
zaczęliśmy od zgaszonych żarówek, a potem każda żarówka poddana jest na przemian zapalaniu i gaszeniu, to po
zakończeniu przełączania zapalone są te, których stan zmienił się... nieparzyście wiele razy! A zatem zapalone
zostaną tylko żarówki o tych numerach, których liczba dzielników jest nieparzysta! Ale wiemy dokładnie jakie
to numery. Są to kwadraty liczb mniejszych od 1000. Jest ich 31. �

Zadanie 8. (Gazetka OMJ Kwadrat #12) Wyznacz wszystkie dodatnie liczby całkowite podzielne przez 100,
które mają 15 dzielników.

Rozwiązanie. Szukana liczba ma 15 dzielników. Zauważmy, że we wzorze na liczbę dzielników występują jedynie
liczby większe od 1. A liczba 15 ma tylko jeden rozkład na iloczyn liczb całkowitych innych niż 1 i 15, czyli
rozkład 3 ·5. Oznacza to, że szukana liczba ma tylko dwa czynniki pierwsze. Jeden musi mieć krotność 2, a drugi
– krotność 4. Wiemy też, że nasza liczba jest podzielna przez 100, a więc na ma pewno w rozkładzie na czynniki
pierwsze liczby pierwsze wchodzące do rozkładu 100, czyli iloczyn 22 · 52. A zatem ta liczba to 22 · 54 = 2500
lub 24 · 52 = 400. �

Zadanie 9. (Gazetka OMJ Kwadrat #12) Czy liczba o dokładnie 100! dzielnikach dodatnich może być sześcia-
nem liczby całkowitej?

Rozwiązanie. NIE. Sześcian liczby całkowitej ma rozkład na czynniki pierwsze, w którym każda potęga liczby
pierwszej jest dzielnikiem liczby 3 (dlaczego?). Oznacza to, że iloczyn występujący we wzorze na liczbę dziel-
ników, to iloczyn liczb dających resztę 1 z dzielenia przez 3 (dlaczego?) A zatem liczba dzielników sześcianu
nie jest podzielna przez 3. Natomiast liczba 100! = 2 · 3 · 98! jest podzielna przez 3. �

Zadanie 10. (LXIV OM, zawody I stopnia) Niech n będzie dodatnią liczbą całkowitą. Wykaż, że jeśli suma
wszystkich jej dodatnich dzielników jest nieparzysta, to liczba n jest kwadratem lub podwojonym kwadratem
liczby całkowitej.

Rozwiązanie. Niech n = 2k · l, gdzie l jest dodatnią liczbą nieparzystą. Suma parzystych dzielników liczby
n jest parzysta, jeśli więc suma wszystkich dodatnich dzielników liczby n jest nieparzysta, to nieparzystych
dzielników n jest nieparzyście wiele. Liczba dzielników n równa jest przy tym iloczynowi liczby dzielników w
2k razy liczba dzielników l. Zauważmy, że każdy nieparzysty dzielnik liczby n musi być dzielnikiem liczby l. A
zatem l jest kwadratem pewnej liczby całkowitej m. A zatem n = 2k · m2. Jeśli k jest parzysta, to k/2 jest
całkowita nieujemna i n jest kwadratem:
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Jeśli zaś k jest nieparzysta, to liczba k − 1/2 jest całkowita i wtedy n jest podwojonym kwadratem:

n = 2 ·
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2 ·m
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.

�

Zadanie 11. (Gazetka OMJ Kwadrat #12) Czy istnieje taka liczba całkowita n > 2, że liczba n! ma dokładnie
101 dodatnich dzielników?

Rozwiązanie. NIE. Idea jest taka, że jeśli liczba dzielników dodatnich D(n) liczby całkowitej n jest liczbą
pierwszą, to liczba ta jest potęgą liczby pierwszej. Wynika to z faktu, że dla liczb względnie pierwszych m,n
mamy D(mn) = D(m)D(n). Tymczasem dla n > 2 liczba n! nigdy nie jest potęgą liczby pierwszej (dlaczego?).
�

Zadanie 12. (LVIII OM, zawody III stopnia) Liczbę całkowitą dodatnią nazwiemy białą, jeżeli jest równa 1
lub jest iloczynem parzystej liczby liczb pierwszych (niekoniecznie różnych). Pozostałe liczby całkowite dodatnie
nazwiemy czarnymi. Zbadać, czy istnieje taka liczba całkowita dodatnia, że suma jej białych dzielników jest
równa sumie jej czarnych dzielników.

Rozwiązanie. Dla liczby całkowitej k > 1 niech B(k) oznacza sumę białych dzielników liczby k, C(k) – liczbę
czarnych dzielników liczby k oraz niech D(k) = B(k) − C(k). Szukamy takiego k, by D(k) = 0. Pokażemy
najpierw, że dla dowolnych względnie pierwszych liczb całkowitych dodatnich l,m prawdziwa jest równość:

D(lm) = D(l) ·D(m).

Zobaczymy najpierw co wynika z tej równości, a potem ją pokażemy. Przypuśćmy, że dla pewnej n > mamy
D(n) = 0. Rozłóżmy n na iloczn potęg różnych liczb pierwszych:

n = pr11 · . . . · p
rj
j .

Na mocy uzyskanego wzoru mamy:
D(n) = D(pr11 ) ·D(p

rj
j ) = 0.

Wobec tego istnieje liczba pierwsza p i liczba całkowita dodatnia r, dla których D(pr) = 0. Jest to jednak
niemożliwe: wszystkimi białymi dzielnikami pr są liczby 1, p2, p4, . . . , a wszystkimi czarnymi dzielnikami – liczby
p, p3, p5, . . . , i w konsekwencji zachodzi równość

D(pr) = 1− p+ p2 − p3 + . . .+ (−1)rpr,

zaś liczba stojąca po prawej stronie równości nie jest podzielna przez p, więc nie może być zerem.

DowodzimyD(lm) = D(l)·D(m)., dlaNWD(l,m) = 1. WyrazimyB(lm) oraz C(lm) przez liczbyB(l), B(m), C(l), C(m).
Oczywiście każdy dodatni dzielnik d iloczynu lm ma jednoznaczne przedstawienie w postaci d = ab, gdzie a jest
dzielnikiem liczby l, zaś b jest dzielnikiem liczby m.

Suma wszystkich iloczynów postaci ab, gdzie a, b są białymi dzielnikami równa jest B(l)B(m), zaś suma wszyst-
kich takich iloczynów, w których dzielniki a, b są czarne wynosi C(l)C(m). Licząc B(lm) zauważamy, że dzielnik
d liczby lm jest biały wtedy i tylko gdy l i m mają taki sam kolor. Zatem:

B(lm) = B(l)B(m) + C(l)C(m).

Skoro B(lm) + C(lm) = B(l)B(m) + C(l)C(m) +B(l)C(m) + C(l)B(m), to mamy także:

C(lm) = B(l)C(m) + C(l)B(m).

Zatem
D(lm) = (B(l)− C(l))(B(m)− C(m)) = D(l)D(m).

�



Zadanie 13. (Wietnam, 1992) Niech n będzie liczbą całkowitą dodatnią. Niech f(n) oznacza liczbę dzielników
dodatnich liczby n, których cyfry jedności to 1 lub 9, oraz niech g(n) oznacza liczbę dzielników dodatnich liczby
n, których cyfra jedności to 3 lub 7. Udowodnić, że f(n) ­ g(n).

Rozwiązanie. Po pierwsze niech n = 2x · 5y · k, gdzie x, y są całkowite nieujemne oraz k jest nieparzysta,
niepodzielna przez 5. Zauważmy, że f(n) = f(k) oraz g(n) = g(k). Istotnie, dzielniki n o cyfrach jedności
1, 3, 7, 9 są nieparzyste i niepodzielne przez 5, więc są względnie pierwsze z 2 i 5. W rezultacie są też dzielni-
kami k, i to wszystkimi możliwymi. A zatem możemy zakładać, że n jest liczbą nieparzystą, niepodzielną przez 5.

Niech A będzie zbiorem liczb całkowitych o cyfrach jedności 1 lub 9, zaś B niech będzie zbiorem liczb całkowi-
tych o cyfrach jedności 3 lub 7.

Rozważmy przypadek, gdy n należy do B. Wówczas biorąc dowolny jej dzielnik m z B mamy, że nm jest elemen-
tem A. W szczególności każdemu dzielnikowi n z B odpowiada dokładnie jeden dzielnik z A, czyli f(n) = g(n).

Pozostaje rozważyć trudniejszy przypadek, gdy n jest elementem A, a więc ma cyfrę jedności 1 lub 9. Niestety
podzielenie elementu z A przez dzielnik ze zbioru A może dać zarówno dzielnik z A, jak i z B, więc analogicz-
ny argument jak wyżej nie zadziała. Musimy zbadać rozkład n na czynniki. Pokażemy, że w tym przypadku
f(n) > g(n).

Weźmy dowolny dzielnik pierwszy p liczby n i oznaczmy przez a liczbę pvp(n), czyli najwyższą potęgę p dzielącą
n. Liczbę n/a oznaczamy jako b. Będziemy zliczać dzielniki n, osobno ze zbioru A i osobno ze zbioru B. Skoro
n = ab, to każdy dzielnik d liczby n można przedstawić w sposób jednoznaczny jako iloczyn dzielnika da liczby
a i dzielnika db liczby b. Jeśli da oraz db są z A, to d też. Jeśli da oraz db są z B, to d jest z A. Jeśli da należy
do A oraz db należy do B, to d należy do B, i odwrotnie – jeśli da należy do B oraz db nalezy do A, to d należy
do A. Wynikają stąd wzory:

f(n) = f(a)f(b) + g(a)g(b), g(n) = f(a)g(b) + f(b)g(a).

Istotnie, aby jednak dostać dzielnik z A trzeba przemnożyć dwa dzielniki typu A lub dwa dzielniki typu B,
zaś aby dostać dzielnik z B trzeba przemnożyc dwa dzielniki różnych typów. Na ile sposobów? Dzielnik liczby
a ze zbioru A można wybrać na f(a) sposobów, a dzielnik b ze zbioru A można wybrać na f(b) sposobów.
Zatem iloczyn tych dzielników można wybrać na f(a)f(b) różnych sposobów. Osobno zliczamy dzielniki n typu
A powstające przez przemnożenie dzielników typu B: te iloczyny można uformować na g(a)g(b) sposobów. Stąd
wzór na f(n). Aby dostać dzielnik typu B trzeba przemnożyć dzielnik typu A z dzielnikiem typu B, stąd wzór
na g(n). A zatem:

f(n)− g(n) = f(a)f(b) + g(a)g(b)− f(a)g(b)− f(b)g(a) = (f(a)− g(a))(f(b)− g(b)).

W szczególności teza f(n)−g(n) > 0 jest równoważna temu, że f(a)−g(a) > 0 oraz f(b)−g(b) > 0. Wystarczy
więc, że rozstrzygniemy zadanie dla n = pk, gdzie n jest elementem A, bo wtedy zadanie sprowadza się do
rozstrzygnięcia nierówności f(b)− g(b) > 0, którą możemy wykonać analogicznie, jak dla a, wydzielając kolejny
czynnik pierwszy.

Czym jest f(pk), gdzie p ∈ A? Jest to k+1. Czym jest g(pk), gdy p ∈ A? Jest to 0. Tu więc nierówność zachodzi.
Czym jest f(pk), jeśli p należy do B? Wówczas pamiętamy, że k musi być parzyste i wtedy dzielniki z A to
1, p2, p4, . . . , p[k/2], czyli f(pk) = [k/2] + 1. Natomiast g(pk) zlicza dzielniki postaci g, g3, . . . , gk−1, których jest
[k/2]. A zatem w obydwu przypadkach f(n) > g(n), co kończy dowód. �


