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Nieparzyste dzielniki

Jedną z metod rozwiązywania zadań z teorii liczb jest rozważanie największego dzielnika nieparzystego liczby
całkowitej. Innymi słowy, każdą liczbę całkowitą dodatnią możemy zapisać w postaci:

n = 2k ·m,

gdzie m jest liczbą nieparzystą, a dokładniej – największym nieparzystym dzielnikiem liczby n.

Zadanie 1 (W. Sierpiński1 (5), Zad. 11). Niech n będzie liczbą naturalną. Ile co najwyżej liczb może zawierać
zbiór liczb naturalnych nie większych od 2n, z których żadna nie jest podzielna przez żadną inną?

Rozwiązanie. W szukanym zbiorze nie może być dwóch liczb a > b mających ten sam największy dzielnik
nieparzysty m, bowiem wtedy b | a. Rzeczywiście, jeśli dla pewnych r > s mamy a = 2r ·m > 2s ·m = b, czyli
a
b = 2r−s. Liczb nieparzystych nie większych niż 2n jest n, a zatem tyle elementów może mieć co najwyżej
poszukiwany zbiór. I rzeczywiście, zbiór liczb postaci: {n+ 1, . . . , 2n} ma szukaną własność. �

Zadanie 2 ((Wariacja na temat poprzedniego zadania)). Rozważmy zbiór S złożony z n liczb postaci
S = {n + 1, n + 2, . . . , 2n − 1, 2n}. Pokazać, że suma największych nieparzystych dzielników wszystkich ele-
mentów zbioru S równa jest n2.

Rozwiązanie.W zbiorze S nie ma dwóch liczb mających ten sam dzielnik nieparzysty. Argumentujemy niemal
identycznie jak wyżej. Gdyby pewne a > b ze zbioru S miały sam sam nieparzysty dzielnik, wówczas dla pewnych
r > s mamy a = 2r ·m > 2s ·m = b, czyli ab = 2r−s ­ 2. Jednak dla dowolnych elementów a > b ze zbioru S
mamy: ab < 2. Uzyskana sprzeczność pokazuje, że największe nieparzyste dzielniki liczb ze zbioru S są parami
różne. Jest ich n+ 1. A zatem są to elementy zbioru 1, 3, . . . , 2n− 1. Suma tych elementów to oczywiście n2.�

Zadanie 3 (Węgry, 2003). Dla liczby całkowitej dodatniej k przez p(k) oznaczamy największy dzielnik niepa-
rzysty k. Wykazać, że dla dowolnego n całkowitego dodatniego mamy:
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Rozwiązanie. Patrz (7), Zad. 3.30. Zauważmy, że

p(k) =

{
k , gdy k jest liczbą nieparzystą,
p(k/2) , gdy k jest liczbą parzystą.

.

Widać więc, że sensownie jest poprowadzić rozumowanie indukcyjne, przy czym krok indukcyjny będziemy
wykonywać w zależności od parzystości n. Rozważamy dalej dwa przypadki.

• Przypadek 1, gdy n = 2l. Wówczas
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Z założenia indukcyjnego wiemy, że l3 <
1
2 ·
(
p(1)
1 + . . .+ p(l)

l

)
< (l+1)3 . A zatem dodając l mamy:

l

3
+ l =

4l
3
<
p(1)

1
+
p(2)

2
+ . . .+

p(n)
n
<

(l + 1)
3

+ l =
4l + 1

3
,

ale
2n
3

=
4l
3
,

4l + 1
3
<

4l + 2
3

=
2(n+ 1)

3
.

• Przypadek 2, gdy n = 2l + 1 rozpatrujemy w sposób analogiczny.

1W znanej pozycji Art and Craft of Problem Solving P. Zeitz przypisuje to zadanie P. Erdösowi, patrz Example 3.3.7.
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Zadanie 4 (XXXIV OM (1982), 2 etap; Olimpiada Matematyczna RFN 1982, 1 etap). .
Niech a(k) będzie największą liczbą nieparzystą, przez którą dzieli się k. Udowodnić, że:

2n∑
k=1

a(k) =
1
3

(4n + 2).

Rozwiązanie. Sposób 1. Rozumowanie przedstawiane w RFN i zagranicznych książkach cytujących to za-
danie. Niech S(a, b, c, . . .) oznacza sumę największych dzielników nieparzystych liczb a, b, c . . .. W szczególności
niech Sn = S(1, 2, 3, . . . , 2n) będzie szukaną przez nas sumą.

Korzystamy z obserwacji poczynionej w poprzednim zadaniu, na mocy której otrzymujemy:

Sn = S(1, 2, 3, . . . , 2n) = S(1, 3, 5, . . . , 2n−1)+S(2, 4, 6, . . . , 2n) = (1+3+5+ . . .+2n−1)+S(1, 2, 3, . . . , 2n−1).

Jak zdążyliśmy się przekonać w Zadaniu 2, suma pierwszych k dodatnich liczb nieparzystych równa jest k2.
Skoro 2n − 1 jest 2n−1-wszą liczbą nieparzystą, to:

Sn = (2n−1)2 + S(1, 2, 3, . . . , 2n−1) = 4n−1 + Sn−1 ⇒ Sn − Sn−1 = 4n−1.

Używając wielokrotnie powyższego warunku mamy:

Sn−S1 = (Sn−Sn−1)+(Sn−1−Sn−2)− . . .−(S2−S1) = 4+42+ . . .+4n−1 ⇒ Sn = 2+
4(4n−1 − 1)

4− 1
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3
.

Sposób 2. Rozumowanie przedstawione w Archiwum OM2. Jeśli liczba całkowita m jest podzielna przez 2r,
ale nie jest podzielna przez 2r+1, to a(m) = m

2r . Mamy też:
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Pomysł polega na zamianie sumy a(1) + . . .+ a(2n) na sumę powyższych różnic, branych od m = 1 do m = 2n.
Wyobraźmy sobie, że w kolejne wiersze wpisujemy kolejne składniki różnic:

a(1) = 1
a(2) = 2 −1
a(3) = 3
a(4) = 4 −2 −1
a(5) = 5
a(6) = 6 −3
a(7) = 7
a(8) = 8 −4 −2 −1

...
...

...
...

...
...

...
. . .

...
a(2n − 2) = 2n − 2 −(2n−1 − 1)
a(2n−1) = 2n−1

a(2n) = 2n −2n−1 −2n−2 −2n−3 −2n−4 −2n−5 . . . −1

Możemy rozłożyć powyższą sumę na sumy częściowe zgodnie z kolumnami powyższej tabeli. W pierwszej kolum-
nie jest suma liczb od 1 do 2n. W drugiej odejmujemy połówki wszystkich liczb całkowitych podzielnych przez
2, a więc liczby całkowite od 1 do 2n−1. W kolejnej kolumnie odejmujemy ćwiartki liczb podzielnych przez 4,
czyli łącznie kolejne liczby całkowite od 1 do 2n−2, itd. Stąd możemy zapisać sumę a(1) + . . .+ a(2n) jako:
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Dalszy rachunek polega jedynie na zsumowaniu uzyskanych ciągów geometrycznych, co zostawiam Czytelnikowi.
�

2https://archom.ptm.org.pl/?q=node/866, uwaga na literówki.



Zadanie 5 (USAMO, 1993). Niech f1, f2 będą nieparzystymi liczbami dodatnimi. Dla n ­ 3 określamy fn jako
największy nieparzysty dzielnik liczby fn−2 + fn−1. Znaleźć lim

n→∞
fn.

Rozwiązanie. Rozwiązanie ma trzy etapy, same w sobie stanowiące dość charakterystyczne typy rozumowań.

• Pokażemy, że jeśli pewne dwa kolejne wyrazy rozważanego ciągu są sobie równe, to wszystkie dalsze też.

• Pokażemy, że pewne dwa kolejne wyrazy ciągu muszą być równe.

• Pokażemy, że NWD kolejnych par wyrazów ciągu są takie same.

Pierwsza uwaga jest taka, że wszystkie elementy rozważanego ciągu są liczbami nieparzystymi. Istotnie, po-
cząwszy od dwóch liczb nieparzystych f1, f2, każdy kolejny element ciągu jest dzielnikiem nieparzystym sumy
dwóch poprzednich wyrazów, a więc jest liczbą nieparzystą.

Przypuśćmy teraz, że trzy kolejne wyrazy naszego ciągu mają postać a, a, b. Wiemy, że b to największy niepa-
rzysty dzielnik liczby a + a, gdzie a jest liczbą nieparzystą. W szczególności b = a. A zatem jeśli dwa wyrazy
naszego ciągu są równe, to wszystkie dalsze też.

Załóżmy teraz, że żadne dwa kolejne wyrazy wypisywanego ciągu nie są równe. Weźmy zatem cztery kolejne
wyrazy a, b, c, d. Mamy nierówność:

c ¬ a+ b
2
< max{a, b}.

Rzeczywiście c jest największym dzielnikiem nieparzystym a oraz b, więc jego uzyskanie wymaga podzielenia
przez pewną dodatnią potęgę 2, bo suma a+ b jest zawsze parzysta. A druga nierówność? Otóż skoro liczby a, b
są różne, to ich średnia nie może być równa żadnej z nich, a zatem jest mniejsza od większej z nich. Podobną
nierówność dostajemy dla b, c, d:

d ¬ c+ b
2
< max{b, c} ¬ max{a, b}.

Łącząc uzyskane nierówności otrzymujemy:

max{a, b} < max{c, d}.

To jest jednak niemożliwe, bo nieskończony ciąg liczb dodatnich

max{fn, fn+1}

nie może być ściśle malejący. A zatem rzeczywiście pewne dwa elementy naszego ciągu muszą być równe, a jak
pokazaliśmy wyżej, z tego wynika, że od pewnego miejsca ciąg ma tę samą wartość.

Teraz pokażemy, że ta wartość to NWD(f1, f2). Niech a, b, c to trzy kolejne wyrazy naszego ciągu. Niech
NWD(a, b) = x, NWD(b, c) = y. Teza jest taka, że x = y. Oczywiście

c =
a+ b

2n
,

dla pewnego n całkowitego dodatniego. A zatem przekształcając to wyrażenie dostajemy

2nc− b = a.

Liczby b, c są podzielne przez y. A zatem także a jest podzielna przez y. Wiemy jednak, że to x jest największym
wspólnym dzielnikiem a, b, więc y ¬ x.

Z drugiej strony, a = xa′ oraz b = xb′. Oczywiście x jest liczbą nieparzystą. A zatem c, jako największy dziel-
nik nieparzysty liczby a + b równe jest iloczynowi x oraz największego dzielnika nieparzystego liczby a′ + b′.
W szczególności x jest wspólnym dzielnikiem zarówno b, jak i c. Zatem x ¬ y. W rezultacie dostajemy x = y.

A zatem wszystkie kolejne NWD kolejnych wyrazów rozważanego ciągu są takie same i wynoszą NWD(f1.f2).
Skoro, na mocy pierwszej części dowodu od pewnego momentu ciąg ten jest stały, to właśnie owa stała wartość
wynosi NWD(f1, f2).
�



Zadanie 6 (LX OM, 1 etap). Dana jest liczba całkowita n ­ 2. Niech r1, r2, r3, . . . , rn−1 będą odpowiednio
resztami z dzielenia liczb

1, 1 + 2, 1 + 2 + 3, · · · , 1 + 2 + . . .+ (n− 1)

przez n. Znaleźć wszystkie takie wartości n, że ciąg (r1, r2, . . . , rn−1) jest permutacją ciągu (1, 2, . . . , n− 1).

Rozwiązanie. Rozwiązanie za Archiwum OM3. Odpowiedź: n = 2k, dla k = 1, 2, 3, . . .

Wykażemy najpierw, że potęgi dwójki spełniają warunki zadania. W tym celu wystarczy udowodnić, że jeżeli
n = 2k, dla pewnego całkowitego k ­ 1, to reszty r1, r2, r3, . . . , rn−1 są parami różne i żadna z nich nie jest
równa zeru. Gdyby któraś z tych reszt, powiedzmy rm, była równa zeru, to liczba

1 + 2 + . . .+m =
m(m+ 1)

2

byłaby podzielna przez 2k. Zatem dla pewnej wartości m ∈ {1, 2, . . . , 2k − 1} iloczyn m(m+ 1) byłby podzielny
przez 2k+1. Lecz jedna z liczb m,m+ 1 jest parzysta, a druga – nieparzysta. Stąd jedna z nich musiałaby być
podzielna przez 2k+1, wbrew temu, że obie te dodatnie liczby nie przekraczają 2k.

Gdyby z kolei dwie z rozważanych reszt były równe – powiedzmy rl = rm, gdzie 1 ¬ l < m ¬ n − 1, wówczas
liczba:

(1 + 2 + . . .+m)− (1 + 2 + . . .+ l) =
m(m+ 1)

2
− l(l + 1)

2
=
m2 − l2 +m− l

2
=

(m− l)(m+ l + 1)
2

byłaby podzielna przez 2k. Suma czynników w liczniku to 2m + 1, czyli liczba nieparzysta. Tak jak wcześniej
wynika stąd, że jedna z liczb m − l,m + l + 1 musi być podzielna przez 2k+1. Jednakże liczby l,m są różne,
dodatnie i mniejsze niż 2k, co ponownie daje sprzeczność.

Aby dokończyć rozwiązanie, wystarczy dowieść, że gdy liczba m ma nieparzysty dzielnik pierwszy p, to ciąg
(r1, r2, . . . , rn−1) nie jest permutacją ciągu (1, 2, . . . , n − 1). Zauważmy w tym celu, że dla dowolnej liczby
całkowitej dodatniej t liczby:

1 + 2 + . . .+ (tp− 2) + (tp− 1) =
tp(tp− 1)

2
, 1 + 2 + . . .+ (tp− 1) + tp =

tp(tp+ 1)
2

są podzielne przez p, gdyż nieparzysty czynnik pierwszy p w liczniku nie skraca się z mianownikiem. W związku
z tym reszty:

rp−1, rp, r2p−1, r2p, r3p−1, r3p, . . . , rn−p−1, rn−p, rn−1

są podzielne przez p. Zatem w ciągu (r1, r2, . . . , rn−1) co najmniej 2np −1 liczb jest podzielnych przez p. W ciągu
(1, 2, . . . , n−1) występuje zaś jedynie np−1 liczb podzielnych przez p. Tak więc liczba n nie ma żądanej własności.
�

Zadanie 7 (LXIV OM, 1 etap). Niech n będzie dodatnią liczbą całkowitą. Wykazać, że jeśli suma wszystkich jej
dodatnich dzielników jest nieparzysta, to liczba n jest kwadratem lub podwojonym kwadratem liczby całkowitej.

Rozwiązanie.4 Niech n = 2k · l, gdzie l jest dodatnią liczbą nieparzystą. Zauważmy, że każdy nieparzysty
dzielnik liczby n musi być dzielnikiem liczby l. Ile jest tych nieparzystych dzielników?

Suma parzystych dzielników liczby n jest parzysta, jeśli więc suma wszystkich dodatnich dzielników liczby n jest
nieparzysta, to nieparzystych dzielników n jest nieparzyście wiele. A zatem l ma nieparzyście wiele dzielników.
Wynika stąd, że l jest kwadratem pewnej liczby całkowitej m. A zatem

n = 2k ·m2.

Jeśli k jest parzysta, to k/2 jest całkowita nieujemna i n jest kwadratem:

n =
(

2
k
2 ·m

)2
.

Jeśli zaś k jest nieparzysta, to liczba k−12 jest całkowita i wtedy n jest podwojonym kwadratem:

n = 2 ·
(

2
k−1
2 ·m

)2
.

�

3https://archom.ptm.org.pl/?q=node/9, uwaga na literówki
4J. Jaszuńska, Kwadraty i dzielniki raz jeszcze, Gezetka OMJ Kwadrat, nr 12 (2004), https://omj.edu.pl/gazetka-omj.



Zadanie 8 (LXIII OM, 2 etap). Niechm,n będą takimi dodatnimi liczbami całkowitymi, że w zbiorze {1, 2, . . . , n}
znajduje się dokładnie m liczb pierwszych. Dowieść, że wśród dowolnych m+1 różnych liczb z tego zbioru można
znaleźć liczbę, która jest dzielnikiem iloczynu pozostałych m liczb.

Rozwiązanie. Rozwiązanie za stroną OM. Rozumujemy nie wprost. Załóżmy, że teza zadania jest nieprawdzi-
wa. Oznaczałoby to w przypadku naszego zadania istnienie m+ 1-elementowego zbioru A zawartego w zbiorze
{1, 2, . . . , n} (przy czym istnieje dokładnie m liczb pierwszych mniejszych od n) takiego, że żadna liczba x ∈ A
nie jest dzielnikiem iloczynu pozostałych m elementów zbioru A. I co dalej?

Pomysł opiera się on na ogólnej obserwacji mówiącej, że liczba a jest dzielnikiem liczby b wtedy i tylko wtedy,
gdy dla każdej liczby pierwszej p wykładnik, z jakim liczba p wchodzi do rozkładu a na czynniki pierwsze jest
nie większy, niż wykładnik, z jakim p wchodzi do rozkładu b na czynniki pierwsze. Co ta obserwacja wnosi do
rozważanego problemu? Otóż to, że każdemu elementowi x zbioru A, który ma być świadkiem nieprawdziwości
tezy, przypisać można liczbę pierwszą p taką, że x = psx′ oraz w rozkładzie iloczynu pozostałych m elementów
zbioru A na czynniki pierwsze liczba p występuje mniej niż s razy. Innymi słowy każdemu elementowi zbioru A
przypisujemy liczbę pierwszą, która jest przyczyną braku podzielności tego elementu przez iloczyn pozostałych
m elementów zbioru A.

Zbiór A ma m + 1 elementów, a wiemy, że zawarty jest w zbiorze {1, 2, . . . , n}, w którym jest tylko m liczb
pierwszych. W rezultacie pewna liczba pierwsza została przypisana dwóm różnym elementom x, y ∈ A. Niech w
oznacza iloczyn m−1 elementów zbioru A różnych od x, y. Na mocy określenia liczby p istnieją takie nieujemne
całkowite wykładniki k i l, że:

• pk jest dzielnikiem x, ale pk nie jest dzielnikiem wy,

• pl jest dzielnikiem y, ale pl nie jest dzielnikiem wx.

Zatem w rozkładzie wx · wy liczba p występuje z wykładnikiem niższym niż k + l, mimo, że iloczyn ten jest
podzielny przez liczbę xy, która z kolei jest podzielna przez pk+l. Uzyskana sprzeczność kończy rozwiązanie. �

Zadanie 9 (Obóz naukowy OM, 2007). Rozstrzygnąć, czy dla dowolnych liczb całkowitych a > b > 0 istnieje
nieskończenie wiele liczb całkowitych dodatnich n, że liczba an + bn jest podzielna przez n.

Rozwiązanie. Rozwiązanie za stroną OM. Rozpatrujemy przypadki, gdy a+b jest liczbą parzystą i nieparzystą.

• Przypadek 1, gdy a + b jest nieparzysta. Przypuśćmy, że n | an + bn. Skonstruujemy większą liczbę m,
dla której m | am + bm. Zauważmy w tym celu, że liczba an + bn jest większa od n, więc istnieje dzielnik
pierwszy p liczby a

n+bn

n . Mamy wtedy pn | an+bn, a ponieważ liczba p jest nieparzysta (z zał.), prawdziwa
jest podzielność: an+bn | apn+bpn.Wystarczy zatem przyjąć m = pn. Rozpoczynając od n = 1 dostajemy
w ten sposób indukcyjnie rosnący ciąg liczb całkowitych dodatnich spełniających tezę.

• Przypadek 2, gdy liczba a+ b jest parzysta. Jeśli obie liczby a, b są parzyste, to oczywiście każda z liczb
postaci n = 2k, dla k = 0, 1, 2, . . . spełnia warunek n | an+ bn, gdyż wynika to z podzielności 2k | 22k , która
jest natychmiastową konsekwencją nierówności 2k > k.

Załóżmy z kolei, że liczby a i b są nieparzyste. Wówczas a2 + b2 ≡ 2 mod 4, oraz a2 + b2 > 2, więc istnieje
nieparzysty dzielnik pierwszy p | a2+b2. Dalej rozumujemy jak w przypadku pierwszym, rozpoczynając od
przypadku n = 2. Przypuśćmy, że liczba parzysta n spełnia podzielność n | an + bn. Wtedy liczby n oraz
an + bn są parzyste i niepodzielne przez 4, więc liczba a

n+bn

n ma nieparzysty dzielnik pierwszy p. Liczba
m = pn jest w tej sytuacji większa od n i również spełnia m | am + bm.

�

Zadanie 10 (St. Peterburg, 2001). Pokazać, że istnieje nieskończenie wiele dodatnich liczb całkowitych n takich,
że n4 + 1 ma dzielnik pierwszy większy niż 2n.

Rozwiązanie. Patrz (3), str. 19 lub (7), Zad. 3.29. Pokażemy, że zbiór P dzielników pierwszych liczb w ciągu
n4 + 1 jest nieskończony. Istotnie, gdyby liczby p1, p2, . . . , pk były jedynymi elementami zbioru P, to dla do-
wolnej liczby pierwszej p dzielącej liczbę (p1p2 · . . . ·pk)4+1 mielibyśmy p 6= pi dla i ∈ {1, 2, . . . , k} – sprzeczność.

Dla p ∈ P istnieje liczba całkowita m taka, że p dzieli m4 + 1. Jeśli r jest resztą z dzielenia liczby m przez p
to łatwo widzimy, że p dzieli liczby r4 + 1 oraz (p − r)4 + 1, stąd dla n = max{r, p − r} mamy p > 2n oraz p
dzieli n4+ 1, co oznacza, że dla p ∈ P znaleźliśmy liczbę np =: n spełniającą warunki zadania. Wystarczy teraz
zauważyć, że nieskończoność zbioru P oraz nierówność np ­ 4

√
p− 1 dla każdego p ∈ P daje tezę. �



Wykładnik p-adyczny i rozkład na czynniki pierwsze

Definicja. Dana jest liczba pierwsza p oraz liczba całkowita dodatnia n. Wykładnikiem p-adycznym liczby
n nazywamy taką liczbę całkowitą nieujemną k, że:

• pk jest dzielnikiem n,

• pk+1 nie jest dzielnikiem n.

Piszemy wówczas: vp(n) = k.

Zadanie 1 (XVIII OM, 3 etap). Znaleźć najwyższą potęgę liczby 2 będącą dzielnikiem liczby

Ln = (n+ 1)(n+ 2) · . . . · 2n,

gdzie n jest liczbą naturalną.

Rozwiązanie. Rozwiązanie za Archiwum OM.5. Zauważmy, że

n! · Ln = (2n)!.

Zatem

Ln =
(2n)!
n!

=
1 · 2 · 3 · . . . · 2n
1 · 2 · 3 · . . . · n

= 1 · 3 · 5 · . . . · (2n− 1) · 2 · 4 · 6 · . . . · 2n
1 · 2 · 3 · . . . · n

= 1 · 3 · 5 · . . . · (2n− 1) · 2n.

Stąd wynika, że Ln jest podzielne przez 2n, ale nie jest podzielne przez 2n+1. �

Zadanie 2. Niech n będzie liczbą naturalną. Wyznaczyć v3(2n + 1).

Rozwiązanie. Patrz (2), Zad. 1. Rozważmy najpierw problem podzielności 2n + 1 przez 3 oraz przez 9.

• Jeśli n = 2m jest parzyste, to 2n = 4m ≡ 1 mod 3 i zatem vn2 + 1 nie jest podzielne przez 3, tzn.
v3(2n + 1) = 0.

• Jeśli n jest nieparzyste oraz niepodzielne przez 3, to mamy n = 6m+ 1 lub n = 6m+ 5, czyli

2n = 26m+1 = 64m · 2 ≡ 2 mod 9 lub 2n = 26m+5 = 64m · 32 ≡ 5 mod 9,

zatem 2n + 1 jest podzielne przez 3, ale nie jest podzielne przez 9, czyli v3(2n + 1) = 1.

Ogólnie natomiast należy zauważyć, że:

23n + 1
2n + 1

= 22n − 2n + 1.

Zauważmy, że mamy 26n+k = 64 · 2k ≡ 2k mod 2k, oraz:

k 0 1 2 3 4 5
2k mod 9 1 2 4 8 7 5

czyli gdy n jest nieparzyste mamy

23n + 1
2n + 1

= 22n − 2n + 1 ≡ 3 mod 9.

Oznacza to, że
v3(23n + 1) = v3(2n + 1) + 1.

W szczególności gdy n = 3v3(n) ·m jest nieparzyste, gdzie 3 6 |m, to zgodnie z drugim punktem wyżej mamy

v3(23
v3(n)·m + 1) = v3(2m + 1) + v3(n) = 1 + v3(n).

�

* * *
5https://archom.ptm.org.pl/?q=node/1324



Własności wykładnika p-adycznego

Niech p będzie liczbą pierwszą, zaś a, b niech będą liczbami całkowitymi. Wówczas:

• a | b wtedy i tylko wtedy, gdy vp(a) ¬ vp(b), dla każdej liczby pierwszej p,

• vp(ab) = vp(a) + vp(b),

• vp(a/b) = vp(a)− vp(b),

• vp(an) = nvp(a),

• vp(NWD(a, b)) = min{vp(a), vp(b)},

• vp(NWW(a, b)) = max{vp(a), vp(b)},

• vp(a± b) ­ min{vp(a), vp(b)}, a równość zachodzi, gdy vp(a) 6= vp(b).

Zadanie 3. Dane są liczby całkowite x, y takie, że suma

x2

y
+
y2

x

jest liczbą całkowitą. Udowodnić, że obydwa składniki powyższej sumy są liczbami całkowitymi.

Rozwiązanie. Patrz (6), Zad. 1. Wykażemy, że dla dowolnej liczby pierwszej p zachodzi vp(y) ¬ vp(x2) =
2vp(x). Ułamek:

x2

y
+
y2

x
=
x3 + y3

xy

jest liczbą całkowitą, więc dla dowolnej liczby pierwszej p zachodzi:

vp(xy) = vp(x) + vp(y) ¬ vp(x3 + y3).

Rozważamy dwa przypadki:

• Liczby vp(x3) oraz vp(y3) są różne. Wtedy:

vp(x3) ­ vp(x3 + y3) = min{vp(x3), vp(y3)} = min{3vp(x), 3vp(y)} ­ vp(x) + vp(y).

czyli vp(x3) = 3vp(x) ­ vp(x) + vp(y), a zatem 2vp(y) ­ vp(x).

• Jeśli vp(x3) = vp(y3), to vp(x) = vp(y), a zatem nierówność 2vp(x) ­ vp(y) jest równoważna nierówności
vp(x) ­ 0.

�

Zadanie 4. Niech a, b, c będą liczbami całkowitymi dodatnimi takimi, że ab | bc oraz ac | cb. Udowodnić, że a2 | bc.

Rozwiązanie. Patrz (6) Zad. 6. Niech p będzie dowolną liczbą pierwszą. Z warunków zadania mamy c ·vp(a) ¬
b · vp(c) oraz b · vp(a) ¬ c · vp(b), co równoważnie daje:

c

b
· vp(a) ¬ vp(c),

b

c
· vp(a) ¬ vp(b).

Po dodaniu stronami otrzymujemy:(
b

c
+
c

b

)
vp(a) ¬ vp(b) + vp(c) = vp(bc).

Nierówność 2 ¬ bc + c
b jest oczywiście znanym folklorem dla b, c > 0:

2 ¬ b
c

+
c

b
⇐⇒ 2bc ¬ b2 + c2 ⇐⇒ 0 ¬ (b− c)2.

�



Zadanie 5. Największy wspólny dzielnik liczb naturalnych a, b, c jest równy 1. Udowodnić, że jeżeli zachodzi
równość ab = c(b− a), to liczba b− a jest kwadratem liczby całkowitej.

Rozwiązanie. Trzeba pokazać, że dla każdej liczby pierwszej p liczba vp(b− a) jest parzysta. Równość posta-
wiona w zadaniu implikuje, że:

vp(a) + vp(b) = vp(ab) = vp(c(b− a)) = vp(c) + vp(b− a).

Rozważamy przypadki:

• Niech vp(a) 6= vp(b), np. vp(a) > vp(b). Wówczas wypisana wyżej równość ma postać

vp(a) + vp(b) = vp(c) + vp(b),

czyli vp(a) = vp(c). Jednak NWD(a, b, c) = 1, więc albo vp(a) = vp(c) = 0, albo vp(b) = 0.
Pierwsza możliwość nie może zajść, bo 0 = vp(a) > vp(b), zaś druga oznacza vp(b− a) = vp(b) = 0.

• Niech vp(a) = vp(b). Wówczas albo vp(a) = vp(b) = 0, albo vp(c) = 0. W pierwszym przypadku vp(c) =
vp(b− a) = 0. W drugim zaś dostajemy równość

vp(a) + vp(a) = vp(b− a),

czyli vp(b− a) jest liczbą parzystą.

�

Formuła Legendre’a

Niech n będzie liczbą całkowitą dodatnią oraz p – liczbą pierwszą. Wówczas:

vp(n!) =
[
n

p

]
+
[
n

p2

]
+
[
n

p3

]
+ . . . ,

gdzie [x] jest najmniejszą liczbą całkowitą nie większą niż x.

Zobaczmy krótki szkic dowodu. Mamy:

vp(n!) = vp(1) + vp(2) + . . .+ vp(n− 1) + vp(n).

Jedynie dzielniki liczby p są niezerowymi składnikami tej sumy. Niech r będzie największą liczbą całkowitą
dodatnią taką, że rp ¬ n. Wówczas:

vp(n!) = vp(p)+vp(2p)+. . .+vp(rp) = vp(1)+vp(2)+. . .+vp(r)+r·vp(p) = vp(1)+vp(2)+. . .+vp(r)+r = vp(r!)+r.

Oczywiście r =
[
n
p

]
. Postępując analogicznie jak dla n widzimy, że vp(r) = vp(1) + . . .+ vp(s) + s, gdzie

s =
[
r

p

]
=


[
n
p

]
p

 =
[
n

p2

]
.

Wzór powyżej trzeba by oczywiście uzasadnić, podobnie jak wzór [[n/pk]/p] = [n/pk+1], dla k > 1, co zosta-
wiam jako ćwiczenie. Postępując w ten sposób dalej uzyskujemy kolejne składniki sumy występującej we wzorze
Legendre’a. Po pewnej liczbie kroków zostanie nam do obliczenia vp(q!), gdzie q < p, co jest równe 0.

Typowym (i zapewne jednym z prostszych) zastosowaniem wzoru Legendre’a jest wyznaczanie liczby zer, którą
kończy się rozwinięcie dziesiętne liczb typu n!, i podobnych.

Na przykład dla 2020! chodzi o przedstawienie jej w postaci 10x · y, gdzie y jest liczbą niepodzielną przez 10.
Zauważmy, że x = v5(2020). Istotnie, nietrudno sprawdzić, że v2(2020!) > v5(2020!), porównując ze sobą kolejne
składniki [2020/2k] oraz [2020/5k] sum opisujących te wielkości. A zatem liczba 2020! ma na końcu 503 zera,
zgodnie z poniższym rachunkiem.

v5(2020!) =
[

2020
5

]
+
[

2020
25

]
+
[

2020
125

]
+
[

2020
625

]
= 404 + 80 + 16 + 3 = 503.



Zadanie 6. Pokazać, że dla żadnej liczby całkowitej dodatniej n liczba 2n nie jest dzielnikiem liczby n!.

Rozwiązanie. Musimy pokazać, że dla każdego n > 0 mamy v2(2n) > v2(n!). Ze wzoru Legendre’a

v2(n!) =
[n

2

]
+
[ n

22

]
+ . . .+

[ n
2k

]
,

gdzie 2k ¬ n < 2k+1. A zatem mamy:

v2(n!) ¬
n

2
+
n

22
+ . . .+

n

2k
=
n

2

(
1 +

1
2

+ . . .+
1

2k−1

)
.

Ze wzoru skróconego mnożenia (trzeba się ich już na tym etapie uczyć):

an − 1 = (a− 1)(an−1 + an−2 + . . .+ a+ 1),

mamy:

1 +
1
2

+ . . .+ . . .+
1

2k−1
=

1− 1
2k

1− 12
= 2− 1

2k−1
.

A zatem mamy:

v2(n!) ¬
n

2

(
2− 1

2k−1

)
< n = v2(2n).

�

Zadanie 7 (Obóz naukowy OM, 2012). Udowodnić, że dla dowolnej dodatniej liczby całkowitej n liczba

(2n − 20)(2n − 21)(2n − 22) . . . (2n − 2n−1)

jest podzielna przez n!

Rozwiązanie. Korzystając z formuły Legendre’a wiemy, że dla dowolnej liczby pierwszej p mamy:

vp(n!) ¬
n

p
+
n

p2
+ . . . =

n

p

(
1 +

1
p

+ . . .
)

=
n

p
· 1

1− 1p
=
n

p− 1
.

A zatem należy udowodnić, że wykładnik, z jakim dowolna liczba pierwsza p wchodzi ro rozkładu liczby
M = (2n − 20)(2n − 21)(2n − 22) . . . (2n − 2n−1) to co najmniej

[
n
p−1

]
.

Liczba M jest podzielna przez
20 · 21 · 22 · . . . · 2n−1 = 2n(n−1)/2,

a wykładnik 12n(n− 1) jest równy co najmniej n dla każdej wartości n ­ 3. To oznacza, że ostatnie zdanie po-
przedniego akapitu jest prawdziwe dla liczby pierwszej p = 2 i dowolnej liczby n ­ 3. Bezpośrednie sprawdzenie
dowodzi, że teza zadania jest prawdziwa także dla n = 1 i n = 2.

Niech p będzie nieparzystą liczbą pierwszą. Wtedy na mocy małego twierdzenia Fermata liczba

p | 2p−1 − 1.

Dla dowolnej nieujemnej liczby całkowitej k < n mamy

2n − 2k = 2k(2n−k − 1).

Jeśli ponadto różnica n− k jest podzielna przez p− 1, to n− k = l(p− 1) dla pewnej liczby całkowitej l, a więc
liczba

2n−k − 1 = (2p−1)l − 1

jest podzielna przez 2p−1 − 1 i tym bardziej przez p. Inaczej mówiąc z podzielności n − 1 |n − k wynika, że
czynnik 2n−2k występujący w iloczynie definiującym liczbę M jest podzielny przez p. Zatem vp(M) równy jest
co najmniej liczbie wartości k ∈ {0, 1, . . . , n− 1}, dla których różnica n− k jest podzielna przez p− 1, czyli —
co najmniej liczbie elementów zbioru {1, 2, 3, . . . , n} podzielnych przez p− 1. Ta ostatnia liczba jest oczywiście

równa
[
n
p−1

]
, co kończy rozwiązanie. �



Zadanie 8 (LVIII OM, 1 etap). Niech F (k) będzie iloczynem wszystkich dodatnich dzielników liczby całkowitej k.
Rozstrzygnąć, czy istnieją różne liczby całkowite dodatnie m,n, dla których F (m) = F (n).

Rozwiązanie. Niech 1 = d1 < d2 < . . . < dk = n będą wszystkimi dodatnimi dzielnikami ustalonej liczby
całkowitej dodatniej n. Wówczas n/d1, n/d2, . . ., n/dk także są wszystkimi dodatnimi dzielnikami liczby n,
zatem możemy napisać:

F (n) = d1 · d2 · . . . · dk =
n

d1
· n
d2
· . . . · n

dk
.

Stąd wynika, że:

F (n) =
√
d1 · d2 · . . . · dk ·

n

d1
· n
d2
· . . . · n

dk
=
√
nk = nd(n)/2,

gdzie d(n) oznacza liczbę wszystkich dzielników liczby n.

Przypuśćmy teraz, że dla pewnych liczb całkowitych dodatnich m, n zachodzi równość F (m) = F (n). Wtedy
md(m)/2 = nd(n)/2, więc

md(m) = nd(n).

Twierdzimy, że m,n jest dodatnimi potęgami pewnej liczby całkowitej. Po ewentualnym wzięciu pierwiastka
stopnia NWD(d(m), d(n)) mamy równość ma = nb, gdzie NWD(a, b) = 1. Teraz dla dowolnej liczby pierwszej
p mamy:

b · vp(n) = a · vp(m).

Skoro a, b są względnie pierwsze, to b |vp(m). Zatem każdy dzielnik pierwszy liczby m wchodzi do rozkładu m z
wielokrotnością b, czyli m jest b-tą potęgą pewnej liczby całkowitej r. A zatem wobec ma = rab = nb dostajemy,
że m,n są potęgami r.

Niech m = rA, n = rB , dla pewnych A,B całkowitych. Niech A < B. Stąd wynika, że m < n oraz, ponieważ
każdy dzielnik liczby m jest (teraz) dzielnikiem liczby n zachodzi d(m) ¬ d(n). Wobec tego md(m) < nd(n) i
otrzymujemy sprzeczność. Podobna sprzeczność powstaje przy założeniu B > A. Stąd A = B, co oznacza, że
m = n. �

Zadanie 9 (LVIII OM, 3 etap). Liczbę całkowitą dodatnią nazwiemy białą, jeżeli jest równa 1 lub jest iloczynem
parzystej liczby liczb pierwszych (niekoniecznie różnych). Pozostałe liczby całkowite dodatnie nazwiemy czarnymi.
Zbadać, czy istnieje taka liczba całkowita dodatnia, że suma jej białych dzielników jest równa sumie jej czarnych
dzielników.

Rozwiązanie. Dla liczby całkowitej k > 1 niech B(k) oznacza sumę białych dzielników liczby k, C(k) – liczbę
czarnych dzielników liczby k oraz niech D(k) = B(k) − C(k). Szukamy takiego k, by D(k) = 0. Pokażemy
najpierw, że dla dowolnych względnie pierwszych liczb całkowitych dodatnich l,m prawdziwa jest równość:

D(lm) = D(l) ·D(m).

Zobaczymy najpierw co wynika z tej równości, a potem ją pokażemy. Przypuśćmy, że dla pewnej n > mamy
D(n) = 0. Rozłóżmy n na iloczyn potęg różnych liczb pierwszych:

n = pr11 · . . . · p
rj
j .

Na mocy uzyskanego wzoru mamy:
D(n) = D(pr11 ) ·D(prjj ) = 0.

Wobec tego istnieje liczba pierwsza p i liczba całkowita dodatnia r, dla których D(pr) = 0. Jest to jednak
niemożliwe: wszystkimi białymi dzielnikami pr są liczby 1, p2, p4, . . . , a wszystkimi czarnymi dzielnikami – liczby
p, p3, p5, . . . , i w konsekwencji zachodzi równość

D(pr) = 1− p+ p2 − p3 + . . .+ (−1)rpr,

zaś liczba stojąca po prawej stronie równości nie jest podzielna przez p, więc nie może być zerem.

DowodzimyD(lm) = D(l)·D(m)., dlaNWD(l,m) = 1. WyrazimyB(lm) oraz C(lm) przez liczbyB(l), B(m), C(l), C(m).
Oczywiście każdy dodatni dzielnik d iloczynu lm ma jednoznaczne przedstawienie w postaci d = ab, gdzie a jest
dzielnikiem liczby l, zaś b jest dzielnikiem liczby m.



Suma wszystkich iloczynów postaci ab, gdzie a, b są białymi dzielnikami równa jest B(l)B(m), zaś suma wszyst-
kich takich iloczynów, w których dzielniki a, b są czarne wynosi C(l)C(m). Licząc B(lm) zauważamy, że dzielnik
d liczby lm jest biały wtedy i tylko gdy l i m mają taki sam kolor. Zatem:

B(lm) = B(l)B(m) + C(l)C(m).

Skoro B(lm) + C(lm) = B(l)B(m) + C(l)C(m) +B(l)C(m) + C(l)B(m), to mamy także:

C(lm) = B(l)C(m) + C(l)B(m).

Zatem
D(lm) = (B(l)− C(l))(B(m)− C(m)) = D(l)D(m).

�

Zadanie 10 (Wietnam, 1992). Niech n będzie liczbą całkowitą dodatnią. Oznaczmy przez f(n) liczbę dzielników
dodatnich liczby n, których cyfra jedności to 1 lub 9, zaś przez g(n) oznaczmy liczbę dzielników dodatnich liczby n,
których cyfrą jedności jest 3 lub 7. Pokazać, że f(n) ­ g(n).

Rozwiązanie. Po pierwsze niech n = 2x · 5y · k, gdzie x, y są całkowite nieujemne oraz k jest nieparzysta,
niepodzielna przez 5. Zauważmy, że f(n) = f(k) oraz g(n) = g(k). Istotnie, dzielniki n o cyfrach jedności
1, 3, 7, 9 są nieparzyste i niepodzielne przez 5, więc są względnie pierwsze z 2 i 5. W rezultacie są też dzielni-
kami k, i to wszystkimi możliwymi. A zatem możemy zakładać, że n jest liczbą nieparzystą, niepodzielną przez 5.

Niech A będzie zbiorem liczb całkowitych o cyfrach jedności 1 lub 9, zaś B niech będzie zbiorem liczb całkowi-
tych o cyfrach jedności 3 lub 7.

Rozważmy przypadek, gdy n należy do B. Wówczas biorąc dowolny jej dzielnik m z B mamy, że nm jest elemen-
tem A. W szczególności każdemu dzielnikowi n z B odpowiada dokładnie jeden dzielnik z A, czyli f(n) = g(n).

Pozostaje rozważyć trudniejszy przypadek, gdy n jest elementem A, a więc ma cyfrę jedności 1 lub 9. Niestety
podzielenie elementu z A przez dzielnik ze zbioru A może dać zarówno dzielnik z A, jak i z B, więc analogicz-
ny argument jak wyżej nie zadziała. Musimy zbadać rozkład n na czynniki. Pokażemy, że w tym przypadku
f(n) > g(n).

Weźmy dowolny dzielnik pierwszy p liczby n i oznaczmy przez a liczbę pvp(n), czyli najwyższą potęgę p dzielącą
n. Liczbę n/a oznaczamy jako b. Będziemy zliczać dzielniki n, osobno ze zbioru A i osobno ze zbioru B. Skoro
n = ab, to każdy dzielnik d liczby n można przedstawić w sposób jednoznaczny jako iloczyn dzielnika da liczby
a i dzielnika db liczby b. Jeśli da oraz db są z A, to d też. Jeśli da oraz db są z B, to d jest z A. Jeśli da należy
do A oraz db należy do B, to d należy do B, i odwrotnie – jeśli da należy do B oraz db nalezy do A, to d należy
do A. Wynikają stąd wzory:

f(n) = f(a)f(b) + g(a)g(b), g(n) = f(a)g(b) + f(b)g(a).

Istotnie, aby jednak dostać dzielnik z A trzeba przemnożyć dwa dzielniki typu A lub dwa dzielniki typu B,
zaś aby dostać dzielnik z B trzeba przemnożyć dwa dzielniki różnych typów. Na ile sposobów? Dzielnik liczby
a ze zbioru A można wybrać na f(a) sposobów, a dzielnik b ze zbioru A można wybrać na f(b) sposobów.
Zatem iloczyn tych dzielników można wybrać na f(a)f(b) różnych sposobów. Osobno zliczamy dzielniki n typu
A powstające przez przemnożenie dzielników typu B: te iloczyny można uformować na g(a)g(b) sposobów. Stąd
wzór na f(n). Aby dostać dzielnik typu B trzeba przemnożyć dzielnik typu A z dzielnikiem typu B, stąd wzór
na g(n). A zatem:

f(n)− g(n) = f(a)f(b) + g(a)g(b)− f(a)g(b)− f(b)g(a) = (f(a)− g(a))(f(b)− g(b)).

W szczególności teza f(n)−g(n) > 0 jest równoważna temu, że f(a)−g(a) > 0 oraz f(b)−g(b) > 0. Wystarczy
więc, że rozstrzygniemy zadanie dla n = pk, gdzie n jest elementem A, bo wtedy zadanie sprowadza się do
rozstrzygnięcia nierówności f(b)− g(b) > 0, którą możemy wykonać analogicznie, jak dla a, wydzielając kolejny
czynnik pierwszy.

Czym jest f(pk), gdzie p ∈ A? Jest to k+1. Czym jest g(pk), gdy p ∈ A? Jest to 0. Tu więc nierówność zachodzi.
Czym jest f(pk), jeśli p należy do B? Wówczas pamiętamy, że k musi być parzyste i wtedy dzielniki z A to
1, p2, p4, . . . , p[k/2], czyli f(pk) = [k/2] + 1. Natomiast g(pk) zlicza dzielniki postaci g, g3, . . . , gk−1, których jest
[k/2]. A zatem w obydwu przypadkach f(n) > g(n), co kończy dowód.
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