Nieparzyste dzielniki i wyktadniki p-adyczne
Obé6z naukowy Olimpiady Matematycznej Junioréw
Poziom OM, 12.08.2020 r.

Jednym z interesujacych sposobdéw radzenia sobie z zadaniami olimpijskimi z teorii liczb jest rozwazanie dziel-
nikéw liczb wystepujacych w zadaniu. Opieramy sie¢ wéwczas na twierdzeniu o jednoznacznym rozkladzie licz-
by calkowitej na czynniki pierwsze. Czesto do lepszego zrozumienia sytuacji wystarczy jednak wyodrebnienie
pewnego konkretnego dzielnika pierwszego. Dla przykladu, kazda liczbe calkowita dodatnia mozemy zapisac
w postaci:

n=2%.m,

gdzie m jest liczba nieparzysta, a dokladniej — najwiekszym nieparzystym dzielnikiem liczby n. Korzystajac
z tej i innych podobnych obserwacji mozna rozwigzaé¢ wiele ciekawych zadan. Zacznijmy od prostego zadania
ilustrujacego to zagadnienie.

Zadanie 1. Wybrano 51 réznych liczb naturalnych mniejszych od 100. Udowodnié, Ze istniejg wsrod nich takie
dwie liczby, Ze pierwsza dzieli drugq.

Rozwiazanie jest nastepujace: z kazda z wybranych 51 liczb zwiazany jest jej najwiekszy dzielnik nieparzysty.
Mozliwych wartosci tego dzielnika jest tyle, ile nieparzystych liczb w zbiorze {1,2,...,100}, a wiec 50. Tymcza-
sem wybraliSmy 51 liczb. Wobec tego pewne dwie z nich, nazwijmy je a i b maja ten sam najwiekszy dzielnik
nieparzysty c. Mozemy wiec zapisac:

gdzie k il sa pewnymi liczbami catkowitymi nieujemnymi. Jezeli k < [, to a dzieli b, jedli zas [ < k, to b dzieli a.

Zadanie o bardzo podobnej idei, a jednak wymagajace pomystowosci pochodzi z drugiego etapu 63. Olimpiady
Matematyczne;j.

Zadanie 2. Niech m,n bedq takimi dodatnimi liczbami calkowitymi, Ze w zbiorze {1,2,...,n} znajduje sie
dokladnie m liczb pierwszych. Dowie$é, ze wsrod dowolnych m + 1 roznych liczb z tego zbioru mozna znaleZé
liczbe, ktora jest dzielnikiem iloczynu pozostalych m liczb.

Rozumujemy nie wprost. Zalézmy, ze teza zadania jest nieprawdziwa. Oznaczaloby to w przypadku naszego
zadania istnienie m + 1-elementowego zbioru A zawartego w zbiorze {1,2,...,n} (przy czym istnieje dokladnie
m liczb pierwszych mniejszych od n) takiego, ze zadna liczba x € A nie jest dzielnikiem iloczynu pozostalych m
elementéw zbioru A. I co dalej? Pomysl, ktéry pokaze bedziemy w dalszej czesci wykladu intensywnie rozwijac.
Opiera sie on na ogdlnej obserwacji mowiacej, ze liczba a jest dzielnikiem liczby b wtedy i tylko wtedy, gdy
dla kazdej liczby pierwszej p wyktadnik, z jakim liczba p wchodzi do rozktadu a na czynniki pierwsze jest nie
wiekszy, niz wykladnik, z jakim p wchodzi do rozkladu b na czynniki pierwsze. Co ta obserwacja wnosi do
rozwazanego problemu? Otz to, ze kazdemu elementowi x zbioru A, ktéry ma byé $wiadkiem nieprawdziwosci
tezy, przypisa¢ mozna liczbe pierwszg p taka, ze x = p°z’ oraz w rozkladzie iloczynu pozostalych m elementéw
zbioru A na czynniki pierwsze liczba p wystepuje mniej niz s razy. Innymi stowy kazdemu elementowi zbioru A
przypisujemy liczbe pierwsza, ktora jest przyczyna braku podzielnosci tego elementu przez iloczyn pozostatych
m elementéw zbioru A.

Zbiér A ma m + 1 elementéw, a wiemy, ze zawarty jest w zbiorze {1,2,...,n}, w ktérym jest tylko m liczb
pierwszych. W rezultacie pewna liczba pierwsza zostata przypisana dwém réznym elementom z,y € A. Niech w
oznacza iloczyn m — 1 elementéw zbioru A réznych od z,y. Na mocy okreslenia liczby p istniejg takie nieujemne
catkowite wykladniki k i [, ze:

e pF jest dzielnikiem x, ale p* nie jest dzielnikiem wy,
o p! jest dzielnikiem y, ale nie jest dzielnikiem w:.

Zatem w rozkladzie wz - wy liczba p wystepuje z wykladnikiem nizszym niz k + [, mimo, ze iloczyn ten jest po-
dzielny przez liczbe 2y, ktora z kolei jest podzielna przez pF*!. Uzyskana sprzecznoéé konczy rozwiazanie zadania.

Czy widzicie podobienstwo pomiedzy dwoma oméwionymi zadaniami? Obydwa opieraly sie na zastosowaniu
zasady szufladkowej Dirichleta i na rozkladzie na czynniki pierwsze. Kolejne zadanie wiaze sie z jeszcze jednym
pojeciem, ktore niekiedy pojawia sie w rozwigzaniach zadan olimpijskich — tak zwanym najwiekszym wspolnym
nieparzystym dzielnikiem. Uzywa sie tez, na poziomie intuicyjnym, pojecia ciagu.



Zadanie 3. Niech f1, fa bedg nieparzystymsi liczbami dodatnimi. Okreslamy ciqg liczb: pierwszy wyraz oznaczamy
f1, drugi jako fo, za$ dla n > 3 wyraz n-ty rowny f, jest najwiekszym nieparzystym dzielnikiem sumy dwdch
poprzednich wyrazow, czyli najwiekszym nieparzystym dzielnikiem liczby fn_o + fn—1. Pokazaé, Ze od pewnego
momentu wyrazy tego ciggu sq identyczne i réwne liczbie NWD(fy, f2).

Dowdd jest bardziej zlozony niz poprzednie. Po pierwsze pokazemy, ze jesli pewne dwa wyrazy rozwazanego
ciagu sa sobie réwne, to wszystkie kolejne wyrazy tego ciaggu sa réwne. Po drugie, pokazemy, ze wartosé, na
ktérej rozwazany ciag sie stabilizuje to NWD(f1, f2).

Pierwsza uwaga jest taka, ze wszystkie elementy rozwazanego ciaggu sa liczbami nieparzystymi. Istotnie, po-
czawszy od dwoch liczb nieparzystych fi, fo, kazdy kolejny element ciggu jest dzielnikiem nieparzystym sumy
dwoéch poprzednich wyrazow, a wiec jest liczba nieparzysta.

Przypusémy teraz, ze trzy kolejne wyrazy naszego ciagu maja postaé

a,a,b.

Wiemy, ze b to najwiekszy nieparzysty dzielnik liczby a + a, gdzie a jest liczba nieparzysta. W szczegdlnosci
b = a. A zatem jesli dwa wyrazy naszego ciggu sa réwne, to wszystkie dalsze tez.

A moze rozwazana przed chwilg sytuacja nie jest mozliwa? Zalézmy na chwile, ze zadne dwa wyrazy wypisywa-
nego ciagu nie sg réwne. Wezmy zatem cztery kolejne wyrazy a, b, ¢, d. Mamy nieréwnos¢:

a+b

c< < max{a, b}.

Rzeczywiscie ¢ jest najwiekszym dzielnikiem nieparzystym a oraz b, wiec jego uzyskanie wymaga podzielenia
przez pewna dodatniag potege 2, bo suma a + b jest zawsze parzysta. A druga nier6wnos¢? Otéz skoro liczby a, b
sa rézne, to ich srednia nie moze by¢ réwna zadnej z nich, a zatem jest mniejsza od wiekszej z nich. Podobna
nieréwnoé$¢ dostajemy dla b, ¢, d:

d<c—|—b

< max{b, ¢} < max{a,b}.
7 dwoch uzyskanych nieréwnosci wynika, ze
max{c, d} < max{a,b}.

To by oznaczalo, ze ciag liczb postaci NW D(fay, fon—1) jest $cisle malejacy, gdzie f,, jest m-tym elementem
rozwazanego ciagu. To jest jednak niemozliwe, bo nieskonczony ciag liczb dodatnich nie moze by¢ Scisle maleja-
cy. A zatem rzeczywiscie pewne dwa elementy naszego ciggu musza by¢ réwne, a jak pokazaliSmy wyzej, z tego
wynika, ze od pewnego miejsca ciag ma te sama wartosé. Teraz pokazemy, ze ta warto$é to NWD(f1, f2).

Niech a, b, ¢ to trzy kolejne wyrazy naszego ciagu. Oczywiscie

a+b
on '

dla pewnego n catkowitego dodatniego. A zatem przeksztalcajac to wyrazenie dostajemy 2"c¢ — b = a. Niech
NWD(a,b) = x, NWD(b,¢) = y. Liczby b,c sa podzielne przez y. A zatem takze a jest podzielna przez y.
Wiemy jednak, ze to z jest najwickszym wspdlnym dzielnikiem a,b, wiec y < z. Z drugiej strony, a = xza’ oraz
b= zb'. A zatem c, jako najwiekszy dzielnik nieparzysty liczby a + b réwna jest iloczynowi x razy najwiekszy
dzielnik nieparzysty liczby a’ +b'. W szczegdlnosci x jest wspdlnym dzielnikiem zaréwno b, jak i c. Zatem z < y.
Stad x = y. A zatem wszystkie kolejne NWD kolejnych wyrazéw rozwazanego ciggu sg takie same i wynosza
NWD( fi.f2). Skoro, na mocy pierwszej czeéci dowodu od pewnego momentu ciag ten jest staly, to wlasnie owa
stata wartos¢ wynosi NWD( f1, f2).

Widzimy jak przydatne moze by¢ wydzielanie odpowiedniego typu czynnika w badaniu podzielnosci. Waznym
narzedziem pozwalajacym na formalizacje tego typu rozwazan jest tak zwany wyktadnik p-adyczny.

Definicja 1. Dana jest liczba pierwsza p oraz liczba catkowita dodatnia n. Wyktadnikiem p-adycznym liczby n
nazywamy takq liczbe catkowitq nieujemnq k, ze p* jest dzielnikiem n oraz p*+1 nie jest dzielnikiem n. Piszemy
wowezas

vp(n) = k.



A wigc dla przykladu vs(24) = 1, v7(30) = 0, za$ v5(500) = 3. Wprowadzenie wykladnika p-adycznego pozwoli
nam spojrzeé¢ zupelnie inaczej na podzielnoéé. Odnotujmy najpierw kilka bardzo prostych wlasnosci, wynikaja-
cych bezposrednio z twierdzenia o rozktadzie liczby catkowitej na czynniki pierwsze.

Twierdzenie 1. Niech p bedzie liczbg pierwszq, zas a,b niech bedq liczbami calkowitymi. Wowczas:

liczba a jest dzielnikiem liczby b wtedy i tylko wtedy, gdy vy(a) < vy(b), dla kazdego p,

® vp(ab) = vp(a) +vy(b),
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Przyktadowe proste zastosowanie powyzszych faktéw, to dowdd znanej dobrze formuly.

Twierdzenie 2. Dla dowolnych liczb catkowitych dodatnich zachodzi rownosé:
NWD(a,b) - NWW(a,b) =a-b.

Aby sprawdzi¢ czy dwie liczby calkowite dodatnie x,y sa réwne wystarczy sprawdzié, czy vy(z) = v,(y), dla
kazdej liczby pierwszej p. Policzmy zatem wartosé wyrazenia:

vp(NWD(a,b) - NWW(a, b)) — v, (ab).
Zgodnie z wlasnosciami podanymi wyzej wyrazenie to jest réwne:

max{vp(a), vp(b)} + min{vp(a), vp(b)} — vp(a) — vy(b).

Jest jasne, ze wyrazenie to jest zawsze rowne 0.

Zobaczmy jak pojecie wyktadnika p-adycznego stosuje si¢ do rozwiazywania zadan.
Zadanie 4. Ile jest par liczb calkowitych dodatnich (a,b) spelniajacych réwnanie:
a® 4+ b% = ab(a + b)?
Rozwazmy dowolna liczbe pierwsza p oraz wielkosci vy (a), vy (). Ze znanych nam wlasnosci dostajemy:
vp(ab(a + b)) = vp(a) + vp(b) + vp(a +b),
czyli z zalozenia podanego w zadaniu mamy:
vp(a) + vp(b) +vp(a+b) = vp(a2 + b2)-
Bedziemy korzystaé z ostatniej wlasnosci opisanej w Twierdzeniu 1, rozwazajac osobno przypadki, gdy v,(a) =
vp(b) oraz, gdy vp(a) # vp(b).

o Jedli vp(a) = vp(b), dla wszystkich liczb pierwszych p, to oczywiscie ¢ = b, a wtedy mamy réwnanie
202 =203, czylia=b=1.

o Jesli vy(a) # vp(D), to bez straty ogblnosci mozna zalozyé, ze v,(a) < v,(b), dla pewnej liczby pierwszej p.
Wéwezas v, (a+b) = vp,(a) oraz vy(a? +b2) = v,(a?) = 2v,(a), bo vy(a?) = 2v,(a) < 2v,(b) = v,(b?). A za-
tem zalozenie z tresci zadania na poziomie wykladnikow p-adycznych przybiera w rozwazanym przypadku
postac:

vp(a) + vp(b) + vp(a) = 2up(a),

co jest niemozliwe, bo oznacza, ze v,(b) = 0. A zatem drugi przypadek nie moze mieé¢ miejsca i zadanie
jest rozwigzane.



Zadanie 5. Dane sq liczby calkowite dodatnie a, b, c takie, ze liczba

a b ¢
b ¢ a

jest catkowita. Udowodnié, Ze abc jest szescianem liczby calkowitey.

W normalnych warunkach to zadanie wyglada na bardzo problematyczne. Zauwazmy jednak jak eleganckie jest
rozwigzanie z uzyciem wykladnika p-adycznego. Mamy:

a

c a’c+b%a+c?b
7, _

b
+ -+ - =
c  a abe

Niech p bedzie liczbg pierwsza. Oznaczmy A = v,(a), B = v,(b), C = vp(c). Z zalozenia wynika zatem, ze:
vp(a’c + b%a + c¢*b) > vy(abe),

czyli réwnowaznie:

vp(a®c+b*a+c*b) > A+ B+ C.
Zauwazmy, ze naszym celem jest po prostu pokazaé, ze A+ B+ C' jest zawsze podzielna przez 3. To bedzie do-
ktadnie znaczylo, ze liczba p wchodzi z wykladnikiem podzielnym przez 3 do rozkladu abc na czynniki pierwsze.

Wiemy jak postepowaé z wykladnikiem modulo p w przypadku sumy v, (a?c+b%a+c?b). Trzeba osobno rozwazy¢
sytuacje, gdy vp(a?c), vy(b%a) oraz v,(c®b) sa parami rézne, oraz gdy nie sa parami rézne. Liczby te to po prostu
2A+C,2B+ A,2C + B.

e Liczby v,(a’c), v,(b%a) oraz v,(c?b) sa parami rézne. Wéwezas mamy:
2A+ C > min{2A + C,2B + A,2C + B} = vy(a’c+b%a+ ) > A+ B+ C
2B + A > min{2A + C,2B + A,2C + B} = vy(a’c + b*a+ %) > A+ B+ C
2C + B > min{24 + C,2B + A,2C + B} = v,(a’c + b*a+c*b) > A+ B+ C

7 pierwszej nieréwnosci dostajemy A > B, z drugiej B > C, a z trzeciej C' > A, co oznacza, ze A = B =C.
A zatem A+ B + C = 3A jest podzielne przez 3,

o Jesli zachodzi réwnosé, powiedzmy 24 + C = 2B + A, to A+ C = 2B, wigc v,(abc) = A+ C + B =
2B + B = 3B, wiec jest podzeine przez 3.

Jednym z najbardziej znanych faktéw zwigzanych z wykladnikiem p-adycznym jest jego wartoéé¢ dla liczby n!,
czyli iloczynu n pierwszych liczb catkowitych dodatnich, zwana formuls Legendre’a.

Twierdzenie 3. Niech n bedzie liczbg calkowitq dodatnig oraz p — liczbg pierwszq. Wowczas:

o= [E] [+ 3]

gdzie [x] jest nagmniejszq liczbg catkowitq nie wiekszq niz x.

Powyzsza suma napisana jest tak, jakby byta nieskonczona, ale oczywiscie chodzi jedynie o to, ze moze by¢
dowolnie dtuga. Oczywiscie istnieje k takie, ze p* > n, wiec od pewnego momentu wszystkie jej sktadniki sumy
napisanej wyzej to zera. Jak to udowodni¢? Zobaczmy krotki szkic:

vp(n!) = vp(1) +vp(2) + ...+ vp(n— 1) + vp(n).

Jedynie dzielniki liczby p sa niezerowymi skladnikami tej sumy. Niech r bedzie najwigksza liczba catkowita
dodatnia taka, ze rp < n. Wéwczas:

vp(n!) = vp(p)+vp(2p)+. . Avp(rp) = vp(1)+vp(2)+. . Avp(r)+r-vp(p) = vp(1)+vp(2)+. . Avp(r)+r = vy (r!)+r.

Oczywiscie r = [%} Postepujac analogicznie jak dla n widzimy, ze v,(r) = v,(1) + ... + v,(s) + s, gdzie



Wzér powyzej trzeba by oczywiscie uzasadnié, podobnie jak wzér [[n/p*]/p] = [n/p**t1], dla k > 1, co zosta-
wiam jako ¢wiczenie. Postepujac w ten sposéb dalej uzyskujemy kolejne sktadniki sumy wystepujacej we wzorze
Legendre’a. Po pewnej liczbie krokéw zostanie nam do obliczenia v,(q!), gdzie ¢ < p, co jest réwne 0.

Typowym zastosowaniem wzoru Legendre’a jest jest wyznaczanie liczby zer, ktéra konczy sie rozwiniecie dzie-
sietne liczb typu n!, i podobnych. Na przyktad dla 2020! chodzi o przedstawienie jej w postaci 10% -y, gdzie y jest
liczba niepodzielng przez 10. Zauwazmy, ze x = v5(2020). Istotnie, nietrudno sprawdzié, ze v2(2020!) > v5(2020!),
poréwnujac ze soba kolejne sktadniki [2020/2%] oraz [2020/5%] sum opisujacych te wielkoéci. A zatem liczba 2020!
ma na koncu 503 zera, zgodnie z ponizszym rachunkiem.

v5(2020!)={2020} [2020] {2020} [2020

=404 1 = .
3 5% 195 625] 04 +80+16 + 3 = 503

Wzér na vy(n!) przydaje si¢ w wielu zadaniach, w ktérych operujemy na ilorazach silni. W kombinatoryce
ilorazy takie maja czesto istotne znaczenie. Rowniez w teorii liczb wzér ten odgrywa bardzo wazna role. Jest
kluczowym elementem trudnego dowodu tzw. postulatu Bertranda méwiacego, ze dla kazdej liczby catkowitej
n > 1 istnieje liczba pierwsza p taka, ze n < p < 2n. Pozostanmy jednak przy zadaniach olimpijskich. Rzadko
zdarzaja sie zadania wykorzystujace bezposrednio formule Legendre’a. Oto przyklad z OM.

Zadanie 6. Dane sq liczby catkowite k,n takie, ze 1 < k < %2, przy czym k nie ma dzielnika pierwszego
wiekszego od n. Udowodnij, Ze n! dzieli sie przez k.

Gdy mamy obok siebie podzielnosé i silni¢ zawsze warto sprobowaé sprawdzi¢ czy nie uda sie¢ skorzystac ze
wzoru Legendre’a. Bierzemy zatem dowolng liczbe pierwsza p i zadamy, by v, (k) bylo niewieksze niz v, (n!). To
wszystko, czego potrzebujemy. Rozwazymy dwa przypadki:

e Niech vy, (k) = 2z. Wowczas p?* <k < %. Latwa manipulacja pozwala stwierdzié¢, ze 2p® < n, czyli
2<

n
E.

i) =[]+ [2] 4[]

Szacowanie, ktére zapisaliémy pozwala stwierdzi¢, ze pierwsze x skladnikéw tej sumy réwnych to liczby
nie mniejsze niz 2. Zatem dowdéd w tym przypadku jest zakonczony, bowiem

Spoéjrzmy teraz na sume:

vp(n!) > 2z = v, (k).

e Niech v, (k) = 2z + 1.. Mamy: p***! <k < " Teraz szacowanie bedzie bardziej skomplikowane, postaci:

1
2,/pp® < n. A zatem

> 2./p.

%=

Oznacza to, ze pierwsze x skladnikéw sumy:

w3

réwne jest przynajmniej 2,/p. A zatem
vp(n!) > x-2¢/p > 2z + 1 =vy(k).

Szacowanie, ktére wykonaliémy moze wydawac sie¢ sztuczne, ale ma réwniez drugie dno. Jesli ktos zapozna-
ny jest z pojeciem liczbowego systemu pozycyjnego, moze zastanowi¢ si¢ nad interpretacja wzoru Legendre’a
w kontekscie zapisu liczby n w systemie liczbowym o podstawie réwnej p, na przyktad w systemie dwéjkowym.

Jedli kto$ bylby zainteresowany poglebieniem tematu wyktadnika p-adycznego, to polecam artykul cztonka KO
OMJ w Tarnowie, Jakuba Wegreckiego, z ktorego zapozyczytem kilka prostszych zadan, dostepny pod adresem
https://jagiellonian.academia.edu/JakubW,C4%99grecki.



Zadania z rozwigzaniami

Zadanie 1. Na tablicy napisano liczbe pewng liczbe caltkowitq dodatnig n. Wladek i Robert grajg w gre polegajgcq
w kazdej turze na odejmowaniu od liczby znajdujgcej sie aktualnie na tablicy jednego z jej dzielnikéw (mozna
odjaé takze 1 lub samq liczbe na tablicy) i zastepujgc liczbe na tablicy uzyskang rdznicg. Gracze wykonujg te
operacje naprzemienne. Ten z graczy, ktory bedzie musial zapisaé na tablicy 0 przegrywa. Gre zaczyna Wiadek.
Dla jakich n istnieje strategia dajgca Wiadkowi zwyciestwo, niezaleinie od ruchéw Roberta?

RozwiAZANIE. Taka strategia istnieje tylko dla n parzystych. W takim przypadku Wtodek musi w kazdym
ruchu odejmowac¢ 1. W ten sposdb Robert za kazdym razem otrzymuje liczbe nieparzysta i musi odjaé¢ od niej
nieparzysty dzielnik. W skonczonej liczbie ruchéw Robert otrzyma zatem liczbe pierwsza lub 1, co doprowadzi
do jego porazki. Jezeli n jest nieparzyste, woéwczas strategie wygrywajaca ma oczywiscie Robert. ]

Zadanie 2. Rozwazmy zbior S zlozZony z n liczb postaci:
S={n+1,n+2...,2n—1,2n}.
Pokaz, ze suma najwiekszych nieparzystych dzielnikéw wszystkich elementéw zbioru S réwna jest n?.

ROzwiAZANIE. Rozwazmy najwigkszy dzielnik nieparzysty liczby n+1, postaci a;, dlai =1,...,n. Jest to jedna
z liczb 1,3,5,...,2n — 1. Pokazmy, ze dla ¢ # j mamy a; # a;. Zalézmy przeciwnie. Niech

n+i=a-2 n+j=a-2Y

dla i # j oraz x,y > 0. Oczywiscie © # j, bo inaczej n +i = n + j, a zalozyliSmy cos innego. Niech = > y.
Wéwezas n+ 14 > 2(n + j). To jest jednak niemozliwe, bo najmniejsza liczba w S to n + 1, a najwigksza to 2n.
Uzyskana sprzecznosé pokazuje, ze najwieksze nieparzyste dzielniki liczb ze zbioru S sa parami rézne. Jest ich
n+ 1. A zatem sa to elementy zbioru 1,3,...,2n — 1. Suma tych elementéw to oczywiscie n?. ]

Zadanie 3. Niech n bedzie liczbg naturalng. Ile co najwyzej liczb moze zawieraé zbior liczb naturalnych nie
wiekszych od 2n, z ktérych zZadna nie jest podzielna przez Zadng inng?

Dowdéd. W szukanym zbiorze nie moze by¢ dwoch liczb majacych ten sam najwiekszy dzielnik nieparzysty. Liczb
nieparzystych nie wiekszych niz 2n jest n, a zatem tyle elementéw moze mie¢ co najwyzej poszukiwany zbiér. I
rzeczywiscie, zbidr liczb postaci: n + 1,...,2n ma szukana wlasnos¢. O

Zadanie 4. Udowodnij, Ze zbior liczb catkowitych dodatnich mozna podzieli¢ na nieskoriczenie wiele podzbiorow
Ay, Ag, As, ..., z ktorych Zadne dwa nie majg elementu wspélnego, przy czym podzbiory te majg nastepujgcg
wlasnosé: jesli pewne liczby calkowite dodatnie a,b,c,d naleZg do tego samego zbioru A,, dla pewnego n, to
nastepujgce warunki s¢ rownowazne:

e a—b oraz ¢c — d nalezg do pewnego zbioru A, (przy czym niekoniecznie m = n),

4
R

Slis}

RozwiAZANIE. Niech Ay bedzie zbiorem wszystkich liczb postaci
(2k—1)-2",

czyli zbiorem liczb, ktérych najwiekszy nieparzysty dzielnik rowny jest 2k—1. Sprawdzmy, ze wymagania zadania
wobec zbioréw A, sa spelnione. Niech a,b,c,d naleza do Ay, przy czym z > y oraz z > w. Mozemy zatem
napisac:

r=02k—1)-2°T"  y=(2k-1)-2° z=(2k—1)2°T w=(2k—-1)-2°

Woéowezas:
r—y=(2k—-1)(2°-1)(2%), z-—w=(2k—1)(2¢—1)(2°).

Mamy pokazaé, ze przynalezno$é x — y oraz z — w do tego samego zbioru A,,, dla pewnego n, jest rbwnowazna
warunkowi z/y = z/w. Zalézmy wiec, ze x—y oraz z —w maja ten sam najwigkszy dzielnik nieparzysty. Wéwczas
(2k —1)(2° — 1) = (2k — 1)(2% — 1), czyli b = d. Tymczasem x/y = 2° oraz z/w = 2¢. Jasne jest wiec, ze zadana
réwnowaznos¢ ma miejsce.



Zadanie 5. Dane sq liczby catkowite x,y takie, Ze suma

1‘2 y2

vz
jest liczbg calkowitq. Udowodnij, ze obydwa skladniki powyzszej sumy sq liczbami catkowitymi.

ROZWIAZANIE. Wykazemy, ze dla dowolnej liczby pierwszej p zachodzi v, (y) < vy(2?) = 2v,(z). Ulamek:

£B2 y2 B 1’3 +y3

Y x xy
jest liczba catkowita, wigc dla dowolnej liczby pierwszej p zachodzi:
vp(ay) = vp() + vp(y) < Up(xg + yg)~
Rozwazamy dwa przypadki:

e Liczby vy, (%) oraz v, (y?) sa rézne, na przyklad v, (z3) > v,(y?). Wtedy z nieréwnosci wyzej oraz ostatniego
punktu Twierdzenia z wykladu mamy v, (z?) > vp( 3+ ) = 3u,(y) = vp(x) +v,(y), czyli 2u,(y) > vp(x).
Jesli zas vy () < v, (y3), to vp(z3 + y3) = vy(23) = 3u,(z) = vy(x) + v,(y) i rezultat jest ten sam.

o Jedli vy(2?) = v,(y?), to v,(x) = vy(y), a zatem nieréwnosé 2v,(x) > v,(y) jest réwnowazna prawdziwej

nieréwnosci vy (z) > 0. Zatem teza zadania jest prawdziwa.

Zadanie 6. Najwickszy wspolny dzielnik liczb naturalnych a,b,c jest réwny 1. Udowodnij, ze jezeli zachodzi
réwno$é ab = ¢(b — a), to liczba b — a jest kwadratem liczby calkowite;.

ROZWIAZANIE. Trzeba pokazaé, ze dla kazdej liczby pierwszej p liczba v, (b — a) jest parzysta. Réwnosé posta-
wiona w zadaniu implikuje, ze:

vp(a) + vp(b) = vp(ab) = vp(c(b — a)) = vp(c) +vp(b — a).
Rozwazamy przypadki:

e Niech vp(a) # vp(b), np. vy(a) > v,(b). Wéwezas wypisana wyzej réwnosé ma postaé vy(a) + vp(b) =
vp(c) + vp(b), czyli vp(a) = vy(c). Jednak NWD(a,b,c) = 1, wiec albo v,(a) = vp(c) = 0, albo v,(b) = 0.
Pierwsza mozliwo$é nie moze zaj$é, bo 0 = vy(a) > v,(b), zas druga oznacza v,(b — a) = vp(b) = 0.

e Niech v,(a) = v,(b). Woéwczas albo v,(a) = v,(b) = 0, albo v,(c) = 0. W pierwszym przypadku v,(c) =
vp(b —a) = 0. W drugim za$ dostajemy réwnos$é vy,(a) + vy(a) = vy(b — a), czyli v,(b — a) jest liczba
parzysta.

]

Zadanie 7. Pokazad, Ze dla Zadnej liczby calkowitej dodatniej n liczba 2™ nie jest dzielnikiem liczby n!.

RozwiAZANIE. Musimy pokazaé, ze dla kazdego n > 0 mamy v2(2") > ve(n!). Ze wzoru Legendre’a

N — n n n
gdzie 28 < n < 281 A zatem mamy:
) LSOy S S
? 222 2k 2 2 T gkeT )

Ze wzoru skréconego mnozenia (trzeba sie ich juz na tym etapie uczy¢é):
a"—1=(a—1)(@" ' +a" 2 +.. . +a+1),

mamy:

A zatem mamy:



Zadanie 8. Na plaszczyénie z ukladem wspdirzednych umieszczono pionek w punkcie (1,1). Pionkiem tym
poruszaé wolno wedtug nastepujgcych zasad:

o 2 kazdego punktu o wspélrzednych (a,b) mozna przejsé do (2a,b) lub (a,2b),
o 2 kazdego punktu o wspélrzednych (a,b) mozna przejsé do (a—0b,b), o ile a > b lub do (a,b—a), jesli a < b.
Opisz wszystkie pola o wspdlrzednych (x,y), do ktdrych mozna sie dostad z pola (1,1).

RozWIAZANIE. Najpierw przekonajmy sie, ze z (1,1) mozna dotrzeé tylko do punktéw (z,y) takich, ze
NWD(z,y) = 2¢, dla pewnego nieujemnego s. Po pierwsze wiemy, ze NWD(z,y) = NWD(z,y —x) = NWD(x —
¥,Y), a zatem zadne nieparzyste dzielniki wspdlne x, y nie zmieniajg si¢ przy wykonywaniu operacji, bo najwigk-
szy dzielnik nieparzysty liczby 2a oraz b jest taki sam, jak najwigkszy dzielnik nieparzysty liczb a, 2b oraz liczb
a,b. Skoro na starcie, w punkcie (1, 1) najwigkszy wspdlny dzielnik nieparzysty wynosi 1, to fakt ten pozostaje
prawda niezaleznie od tego do ktérego punktu sie udamy. A zatem NWD(z,y) musi by¢ potega 2.

Teraz sprawdzmy, ze rzeczywiscie da sie z (1,1) dojsé do pola (z,y) takiego, ze NWD(z,y) = 2°, dla pewnego s.
W tym celu skorzystamy z zasady ekstremum. Rozwazmy podzbiér zbioru liczb catkowitych ztozony z wartosci
wyrazenia p+ ¢, gdzie (p, ¢) to punkt, z ktérego mozna dojéé do (z,y). Ten zbiér ma element minimalny, a wiec
dla pewnego (p, ¢) suma p + ¢ jest najmniejsza mozliwa. Zauwazmy, ze ani p, ani ¢ nie moze by¢ parzyste, bo
jesli do (x,y) mozna dojs$é z punktu (p, ¢) to mozna tez doj$é z punktéw (p/2, q) oraz (p,q/2), a to przeczyloby
minimalno$ci sumy p + ¢g. A zatem p, ¢ sa nieparzyste. Jesli p > ¢, to do (p,q) mozna dotrzeé z (p + q/2,q)
poprzez punkt (p+ ¢, q), co znowu przeczy minimalnosci p+ ¢. Podobnie dla p < ¢. A zatem p = g. Ale przeciez
zakladaliSmy, ze NWD(z,y) = 2%, czyli p, ¢ nie maja wspdlnych dzielnikéw nieparzystych. Zatem p = ¢ = 1,
wiec mozna dotrzeé do (z,y) z (1,1). |

Zadanie 9. Pokaz, Ze liczba roznych rozkladow liczby catkowitej dodatniej n na sume nieparzystej liczby sktadni-
kéw bedgcych kolejnymi liczbami calkowitymi réwna jest (liczge z dokladnoscig do kolejnosci skladnikéw) liczbie
nieparzystych dzielnikéw liczby n mniejszych niz \/2n, za$ liczba rozkladéw liczby n na sume parzystej liczby
skladnikow bedgceych kolejnymi liczbami calkowitymi réwna jest (liczge z dokladnodciq do kolejnosci skladnikéw)
liczbie nieparzystych dzielnikow liczby n wiekszych niz \/2n.

ROZWIAZANIE. Przypusémy, ze n jest suma nieparzystej liczby kolejnych liczb catkowitych dodatnich. A zatem
srodkowy wyraz tej sumy jest liczba catkowita i Srednia wszystkich sktadnikéw. Niech element ten bedzie réwny
a. Mamy zatem:

n=(a—k)+...+a+...+(a+k)=(2k+1)a.

Problem w tym, ze taki napis mozna wykona¢ nawet i bez zalozenia, ze a jest liczba catkowita, a taka sytuacja
nas nie interesuje. Wazne jest, by okazalo si¢, ze 2k + 1 to dzielnik caltkowity liczby n. Wéwczas oczywiscie dla
réznych k bedziemy mieli rézne rozktady na sumy kolejnych liczb catkowitych. Pokazemy teraz, ze konieczne
jest by 2k + 1 < v/2n. Z zalozenia mamy a — k > 1, a zatem 2a — (2k + 1) > 0/ W konsekwencji

2n
2k+1’

2k +1 < 2a =

czyli (2k +1)% < 2n.

Rozwiazanie czesci drugiej uzyskuje sie analogicznie. Przypu$émy, ze n jest suma 2k kolejnych liczb catkowitych.
Oczywiscie dla réznych k dostajemy rézne rozklady postaci:

n:(a+1—k)+...+a+(a+1)+...+(a+k):Qk(a+%):k(2a+1),

k

ale chodzi o to, by a bylo liczba catkowita. I teraz mozna pokazaé, ze (2a + 1) > 2n. Rzeczywiscie a — k > 0
(bo najmniejszy skladnik naszej sumy jest o 1 wiekszy), wiec (2a + 1) — 2k > 0, czyli 2a+ 1 > |

2n
2a+1"

Zadanie 10. Niech n bedzie liczbg calkowitq dodatnig. Oznaczmy przez f(n) liczbe dzielnikéw dodatnich liczby n,
ktorych cyfra jednosci to 1 lub 9, za$ przez g(n) oznaczmy liczbe dzielnikéw dodatnich liczby n, ktérych cyfrg
jednodci jest 3 lub 7. Pokaz, ze f(n) > g(n).



ROzZWIAZANIE. Po pierwsze niech n = 2% - 5Y - k, gdzie x,y sa catkowite nieujemne oraz k jest nieparzysta,
niepodzielna przez 5. Zauwazmy, ze f(n) = f(k) oraz g(n) = g(k). Istotnie, dzielniki n o cyfrach jednosci
1,3,7,9 sa nieparzyste i niepodzielne przez 5, wiec sa wzglednie pierwsze z 2 i 5. W rezultacie sg tez dzielni-
kami k, i to wszystkimi mozliwymi. A zatem mozemy zakladaé, ze n jest liczbg nieparzysta, niepodzielng przez 5.

Niech A bedzie zbiorem liczb caltkowitych o cyfrach jednosci 1 lub 9, zas B niech bedzie zbiorem liczb catkowi-
tych o cyfrach jednosci 3 lub 7.

Rozwazmy przypadek, gdy n nalezy do B. Woéwczas biorac dowolny jej dzielnik m z B mamy, ze ;- jest elemen-
tem A. W szczegdlnosei kazdemu dzielnikowi n z B odpowiada dokladnie jeden dzielnik z A, czyli f(n) = g(n).

Pozostaje rozwazy¢ trudniejszy przypadek, gdy n jest elementem A, a wiec ma cyfre jednosci 1 lub 9. Niestety
podzielenie elementu z A przez dzielnik ze zbioru A moze daé zaréwno dzielnik z A, jak i z B, wiec analogicz-
ny argument jak wyzej nie zadziala. Musimy zbada¢ rozklad n na czynniki. Pokazemy, ze w tym przypadku

f(n) > g(n).

Wezmy dowolny dzielnik pierwszy p liczby n i oznaczmy przez a liczbe p»(™) | czyli najwyzsza potege p dzielaca
n. Liczbe n/a oznaczamy jako b. Bedziemy zliczaé¢ dzielniki n, osobno ze zbioru A i osobno ze zbioru B. Skoro
n = ab, to kazdy dzielnik d liczby n mozna przedstawi¢ w sposéb jednoznaczny jako iloczyn dzielnika d,, liczby
a i dzielnika dj, liczby b. Jesli d, oraz dy, sa z A, to d tez. Jeli d, oraz dj sa z B, to d jest z A. Jedli d, nalezy
do A oraz dj nalezy do B, to d nalezy do B, i odwrotnie — jesli d, nalezy do B oraz dp nalezy do A, to d nalezy
do A. Wynikaja stad wzory:

f(n) = f(a)f(0) +g(a)g(b), g(n) = f(a)g(b) + f(b)g(a).

Istotnie, aby jednak dosta¢ dzielnik z A trzeba przemnozy¢ dwa dzielniki typu A lub dwa dzielniki typu B,
za$ aby dosta¢ dzielnik z B trzeba przemnozyc dwa dzielniki réznych typéw. Na ile sposobéw? Dzielnik liczby
a ze zbioru A mozna wybraé¢ na f(a) sposobéw, a dzielnik b ze zbioru A mozna wybraé¢ na f(b) sposobdw.
Zatem iloczyn tych dzielnikéw mozna wybraé na f(a)f(b) réznych sposobéw. Osobno zliczamy dzielniki n typu
A powstajace przez przemnozenie dzielnikéw typu B: te iloczyny mozna uformowaé na g(a)g(b) sposobéw. Stad
wzér na f(n). Aby dostaé¢ dzielnik typu B trzeba przemnozy¢ dzielnik typu A z dzielnikiem typu B, stad wzor
na g(n). A zatem:

f(n) —g(n) = f(a)f(b) + g(a)g(b) — f(a)g(b) — F(b)g(a) = (f(a) — g(a))(f(b) — g(b))-

W szczegdlnosci teza f(n) —g(n) > 0 jest réwnowazna temu, ze f(a) —g(a) > 0 oraz f(b) —g(b) > 0. Wystarczy
wiec, ze rozstrzygniemy zadanie dla n = p*, gdzie n jest elementem A, bo wtedy zadanie sprowadza sie do
rozstrzygniecia nieréwnodei f(b) — g(b) > 0, ktéra mozemy wykonaé analogicznie, jak dla a, wydzielajac kolejny
czynnik pierwszy.

Czym jest f(p*), gdzie p € A? Jest to k+1. Czym jest g(p"), gdy p € A? Jest to 0. Tu wiec nieréwnoéé zachodzi.
Czym jest f(p*), jesli p nalezy do B? Wéwczas pamietamy, ze k musi byé parzyste i wtedy dzielniki z A to
1,p%p .. plR/2 czyli f(p*) = [k/2] + 1. Natomiast g(p*) zlicza dzielniki postaci g, g>,...,g" !, ktérych jest
[k/2]. A zatem w obydwu przypadkach f(n) > g(n), co koniczy dowdd.

|



