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Jednym z interesujących sposobów radzenia sobie z zadaniami olimpijskimi z teorii liczb jest rozważanie dziel-
ników liczb występujących w zadaniu. Opieramy się wówczas na twierdzeniu o jednoznacznym rozkładzie licz-
by całkowitej na czynniki pierwsze. Często do lepszego zrozumienia sytuacji wystarczy jednak wyodrębnienie
pewnego konkretnego dzielnika pierwszego. Dla przykładu, każdą liczbę całkowitą dodatnią możemy zapisać
w postaci:

n = 2k ·m,

gdzie m jest liczbą nieparzystą, a dokładniej – największym nieparzystym dzielnikiem liczby n. Korzystając
z tej i innych podobnych obserwacji można rozwiązać wiele ciekawych zadań. Zacznijmy od prostego zadania
ilustrującego to zagadnienie.

Zadanie 1. Wybrano 51 różnych liczb naturalnych mniejszych od 100. Udowodnić, że istnieją wśród nich takie
dwie liczby, że pierwsza dzieli drugą.

Rozwiązanie jest następujące: z każdą z wybranych 51 liczb związany jest jej największy dzielnik nieparzysty.
Możliwych wartości tego dzielnika jest tyle, ile nieparzystych liczb w zbiorze {1, 2, . . . , 100}, a więc 50. Tymcza-
sem wybraliśmy 51 liczb. Wobec tego pewne dwie z nich, nazwijmy je a i b mają ten sam największy dzielnik
nieparzysty c. Możemy więc zapisać:

a = 2k · c, b = 2l · c,

gdzie k i l są pewnymi liczbami całkowitymi nieujemnymi. Jeżeli k < l, to a dzieli b, jeśli zaś l < k, to b dzieli a.

Zadanie o bardzo podobnej idei, a jednak wymagające pomysłowości pochodzi z drugiego etapu 63. Olimpiady
Matematycznej.

Zadanie 2. Niech m,n będą takimi dodatnimi liczbami całkowitymi, że w zbiorze {1, 2, . . . , n} znajduje się
dokładnie m liczb pierwszych. Dowieść, że wśród dowolnych m + 1 różnych liczb z tego zbioru można znaleźć
liczbę, która jest dzielnikiem iloczynu pozostałych m liczb.

Rozumujemy nie wprost. Załóżmy, że teza zadania jest nieprawdziwa. Oznaczałoby to w przypadku naszego
zadania istnienie m+ 1-elementowego zbioru A zawartego w zbiorze {1, 2, . . . , n} (przy czym istnieje dokładnie
m liczb pierwszych mniejszych od n) takiego, że żadna liczba x ∈ A nie jest dzielnikiem iloczynu pozostałych m
elementów zbioru A. I co dalej? Pomysł, który pokażę będziemy w dalszej części wykładu intensywnie rozwijać.
Opiera się on na ogólnej obserwacji mówiącej, że liczba a jest dzielnikiem liczby b wtedy i tylko wtedy, gdy
dla każdej liczby pierwszej p wykładnik, z jakim liczba p wchodzi do rozkładu a na czynniki pierwsze jest nie
większy, niż wykładnik, z jakim p wchodzi do rozkładu b na czynniki pierwsze. Co ta obserwacja wnosi do
rozważanego problemu? Otóż to, że każdemu elementowi x zbioru A, który ma być świadkiem nieprawdziwości
tezy, przypisać można liczbę pierwszą p taką, że x = psx′ oraz w rozkładzie iloczynu pozostałych m elementów
zbioru A na czynniki pierwsze liczba p występuje mniej niż s razy. Innymi słowy każdemu elementowi zbioru A
przypisujemy liczbę pierwszą, która jest przyczyną braku podzielności tego elementu przez iloczyn pozostałych
m elementów zbioru A.

Zbiór A ma m + 1 elementów, a wiemy, że zawarty jest w zbiorze {1, 2, . . . , n}, w którym jest tylko m liczb
pierwszych. W rezultacie pewna liczba pierwsza została przypisana dwóm różnym elementom x, y ∈ A. Niech w
oznacza iloczyn m−1 elementów zbioru A różnych od x, y. Na mocy określenia liczby p istnieją takie nieujemne
całkowite wykładniki k i l, że:

• pk jest dzielnikiem x, ale pk nie jest dzielnikiem wy,

• pl jest dzielnikiem y, ale nie jest dzielnikiem wx.

Zatem w rozkładzie wx ·wy liczba p występuje z wykładnikiem niższym niż k+ l, mimo, że iloczyn ten jest po-
dzielny przez liczbę xy, która z kolei jest podzielna przez pk+l. Uzyskana sprzeczność kończy rozwiązanie zadania.

Czy widzicie podobieństwo pomiędzy dwoma omówionymi zadaniami? Obydwa opierały się na zastosowaniu
zasady szufladkowej Dirichleta i na rozkładzie na czynniki pierwsze. Kolejne zadanie wiąże się z jeszcze jednym
pojęciem, które niekiedy pojawia się w rozwiązaniach zadań olimpijskich – tak zwanym największym wspólnym
nieparzystym dzielnikiem. Używa się też, na poziomie intuicyjnym, pojęcia ciągu.



Zadanie 3. Niech f1, f2 będą nieparzystymi liczbami dodatnimi. Określamy ciąg liczb: pierwszy wyraz oznaczamy
f1, drugi jako f2, zaś dla n ­ 3 wyraz n-ty równy fn jest największym nieparzystym dzielnikiem sumy dwóch
poprzednich wyrazów, czyli największym nieparzystym dzielnikiem liczby fn−2 + fn−1. Pokazać, że od pewnego
momentu wyrazy tego ciągu są identyczne i równe liczbie NWD(f1, f2).

Dowód jest bardziej złożony niż poprzednie. Po pierwsze pokażemy, że jeśli pewne dwa wyrazy rozważanego
ciągu są sobie równe, to wszystkie kolejne wyrazy tego ciągu są równe. Po drugie, pokażemy, że wartość, na
której rozważany ciąg się stabilizuje to NWD(f1, f2).

Pierwsza uwaga jest taka, że wszystkie elementy rozważanego ciągu są liczbami nieparzystymi. Istotnie, po-
cząwszy od dwóch liczb nieparzystych f1, f2, każdy kolejny element ciągu jest dzielnikiem nieparzystym sumy
dwóch poprzednich wyrazów, a więc jest liczbą nieparzystą.

Przypuśćmy teraz, że trzy kolejne wyrazy naszego ciągu mają postać

a, a, b.

Wiemy, że b to największy nieparzysty dzielnik liczby a + a, gdzie a jest liczbą nieparzystą. W szczególności
b = a. A zatem jesli dwa wyrazy naszego ciągu są równe, to wszystkie dalsze też.

A może rozważana przed chwilą sytuacja nie jest możliwa? Załóżmy na chwilę, że żadne dwa wyrazy wypisywa-
nego ciągu nie są równe. Weźmy zatem cztery kolejne wyrazy a, b, c, d. Mamy nierówność:

c ¬ a+ b
2
< max{a, b}.

Rzeczywiście c jest największym dzielnikiem nieparzystym a oraz b, więc jego uzyskanie wymaga podzielenia
przez pewną dodatnią potęgę 2, bo suma a+ b jest zawsze parzysta. A druga nierówność? Otóż skoro liczby a, b
są różne, to ich średnia nie może być równa żadnej z nich, a zatem jest mniejsza od większej z nich. Podobną
nierówność dostajemy dla b, c, d:

d ¬ c+ b
2
< max{b, c} ¬ max{a, b}.

Z dwóch uzyskanych nierówności wynika, że

max{c, d} < max{a, b}.

To by oznaczało, że ciąg liczb postaci NWD(f2n, f2n−1) jest ściśle malejący, gdzie fm jest m-tym elementem
rozważanego ciągu. To jest jednak niemożliwe, bo nieskończony ciąg liczb dodatnich nie może być ściśle maleją-
cy. A zatem rzeczywiście pewne dwa elementy naszego ciągu muszą być równe, a jak pokazaliśmy wyżej, z tego
wynika, że od pewnego miejsca ciąg ma tę samą wartość. Teraz pokażemy, że ta wartość to NWD(f1, f2).

Niech a, b, c to trzy kolejne wyrazy naszego ciągu. Oczywiście

c =
a+ b

2n
,

dla pewnego n całkowitego dodatniego. A zatem przekształcając to wyrażenie dostajemy 2nc − b = a. Niech
NWD(a, b) = x, NWD(b, c) = y. Liczby b, c są podzielne przez y. A zatem także a jest podzielna przez y.
Wiemy jednak, że to x jest największym wspólnym dzielnikiem a, b, więc y ¬ x. Z drugiej strony, a = xa′ oraz
b = xb′. A zatem c, jako największy dzielnik nieparzysty liczby a + b równa jest iloczynowi x razy największy
dzielnik nieparzysty liczby a′+b′. W szczególności x jest wspólnym dzielnikiem zarówno b, jak i c. Zatem x ¬ y.
Stąd x = y. A zatem wszystkie kolejne NWD kolejnych wyrazów rozważanego ciągu są takie same i wynoszą
NWD(f1.f2). Skoro, na mocy pierwszej części dowodu od pewnego momentu ciąg ten jest stały, to właśnie owa
stała wartość wynosi NWD(f1, f2).

Widzimy jak przydatne może być wydzielanie odpowiedniego typu czynnika w badaniu podzielności. Ważnym
narzędziem pozwalającym na formalizację tego typu rozważań jest tak zwany wykładnik p-adyczny.

Definicja 1. Dana jest liczba pierwsza p oraz liczba całkowita dodatnia n. Wykładnikiem p-adycznym liczby n
nazywamy taką liczbę całkowitą nieujemną k, że pk jest dzielnikiem n oraz pk+1 nie jest dzielnikiem n. Piszemy
wówczas

vp(n) = k.



A więc dla przykładu v3(24) = 1, v7(30) = 0, zaś v5(500) = 3. Wprowadzenie wykładnika p-adycznego pozwoli
nam spojrzeć zupełnie inaczej na podzielność. Odnotujmy najpierw kilka bardzo prostych własności, wynikają-
cych bezpośrednio z twierdzenia o rozkładzie liczby całkowitej na czynniki pierwsze.

Twierdzenie 1. Niech p będzie liczbą pierwszą, zaś a, b niech będą liczbami całkowitymi. Wówczas:

• liczba a jest dzielnikiem liczby b wtedy i tylko wtedy, gdy vp(a) ¬ vp(b), dla każdego p,

• vp(ab) = vp(a) + vp(b),

• vp(a/b) = vp(a)− vp(b),

• vp(an) = nvp(a),

• vp(NWD(a, b)) = min{vp(a), vp(b)},

• vp(NWW(a, b)) = max{vp(a), vp(b)},

• vp(a± b) ­ min{vp(a), vp(b)}, przy czym równość zachodzi, gdy vp(a) 6= vp(b).

Przykładowe proste zastosowanie powyższych faktów, to dowód znanej dobrze formuły.

Twierdzenie 2. Dla dowolnych liczb całkowitych dodatnich zachodzi równość:

NWD(a, b) ·NWW(a, b) = a · b.

Aby sprawdzić czy dwie liczby całkowite dodatnie x, y są równe wystarczy sprawdzić, czy vp(x) = vp(y), dla
każdej liczby pierwszej p. Policzmy zatem wartość wyrażenia:

vp(NWD(a, b) ·NWW(a, b))− vp(ab).

Zgodnie z własnościami podanymi wyżej wyrażenie to jest równe:

max{vp(a), vp(b)}+ min{vp(a), vp(b)} − vp(a)− vp(b).

Jest jasne, że wyrażenie to jest zawsze równe 0.

Zobaczmy jak pojęcie wykładnika p-adycznego stosuje się do rozwiązywania zadań.

Zadanie 4. Ile jest par liczb całkowitych dodatnich (a, b) spełniających równanie:

a2 + b2 = ab(a+ b)?

Rozważmy dowolną liczbę pierwszą p oraz wielkości vp(a), vp(b). Ze znanych nam własności dostajemy:

vp(ab(a+ b)) = vp(a) + vp(b) + vp(a+ b),

czyli z założenia podanego w zadaniu mamy:

vp(a) + vp(b) + vp(a+ b) = vp(a2 + b2).

Będziemy korzystać z ostatniej własności opisanej w Twierdzeniu 1, rozważając osobno przypadki, gdy vp(a) =
vp(b) oraz, gdy vp(a) 6= vp(b).

• Jeśli vp(a) = vp(b), dla wszystkich liczb pierwszych p, to oczywiście a = b, a wtedy mamy równanie
2a2 = 2a3, czyli a = b = 1.

• Jeśli vp(a) 6= vp(b), to bez straty ogólności można założyć, że vp(a) < vp(b), dla pewnej liczby pierwszej p.
Wówczas vp(a+b) = vp(a) oraz vp(a2+b2) = vp(a2) = 2vp(a), bo vp(a2) = 2vp(a) < 2vp(b) = vp(b2). A za-
tem założenie z treści zadania na poziomie wykładników p-adycznych przybiera w rozważanym przypadku
postać:

vp(a) + vp(b) + vp(a) = 2vp(a),

co jest niemożliwe, bo oznacza, że vp(b) = 0. A zatem drugi przypadek nie może mieć miejsca i zadanie
jest rozwiązane.



Zadanie 5. Dane są liczby całkowite dodatnie a, b, c takie, że liczba

a

b
+
b

c
+
c

a

jest całkowita. Udowodnić, że abc jest sześcianem liczby całkowitej.

W normalnych warunkach to zadanie wygląda na bardzo problematyczne. Zauważmy jednak jak eleganckie jest
rozwiązanie z użyciem wykładnika p-adycznego. Mamy:

a

b
+
b

c
+
c

a
=
a2c+ b2a+ c2b

abc
.

Niech p będzie liczbą pierwszą. Oznaczmy A = vp(a), B = vp(b), C = vp(c). Z założenia wynika zatem, że:

vp(a2c+ b2a+ c2b) ­ vp(abc),

czyli równoważnie:
vp(a2c+ b2a+ c2b) ­ A+B + C.

Zauważmy, że naszym celem jest po prostu pokazać, że A+B +C jest zawsze podzielna przez 3. To będzie do-
kładnie znaczyło, że liczba p wchodzi z wykładnikiem podzielnym przez 3 do rozkładu abc na czynniki pierwsze.

Wiemy jak postępować z wykładnikiem modulo p w przypadku sumy vp(a2c+b2a+c2b). Trzeba osobno rozważyć
sytuację, gdy vp(a2c), vp(b2a) oraz vp(c2b) są parami różne, oraz gdy nie są parami różne. Liczby te to po prostu
2A+ C, 2B +A, 2C +B.

• Liczby vp(a2c), vp(b2a) oraz vp(c2b) są parami różne. Wówczas mamy:

2A+ C ­ min{2A+ C, 2B +A, 2C +B} = vp(a2c+ b2a+ c2b) ­ A+B + C

2B +A ­ min{2A+ C, 2B +A, 2C +B} = vp(a2c+ b2a+ c2b) ­ A+B + C

2C +B ­ min{2A+ C, 2B +A, 2C +B} = vp(a2c+ b2a+ c2b) ­ A+B + C

Z pierwszej nierówności dostajemy A ­ B, z drugiej B ­ C, a z trzeciej C ­ A, co oznacza, że A = B = C.
A zatem A+B + C = 3A jest podzielne przez 3,

• Jeśli zachodzi równość, powiedzmy 2A + C = 2B + A, to A + C = 2B, więc vp(abc) = A + C + B =
2B +B = 3B, więc jest podzeine przez 3.

Jednym z najbardziej znanych faktów związanych z wykładnikiem p-adycznym jest jego wartość dla liczby n!,
czyli iloczynu n pierwszych liczb całkowitych dodatnich, zwana formułą Legendre’a.

Twierdzenie 3. Niech n będzie liczbą całkowitą dodatnią oraz p – liczbą pierwszą. Wówczas:

vp(n!) =
[
n

p

]
+
[
n

p2

]
+
[
n

p3

]
+ . . . ,

gdzie [x] jest najmniejszą liczbą całkowitą nie większą niż x.

Powyższa suma napisana jest tak, jakby była nieskończona, ale oczywiście chodzi jedynie o to, że może być
dowolnie długa. Oczywiście istnieje k takie, że pk > n, więc od pewnego momentu wszystkie jej składniki sumy
napisanej wyżej to zera. Jak to udowodnić? Zobaczmy krótki szkic:

vp(n!) = vp(1) + vp(2) + . . .+ vp(n− 1) + vp(n).

Jedynie dzielniki liczby p są niezerowymi składnikami tej sumy. Niech r będzie największą liczbą całkowitą
dodatnią taką, że rp ¬ n. Wówczas:

vp(n!) = vp(p)+vp(2p)+. . .+vp(rp) = vp(1)+vp(2)+. . .+vp(r)+r·vp(p) = vp(1)+vp(2)+. . .+vp(r)+r = vp(r!)+r.

Oczywiście r =
[
n
p

]
. Postępując analogicznie jak dla n widzimy, że vp(r) = vp(1) + . . .+ vp(s) + s, gdzie

s =
[
r

p

]
=


[
n
p

]
p

 =
[
n

p2

]
.



Wzór powyżej trzeba by oczywiście uzasadnić, podobnie jak wzór [[n/pk]/p] = [n/pk+1], dla k > 1, co zosta-
wiam jako ćwiczenie. Postępując w ten sposób dalej uzyskujemy kolejne składniki sumy występującej we wzorze
Legendre’a. Po pewnej liczbie kroków zostanie nam do obliczenia vp(q!), gdzie q < p, co jest równe 0.

Typowym zastosowaniem wzoru Legendre’a jest jest wyznaczanie liczby zer, którą kończy się rozwinięcie dzie-
siętne liczb typu n!, i podobnych. Na przykład dla 2020! chodzi o przedstawienie jej w postaci 10x ·y, gdzie y jest
liczbą niepodzielną przez 10. Zauważmy, że x = v5(2020). Istotnie, nietrudno sprawdzić, że v2(2020!) > v5(2020!),
porównując ze sobą kolejne składniki [2020/2k] oraz [2020/5k] sum opisujących te wielkości. A zatem liczba 2020!
ma na końcu 503 zera, zgodnie z poniższym rachunkiem.

v5(2020!) =
[

2020
5

]
+
[

2020
25

]
+
[

2020
125

]
+
[

2020
625

]
= 404 + 80 + 16 + 3 = 503.

Wzór na vp(n!) przydaje się w wielu zadaniach, w których operujemy na ilorazach silni. W kombinatoryce
ilorazy takie mają często istotne znaczenie. Również w teorii liczb wzór ten odgrywa bardzo ważną rolę. Jest
kluczowym elementem trudnego dowodu tzw. postulatu Bertranda mówiącego, że dla każdej liczby całkowitej
n > 1 istnieje liczba pierwsza p taka, że n < p < 2n. Pozostańmy jednak przy zadaniach olimpijskich. Rzadko
zdarzają się zadania wykorzystujące bezpośrednio formułę Legendre’a. Oto przykład z OM.

Zadanie 6. Dane są liczby całkowite k, n takie, że 1 ¬ k ¬ n2

4 , przy czym k nie ma dzielnika pierwszego
większego od n. Udowodnij, że n! dzieli się przez k.

Gdy mamy obok siebie podzielność i silnię zawsze warto spróbować sprawdzić czy nie uda się skorzystać ze
wzoru Legendre’a. Bierzemy zatem dowolną liczbę pierwszą p i żądamy, by vp(k) było niewiększe niż vp(n!). To
wszystko, czego potrzebujemy. Rozważymy dwa przypadki:

• Niech vp(k) = 2x. Wówczas p2x ¬ k ¬ n
2

4 . Łatwa manipulacja pozwala stwierdzić, ze 2px ¬ n, czyli

2 ¬ n
px
.

Spójrzmy teraz na sumę:

vp(n!) =
[
n

p

]
+
[
n

p2

]
+ . . .+

[
n

px

]
+ . . .

Szacowanie, które zapisaliśmy pozwala stwierdzić, że pierwsze x składników tej sumy równych to liczby
nie mniejsze niż 2. Zatem dowód w tym przypadku jest zakończony, bowiem

vp(n!) ­ 2x = vp(k).

• Niech vp(k) = 2x+ 1.. Mamy: p2x+1 ¬ k ¬ n
2

4 . Teraz szacowanie będzie bardziej skomplikowane, postaci:
2
√
ppx ¬ n. A zatem

n

px
­ 2
√
p.

Oznacza to, że pierwsze x składników sumy:

vp(n!) =
[
n

p

]
+
[
n

p2

]
+ . . .+

[
n

px

]
+ . . .

równe jest przynajmniej 2
√
p. A zatem

vp(n!) ­ x · 2
√
p > 2x+ 1 = vp(k).

Szacowanie, które wykonaliśmy może wydawać się sztuczne, ale ma również drugie dno. Jeśli ktoś zapozna-
ny jest z pojęciem liczbowego systemu pozycyjnego, może zastanowić się nad interpretacją wzoru Legendre’a
w kontekście zapisu liczby n w systemie liczbowym o podstawie równej p, na przykład w systemie dwójkowym.

Jeśli ktoś byłby zainteresowany pogłębieniem tematu wykładnika p-adycznego, to polecam artykuł członka KO
OMJ w Tarnowie, Jakuba Węgreckiego, z którego zapożyczyłem kilka prostszych zadań, dostępny pod adresem
https://jagiellonian.academia.edu/JakubW%C4%99grecki.



Zadania z rozwiązaniami
Zadanie 1. Na tablicy napisano liczbę pewną liczbę całkowitą dodatnią n. Władek i Robert grają w grę polegającą
w każdej turze na odejmowaniu od liczby znajdującej się aktualnie na tablicy jednego z jej dzielników (można
odjąć także 1 lub samą liczbę na tablicy) i zastępując liczbę na tablicy uzyskaną różnicą. Gracze wykonują te
operacje naprzemienne. Ten z graczy, który będzie musiał zapisać na tablicy 0 przegrywa. Grę zaczyna Władek.
Dla jakich n istnieje strategia dająca Władkowi zwycięstwo, niezależnie od ruchów Roberta?

Rozwiązanie. Taka strategia istnieje tylko dla n parzystych. W takim przypadku Włodek musi w każdym
ruchu odejmować 1. W ten sposób Robert za każdym razem otrzymuje liczbę nieparzystą i musi odjąć od niej
nieparzysty dzielnik. W skończonej liczbie ruchów Robert otrzyma zatem liczbę pierwszą lub 1, co doprowadzi
do jego porażki. Jeżeli n jest nieparzyste, wówczas strategię wygrywającą ma oczywiście Robert. �

Zadanie 2. Rozważmy zbiór S złożony z n liczb postaci:

S = {n+ 1, n+ 2, . . . , 2n− 1, 2n}.

Pokaż, że suma największych nieparzystych dzielników wszystkich elementów zbioru S równa jest n2.

Rozwiązanie. Rozważmy największy dzielnik nieparzysty liczby n+i, postaci ai, dla i = 1, . . . , n. Jest to jedna
z liczb 1, 3, 5, . . . , 2n− 1. Pokażmy, że dla i 6= j mamy ai 6= aj . Załóżmy przeciwnie. Niech

n+ i = a · 2x, n+ j = a · 2y,

dla i 6= j oraz x, y ­ 0. Oczywiście x 6= j, bo inaczej n + i = n + j, a założyliśmy coś innego. Niech x > y.
Wówczas n+ i > 2(n+ j). To jest jednak niemożliwe, bo najmniejsza liczba w S to n+ 1, a największa to 2n.
Uzyskana sprzeczność pokazuje, że największe nieparzyste dzielniki liczb ze zbioru S są parami różne. Jest ich
n+ 1. A zatem są to elementy zbioru 1, 3, . . . , 2n− 1. Suma tych elementów to oczywiście n2. �

Zadanie 3. Niech n będzie liczbą naturalną. Ile co najwyżej liczb może zawierać zbiór liczb naturalnych nie
większych od 2n, z których żadna nie jest podzielna przez żadną inną?

Dowód. W szukanym zbiorze nie może być dwóch liczb mających ten sam największy dzielnik nieparzysty. Liczb
nieparzystych nie większych niż 2n jest n, a zatem tyle elementów może mieć co najwyżej poszukiwany zbiór. I
rzeczywiście, zbiór liczb postaci: n+ 1, . . . , 2n ma szukaną własność.

Zadanie 4. Udowodnij, że zbiór liczb całkowitych dodatnich można podzielić na nieskończenie wiele podzbiorów
A1, A2, A3, . . ., z których żadne dwa nie mają elementu wspólnego, przy czym podzbiory te mają następującą
własność: jeśli pewne liczby całkowite dodatnie a, b, c, d należą do tego samego zbioru An, dla pewnego n, to
nastepujące warunki są równoważne:

• a− b oraz c− d należą do pewnego zbioru Am (przy czym niekoniecznie m = n),

• a
b = c

d .

Rozwiązanie. Niech Ak będzie zbiorem wszystkich liczb postaci

(2k − 1) · 2n,

czyli zbiorem liczb, których największy nieparzysty dzielnik równy jest 2k−1. Sprawdźmy, że wymagania zadania
wobec zbiorów Am są spełnione. Niech a, b, c, d należą do Ak, przy czym x > y oraz z > w. Możemy zatem
napisać:

x = (2k − 1) · 2a+b, y = (2k − 1) · 2a, z = (2k − 1)2c+d, w = (2k − 1) · 2c.

Wówczas:
x− y = (2k − 1)(2b − 1)(2a), z − w = (2k − 1)(2d − 1)(2c).

Mamy pokazać, że przynależność x− y oraz z −w do tego samego zbioru Am, dla pewnego n, jest równoważna
warunkowi x/y = z/w. Załóżmy więc, że x−y oraz z−w mają ten sam największy dzielnik nieparzysty. Wówczas
(2k− 1)(2b− 1) = (2k− 1)(2d− 1), czyli b = d. Tymczasem x/y = 2b oraz z/w = 2d. Jasne jest więc, że żądana
równoważność ma miejsce.

�



Zadanie 5. Dane są liczby całkowite x, y takie, że suma

x2

y
+
y2

x

jest liczbą całkowitą. Udowodnij, że obydwa składniki powyższej sumy są liczbami całkowitymi.

Rozwiązanie. Wykażemy, że dla dowolnej liczby pierwszej p zachodzi vp(y) ¬ vp(x2) = 2vp(x). Ułamek:

x2

y
+
y2

x
=
x3 + y3

xy

jest liczbą całkowitą, więc dla dowolnej liczby pierwszej p zachodzi:

vp(xy) = vp(x) + vp(y) ¬ vp(x3 + y3).

Rozważamy dwa przypadki:

• Liczby vp(x3) oraz vp(y3) są różne, na przykład vp(x3) > vp(y3). Wtedy z nierówności wyżej oraz ostatniego
punktu Twierdzenia z wykładu mamy vp(x3) ­ vp(x3+y3) = 3vp(y) ­ vp(x)+vp(y), czyli 2vp(y) ­ vp(x).
Jeśli zaś vp(x3) < vp(y3), to vp(x3 + y3) = vp(x3) = 3vp(x) ­ vp(x) + vp(y) i rezultat jest ten sam.

• Jeśli vp(x3) = vp(y3), to vp(x) = vp(y), a zatem nierówność 2vp(x) ­ vp(y) jest równoważna prawdziwej
nierówności vp(x) ­ 0. Zatem teza zadania jest prawdziwa.

�

Zadanie 6. Największy wspólny dzielnik liczb naturalnych a, b, c jest równy 1. Udowodnij, że jeżeli zachodzi
równość ab = c(b− a), to liczba b− a jest kwadratem liczby całkowitej.

Rozwiązanie. Trzeba pokazać, że dla każdej liczby pierwszej p liczba vp(b− a) jest parzysta. Równość posta-
wiona w zadaniu implikuje, że:

vp(a) + vp(b) = vp(ab) = vp(c(b− a)) = vp(c) + vp(b− a).

Rozważamy przypadki:

• Niech vp(a) 6= vp(b), np. vp(a) > vp(b). Wówczas wypisana wyżej równość ma postać vp(a) + vp(b) =
vp(c) + vp(b), czyli vp(a) = vp(c). Jednak NWD(a, b, c) = 1, więc albo vp(a) = vp(c) = 0, albo vp(b) = 0.
Pierwsza możliwość nie może zajść, bo 0 = vp(a) > vp(b), zaś druga oznacza vp(b− a) = vp(b) = 0.

• Niech vp(a) = vp(b). Wówczas albo vp(a) = vp(b) = 0, albo vp(c) = 0. W pierwszym przypadku vp(c) =
vp(b − a) = 0. W drugim zaś dostajemy równość vp(a) + vp(a) = vp(b − a), czyli vp(b − a) jest liczbą
parzystą.

�

Zadanie 7. Pokazać, że dla żadnej liczby całkowitej dodatniej n liczba 2n nie jest dzielnikiem liczby n!.

Rozwiązanie. Musimy pokazać, że dla każdego n > 0 mamy v2(2n) > v2(n!). Ze wzoru Legendre’a

v2(n!) =
[n

2

]
+
[ n

22

]
+ . . .+

[ n
2k

]
,

gdzie 2k ¬ n < 2k+1. A zatem mamy:

v2(n!) ¬
n

2
+
n

22
+ . . .+

n

2k
=
n

2

(
1 +

1
2

+ . . .+
1

2k−1

)
.

Ze wzoru skróconego mnożenia (trzeba się ich już na tym etapie uczyć):

an − 1 = (a− 1)(an−1 + an−2 + . . .+ a+ 1),

mamy:

1 +
1
2

+ . . .+ . . .+
1

2k−1
=

1− 1
2k

1− 12
= 2− 1

2k−1
.

A zatem mamy:

v2(n!) ¬
n

2

(
2− 1

2k−1

)
< n = v2(2n).

�



Zadanie 8. Na płaszczyźnie z układem współrzędnych umieszczono pionek w punkcie (1,1). Pionkiem tym
poruszać wolno według następujących zasad:

• z każdego punktu o współrzędnych (a, b) można przejść do (2a, b) lub (a, 2b),

• z każdego punktu o współrzędnych (a, b) można przejść do (a−b, b), o ile a > b lub do (a, b−a), jeśli a < b.

Opisz wszystkie pola o współrzędnych (x, y), do których można się dostać z pola (1, 1).

Rozwiązanie. Najpierw przekonajmy się, że z (1, 1) można dotrzeć tylko do punktów (x, y) takich, że
NWD(x, y) = 2s, dla pewnego nieujemnego s. Po pierwsze wiemy, że NWD(x, y) = NWD(x, y−x) = NWD(x−
y, y), a zatem żadne nieparzyste dzielniki wspólne x, y nie zmieniają się przy wykonywaniu operacji, bo najwięk-
szy dzielnik nieparzysty liczby 2a oraz b jest taki sam, jak największy dzielnik nieparzysty liczb a, 2b oraz liczb
a, b. Skoro na starcie, w punkcie (1, 1) największy wspólny dzielnik nieparzysty wynosi 1, to fakt ten pozostaje
prawdą niezależnie od tego do którego punktu się udamy. A zatem NWD(x, y) musi być potęgą 2.

Teraz sprawdźmy, że rzeczywiście da się z (1, 1) dojść do pola (x, y) takiego, że NWD(x, y) = 2s, dla pewnego s.
W tym celu skorzystamy z zasady ekstremum. Rozważmy podzbiór zbioru liczb całkowitych złożony z wartości
wyrażenia p+ q, gdzie (p, q) to punkt, z którego można dojść do (x, y). Ten zbiór ma element minimalny, a więc
dla pewnego (p, q) suma p + q jest najmniejsza możliwa. Zauważmy, że ani p, ani q nie może być parzyste, bo
jeśli do (x, y) można dojść z punktu (p, q) to można też dojść z punktów (p/2, q) oraz (p, q/2), a to przeczyłoby
minimalności sumy p + q. A zatem p, q są nieparzyste. Jeśli p > q, to do (p, q) można dotrzeć z (p + q/2, q)
poprzez punkt (p+ q, q), co znowu przeczy minimalności p+ q. Podobnie dla p < q. A zatem p = q. Ale przecież
zakładaliśmy, że NWD(x, y) = 2s, czyli p, q nie mają wspólnych dzielników nieparzystych. Zatem p = q = 1,
więc można dotrzeć do (x, y) z (1, 1). �

Zadanie 9. Pokaż, że liczba różnych rozkładów liczby całkowitej dodatniej n na sumę nieparzystej liczby składni-
ków będących kolejnymi liczbami całkowitymi równa jest (licząc z dokładnością do kolejności składników) liczbie
nieparzystych dzielników liczby n mniejszych niż

√
2n, zaś liczba rozkładów liczby n na sumę parzystej liczby

składników będących kolejnymi liczbami całkowitymi równa jest (licząc z dokładnością do kolejności składników)
liczbie nieparzystych dzielników liczby n większych niż

√
2n.

Rozwiązanie. Przypuśćmy, że n jest sumą nieparzystej liczby kolejnych liczb całkowitych dodatnich. A zatem
środkowy wyraz tej sumy jest liczbą całkowitą i średnią wszystkich składników. Niech element ten będzie równy
a. Mamy zatem:

n = (a− k) + . . .+ a+ . . .+ (a+ k) = (2k + 1)a.

Problem w tym, że taki napis można wykonać nawet i bez założenia, że a jest liczbą całkowitą, a taka sytuacja
nas nie interesuje. Ważne jest, by okazało się, ze 2k + 1 to dzielnik całkowity liczby n. Wówczas oczywiście dla
różnych k będziemy mieli różne rozkłady na sumy kolejnych liczb całkowitych. Pokażemy teraz, że konieczne
jest by 2k + 1 ¬

√
2n. Z założenia mamy a− k ­ 1, a zatem 2a− (2k + 1) > 0/ W konsekwencji

2k + 1 < 2a =
2n

2k + 1
,

czyli (2k + 1)2 < 2n.

Rozwiązanie części drugiej uzyskuje się analogicznie. Przypuśćmy, że n jest sumą 2k kolejnych liczb całkowitych.
Oczywiście dla różnych k dostajemy różne rozkłady postaci:

n = (a+ 1− k) + . . .+ a︸ ︷︷ ︸
k

+(a+ 1) + . . .+ (a+ k) = 2k(a+
1
2

) = k(2a+ 1),

ale chodzi o to, by a było liczbą całkowitą. I teraz można pokazać, że (2a + 1)2 > 2n. Rzeczywiście a − k ­ 0
(bo najmniejszy składnik naszej sumy jest o 1 większy), więc (2a+ 1)− 2k > 0, czyli 2a+ 1 > 2n

2a+1 . �

Zadanie 10. Niech n będzie liczbą całkowitą dodatnią. Oznaczmy przez f(n) liczbę dzielników dodatnich liczby n,
których cyfra jedności to 1 lub 9, zaś przez g(n) oznaczmy liczbę dzielników dodatnich liczby n, których cyfrą
jedności jest 3 lub 7. Pokaż, że f(n) ­ g(n).



Rozwiązanie. Po pierwsze niech n = 2x · 5y · k, gdzie x, y są całkowite nieujemne oraz k jest nieparzysta,
niepodzielna przez 5. Zauważmy, że f(n) = f(k) oraz g(n) = g(k). Istotnie, dzielniki n o cyfrach jedności
1, 3, 7, 9 są nieparzyste i niepodzielne przez 5, więc są względnie pierwsze z 2 i 5. W rezultacie są też dzielni-
kami k, i to wszystkimi możliwymi. A zatem możemy zakładać, że n jest liczbą nieparzystą, niepodzielną przez 5.

Niech A będzie zbiorem liczb całkowitych o cyfrach jedności 1 lub 9, zaś B niech będzie zbiorem liczb całkowi-
tych o cyfrach jedności 3 lub 7.

Rozważmy przypadek, gdy n należy do B. Wówczas biorąc dowolny jej dzielnik m z B mamy, że nm jest elemen-
tem A. W szczególności każdemu dzielnikowi n z B odpowiada dokładnie jeden dzielnik z A, czyli f(n) = g(n).

Pozostaje rozważyć trudniejszy przypadek, gdy n jest elementem A, a więc ma cyfrę jedności 1 lub 9. Niestety
podzielenie elementu z A przez dzielnik ze zbioru A może dać zarówno dzielnik z A, jak i z B, więc analogicz-
ny argument jak wyżej nie zadziała. Musimy zbadać rozkład n na czynniki. Pokażemy, że w tym przypadku
f(n) > g(n).

Weźmy dowolny dzielnik pierwszy p liczby n i oznaczmy przez a liczbę pvp(n), czyli najwyższą potęgę p dzielącą
n. Liczbę n/a oznaczamy jako b. Będziemy zliczać dzielniki n, osobno ze zbioru A i osobno ze zbioru B. Skoro
n = ab, to każdy dzielnik d liczby n można przedstawić w sposób jednoznaczny jako iloczyn dzielnika da liczby
a i dzielnika db liczby b. Jeśli da oraz db są z A, to d też. Jeśli da oraz db są z B, to d jest z A. Jeśli da należy
do A oraz db należy do B, to d należy do B, i odwrotnie – jeśli da należy do B oraz db nalezy do A, to d należy
do A. Wynikają stąd wzory:

f(n) = f(a)f(b) + g(a)g(b), g(n) = f(a)g(b) + f(b)g(a).

Istotnie, aby jednak dostać dzielnik z A trzeba przemnożyć dwa dzielniki typu A lub dwa dzielniki typu B,
zaś aby dostać dzielnik z B trzeba przemnożyc dwa dzielniki różnych typów. Na ile sposobów? Dzielnik liczby
a ze zbioru A można wybrać na f(a) sposobów, a dzielnik b ze zbioru A można wybrać na f(b) sposobów.
Zatem iloczyn tych dzielników można wybrać na f(a)f(b) różnych sposobów. Osobno zliczamy dzielniki n typu
A powstające przez przemnożenie dzielników typu B: te iloczyny można uformować na g(a)g(b) sposobów. Stąd
wzór na f(n). Aby dostać dzielnik typu B trzeba przemnożyć dzielnik typu A z dzielnikiem typu B, stąd wzór
na g(n). A zatem:

f(n)− g(n) = f(a)f(b) + g(a)g(b)− f(a)g(b)− f(b)g(a) = (f(a)− g(a))(f(b)− g(b)).

W szczególności teza f(n)−g(n) > 0 jest równoważna temu, że f(a)−g(a) > 0 oraz f(b)−g(b) > 0. Wystarczy
więc, że rozstrzygniemy zadanie dla n = pk, gdzie n jest elementem A, bo wtedy zadanie sprowadza się do
rozstrzygnięcia nierówności f(b)− g(b) > 0, którą możemy wykonać analogicznie, jak dla a, wydzielając kolejny
czynnik pierwszy.

Czym jest f(pk), gdzie p ∈ A? Jest to k+1. Czym jest g(pk), gdy p ∈ A? Jest to 0. Tu więc nierówność zachodzi.
Czym jest f(pk), jeśli p należy do B? Wówczas pamiętamy, że k musi być parzyste i wtedy dzielniki z A to
1, p2, p4, . . . , p[k/2], czyli f(pk) = [k/2] + 1. Natomiast g(pk) zlicza dzielniki postaci g, g3, . . . , gk−1, których jest
[k/2]. A zatem w obydwu przypadkach f(n) > g(n), co kończy dowód.

�


