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Ekstremalne iloczyny

Wśród iloczynów liczb naturalnych dwa typy odgrywają szczególną rolę: są to

• potęgi (zwłaszcza liczb pierwszych),

• iloczyny liczb względnie pierwszych.

Owe dwa rodzaje iloczynów są z pewnego punktu widzenia „skrajnymi” przeciwieństwami: w jednym czynniki
są identyczne, a w drugim: wręcz przeciwnie — czynniki nie mają wspólnych dzielników pierwszych. Ewentualna
równość dwóch tak różnych iloczynów wymusza, zgodnie z twierdzeniem o rozkładzie na czynniki pierwsze, szereg
własności wyjściowych rozkładów. Oto trzy przykłady tego typu własności, wykorzystywanych na konkursach:

• jeśli liczba pierwsza p jest dzielnikiem liczby całkowitej an, to również liczba pn jest dzielnikiem liczby an,

• jeśli iloczyn rs względnie pierwszych liczb r, s jest równy liczbie an, to każda z liczb r, s jest n-tą potęgą,

• jeśli iloczyn rs dowolnych liczb całkowitych r, s jest równy liczbie pn, gdzie p jest liczbą pierwszą, wówczas
zarówno r, jak i s są potęgami liczby p.

Powyższe obserwacje traktować można jako uogólnienie prostej obserwacji dotyczącej iloczynów liczb cał-
kowitych, powszechnie znanej z literatury konkursowej, zwłaszcza z teorii równań w liczbach całkowitych
(por. M. Kieza, Sztuczka z iloczynem, Gazetka Kwadrat, nr 5). Oto ona: jeśli a, b są liczbami całkowitymi
oraz p jest liczbą pierwszą, wówczas jeśli ab = p, to zachodzi jeden z czterech przypadków:{

a = p
b = 1

,

{
a = 1
b = p

,

{
a = −p
b = −1

,

{
a = −1
b = −p

.

Przypomnijmy dwa przykłady zastosowania tego, i podobnych faktów.

Zadanie 1. Rozwiąż równanie w liczbach całkowitych x, y, postaci:

2xy + 3x+ y = 0.

Rozwiązanie. Od równania z treści zadania przejść możemy do równoważnych równań postaci:

4xy + 6x+ 2y + 0 = 0,

4xy + 6x+ 2y + 3 = 3,

(2x+ 1)(2y + 3) = 3.

A zatem, biorąc pod uwagę wszystkie możliwe rozkłady liczby 3 na iloczyn dwóch liczb całkowitych, czyli

3 = 3 · 1 = 1 · 3 = (−1) · (−3) = (−3) · (−1),

uzyskujemy cztery możliwe przypadki obejmujące możliwe wartości czynników 2x+ 1 oraz 2y + 3:{
2x+ 1 = 3
2y + 3 = 1

,

{
2x+ 1 = 1
2y + 3 = 3

,

{
2x+ 1 = −1
2y + 3 = −3

,

{
2x+ 1 = −3
2y + 3 = −1

.

A zatem rozwiązania wyjściowego równania to

(x, y) = (1,−1), (x, y) = (0, 0), (x, y) = (−1,−3), (x, y) = (−2,−2).

�



W zadaniach powyższego typu po prostu wskazujemy możliwe wartości czynników i pomysł kończy się na odpo-
wiednim przekształceniu do postaci iloczynowej. Dziś zajmiemy się sytuacjami, gdy o naturze czynników czynić
trzeba będzie bardziej ogólne obserwacje, wskazując na ich relacje. Tego typu obserwacje również znamy, i to
nawet z praktyki szkolnej. Dowodząc podzielność liczby całkowitej postaci n(n + 1)(n + 2) przez 6, skorzystać
możemy pięknie z faktu, że poszczególne czynniki są kolejnymi liczbami całkowitymi. Motywacja jest więc ta-
ka: nie jest ważne jedynie rozkładanie na czynniki, ale rozumienie ich własności i szukanie zależności między nimi.

Kolejny przykład zadania, które prowadzi do rozkładu na czynniki, ale wymaga już rozważenia bardziej ogólnych
ich własności, pochodzi z II etapu VIII OMG.

Zadanie 2. Wyznacz wszystkie pary liczb pierwszych (p, q), dla których liczba

p2 + pq + q2

jest kwadratem liczby całkowitej.

Rozwiązanie. Niech a będzie taką nieujemną liczbą całkowitą, że

p2 + pq + q2 = a2.

Wówczas:
(p+ q)2 − a2 = pq, czyli (p+ q + a)(p+ q − a) = pq.

Załóżmy, że p ­ q. Oczywiście p+ q + a ­ p+ q − a, czyli zachodzi jeden z dwóch przypadków:{
p+ q + a = p
p+ q − a = q

lub

{
p+ q + a = pq
p+ q − a = 1

.

Pierwszy z powyższych układów nie może być spełniony, gdyż p+ q+ a > p. Z kolei dodając stronami równania
drugiego układu, uzyskujemy 2p+ 2q − 1 = pq, co po przekształceniach (por. poprzednie zadanie) ma postać

(p− 2)(q − 2) = 3.

Mamy p − 2 ­ q − 2 ­ 0. Stąd p − 2 = 3, q − 2 = 1, czyli p = 5, q = 3. Sprawdzamy, że otrzymana
para (p, q) = (5, 3) spełnia warunki zadania. Analogicznie rozpatrujemy przypadek p < q, uzyskując drugie
rozwiązanie (p, q) = (3, 5). �

Przyjrzymy się teraz przykładom sytuacji, w których po uzyskaniu równości iloczynów rozpoznajemy po jednej
stronie liczby względnie pierwsze. Dwie najprostsze i najczęściej spotykane konfiguracje tego typu to: dwie
kolejne liczby pierwsze oraz dwie kolejne liczby nieparzyste. Oto zadanie z drugiego etapu XVII OM (1965 r.).

Zadanie 3. Wykaż, że jeżeli liczby naturalne a i b spełniają równanie

a2 + a = 3b2,

to liczba a+ 1 jest kwadratem liczby całkowitej.

Rozwiązanie. Załóżmy, że rozkład liczby b2 na czynniki pierwsze ma postać p2a11 p
2a2
2 · · · p2ass , gdzie pi są

liczbami pierwszymi, a ai — dodatnimi liczbami całkowitymi. Według założenia zachodzi równość:

a(a+ 1) = 3p2a11 p
2a2
2 · · · p2ass .

Liczby a oraz a + 1 są względnie pierwsze, jako dwie kolejne liczby całkowite. Wobec tego każdy z czynników:
3, p2a11 , . . ., p2ass prawej strony równości wyżej wchodzi do rozkładu na czynniki pierwsze jednej i tylko jednej
z liczb a, a+ 1. Zachodzi więc jeden z dwóch przypadków:{

a = r2

a+ 1 = 3s2
,

{
a = 3r2

a+ 1 = s2
,

gdzie r oraz s oznaczają liczby naturalne (iloczyny liczb p2aii = (paii )2) spełniające równanie r2s2 = b2. W przy-
padku pierwszym mielibyśmy 3q2 − p2 = 1, czyli liczba p2 daje resztę 2 z dzielenia przez 3, co jest niemożliwe
(kwadrat daje przy dzieleniu przez 3 resztę 0 lub 1). Zachodzi więc przypadek drugi, czyli a+1 jest kwadratem.
�



Zadanie 4. Znajdź wszystkie liczby pierwsze p o tej własności, że liczba

2p−1 − 1
p

jest kwadratem liczby całkowitej.

Rozwiązanie. Szukamy takich lliczb całkowitych m, że

2p−1 − 1 = pm2.

Gdy p = 2, wówczas rozważana liczba nie jest całkowita. Przyjmijmy, że p = 2k + 1 jest liczbą nieparzystą.
Wówczas p− 1 = 2k jest dodatnią liczbą parzystą i ze wzoru na różnicę kwadratów, uzyskujemy

22k − 1 = (2k − 1)(2k + 1) = pm2.

Liczby 2k − 1 oraz 2k + 1 są względnie pierwsze, jako kolejne dwie liczby nieparzyste. Stąd uzyskujemy, analo-
gicznie do rozumowania w poprzednim zadaniu, dwa możliwe przypadki:{

2k − 1 = px2

2k + 1 = y2
,

{
2k − 1 = x2

2k + 1 = py2
,

dla pewnych liczb całkowitych x, y, takich że x2y2 = m2. Rozważmy dwa uzyskane przypadki. Każdy wymagać
będzie analizy i dodatkowych pomysłów.

• Przypadek 1. Mamy 2k + 1 = y2, czyli y2 − 1 = 2k, skąd

(y + 1)(y − 1) = 2k.

Obydwa czynniki są zatem potęgami liczby 2, czyli na mocy początkowej uwagi, uzyskujemy{
y + 1 = 2m

y − 1 = 2n
,

dla pewnych dodatnich liczb całkowitych m,n, takich że m+n = k. Różnica liczb 2m oraz 2n jest jednak,
jak widzimy, równa 2, co oznacza, że m = 2 oraz n = 1. Zatem y = 3, skąd k = 3 i ostatecznie px2 = 7.
Stąd p = 7 oraz x = 1.

• Przypadek 2. Mamy 2k = x2 + 1. Jednak reszta z dzielenia kwadratu przez 4 jest równa 0 lub 1, stąd 2k

daje resztę 1 lub 2 z dzielenia przez 4. W rezultacie k = 0 lub k = 1. Skoro jednak p = 2k + 1, to k = 1
oraz p = 3, co daje drugie rozwiązanie.

�

Typowymi zastosowaniami technik opisywanych przez nas wyżej są poszukiwania liczb spełniających równania.
Jest tak zwłaszcza wtedy, gdy wiążą one potęgi.

Zadanie 5 (Albania, TST 2009). Wyznacz wszystkie dodatnie liczby całkowite m, n, dla których

1 + 5 · 2m = n2.

Rozwiązanie. Zapisujemy równanie w postaci

2m · 5 = (n+ 1)(n− 1).

Liczby n+ 1 oraz n− 1 nie są tym razem względnie pierwsze, ale ich największym wspólnym dzielnikiem jest 2
(ich różnica). Stąd liczba 2m−1 jest dzielnikiem jednego z tych czynników. Nawet, gdyby to był większy czynnik,
dostaniemy (oszacowanie dzielnika przez wielokrotność): n+ 1 ­ 2m−1, czyli n ­ 2m−1 − 1, skąd

5 · 2m = n2 − 1 ­ (2m−1 − 1)2 − 1 = 22m−2 − 2m ­ 2m(2m−2 − 1).

W rezultacie 2m−2 ¬ 6, skąd m ¬ 4. Bezpośrednie sprawdzenie prowadzi do jedynego rozwiązania m = 4, n = 9.
�



Zadanie 6 (Obóz OMJ 2022, poziom OM). Rozwiąż w dodatnich liczbach całkowitych równanie

4x + 3y = z2.

Rozwiązanie. Po raz kolejny widać możliwość rozkładu na różnicę kwadratów. Mamy 3y = z2 − 22x, czyli

3y = (z − 2x)(z + 2x).

Wynika stąd, że każdy z czynników jest potęgą trójki o wykładniku, będącym nieujemną liczbą całkowitą.{
z − 2x = 3k,
z + 2x = 3l

.

Drugi czynnik jest większy, więc l > k. Różnica między tymi czynnikami równa jest

3l − 3k = 2x+1.

Nie jest to liczba podzielna przez 3, więc k = 0, czyli z − 2x = 1. Stąd też z = 2x + 1 oraz

3y = 2x + 2x + 1 = 2x+1 + 1.

Rozważając reszty, jakie potęga trójki daje przy dzieleniu przez 4 stwierdzamy, ze y jest liczbą parzystą. Niech
y = 2z, gdzie z jest dodatnią liczbą całkowitą. Korzystamy ponownie ze wzoru na różnicę kwadratów:

2x+1 = 32z − 1 = (3z − 1)(3z + 1).

W rezultacie jesteśmy w stanie zapisać 2x+1 jako iloczyn potęg dwójki o różnicy 2. Te potęgi są więc liczbami
2 oraz 4, jak w Zadaniu 4 (przypadek 1). Stąd x = 2 oraz k = 1, czyli y = 2 i z = 5. Oznacza to, że jedynym
rozwiązaniem wyjściowego równania jest trójka (2, 2, 5). �

W ostatnim zadaniu dwukrotnie skorzystaliśmy z rozkładu na czynniki, za każdym razem korzystając z tego,
że iloczyn liczb całkowitych będący potęgą liczby pierwszej ma rozkład jedynie na potęgi tej liczby. Kluczowe
było za każdym razem badanie wzajemnej relacji czynników — w tym przypadku ich różnicy. Za chwilę zrobimy
to ponownie, a Czytelnika zainteresowanego utrwaleniem dotychczas zdobytej wiedzy proszę o samodzielne
rozwiązanie w dodatnich liczbach całkowitych x, y, z równania (źródło: Delta, Klub 44M, 2016):

2x + 2y = 6z.

Zadanie 7 (VI OMG). Udowodnij, że nie istnieją dodatnie liczby nieparzyste a i b spełniające równanie

a2 − b3 = 4.

Rozwiązanie. Po raz kolejny przechodzimy do rozkładu, tym razem w postaci:

b3 = (a+ 2)(a− 2).

Czynniki a+ 2 i a− 2 są nieparzyste i różnią się od 4, stąd są względnie pierwsze. Ich iloczyn jest sześcianem,
więc zgodnie z obserwacją poczynioną na początku tych rozważań:{

a+ 2 = k3

a− 2 = l3
,

gdzie k, l są liczbami nieparzystymi. Z definicji liczb k oraz l mamy:

k3 − l3 = 4.

To nie jest jednak możliwe. Mamy
k3 − l3 = (k − l)(k2 + kl + l2).

Drugi z czynników jest liczbą nieparzystą, więc k − l = 4. Stąd

k2 + kl + l2 = (k − l)2 + 3kl = 16 + 3kl = 1.

co daje kl = −5. Jednak jedyne pary liczb całkowitych k > l spełniające tę równość to (5,−1) oraz (1,−5).
W obu przypadkach daje to k − l = 6, zamiast k − l = 4, sprzeczność. �

Skoro już dotknęliśmy bardziej zaawansowanych wzorów skróconego mnożenia, zobaczmy kolejne zadanie wy-
korzystujące wzór na sześcian sumy. Jest on dany wprost w zadaniu.



Zadanie 8 (Delta). Wyznacz wszystkie dodatnie liczby całkowite a, b, dla których liczba a3 + b3 jest czwartą
potęgą liczby pierwszej.

Rozwiązanie. Szukamy dodatnich liczb całkowitych a, b oraz liczby pierwszej p, dla których

(a+ b)(a2 − ab+ b2) = p4.

Dla a = b = 1 powyższe równanie sprowadza się do p4 = 2, co nie jest spełnione dla żadnego p. Przyjmijmy
więc bez straty ogólności, że a ­ b oraz a ­ 2. Wtedy a+ b > 1 oraz a2 − ab+ b2 > 1. Zatem p jest dzielnikiem
liczby a+ b oraz p jest dzielnikiem liczby

a2 − ab+ b2 = (a+ b)2 − 3ab.

Stąd p jest też dzielnikiem liczby 3ab. Zatem p = 3 lub p jest dzielnikiem liczby ab. W przypadku, gdy p = 3,
otrzymujemy równanie a3+ b3 = 81. Bezpośrednio sprawdzamy, że równanie to nie ma rozwiązań dla dodatnich
liczb całkowitych a, b.

Z podzielności p przez ab wynika, że p jest dzielnikiem jednej z liczb a lub b, co po wykorzystaniu podzielności
p przez a + b oznacza, że p jest dzielnikiem obu liczb a, b. Zatem a = rp oraz b = sp, dla pewnych dodatnich
liczb całkowitych r, s. Wyjściowe równanie przybiera postać:

p(r + s) · p2(r2 − rs+ s2) = p4, czyli (r + s)(r2 − rs+ s2) = p.

Skoro r + s > 1, to r + s = p oraz r2 − rs + s2 = 1. Z ostatniej równości wnioskujemy, że r = s = 1. Stąd
p = a = b = 2. Bezpośrednio sprawdzamy, że para (a, b) = (2, 2) spełnia warunki zadania. �

Zadanie 9 (Białoruś, TST 2017). Wyznacz wszystkie liczby pierwsze p oraz q, takie że

20p3 − q3 = 1.

Rozwiązanie. Po raz kolejny korzystając z wzoru na sumę sześcianów, zapisujemy

20p3 = q3 + 1 = (q + 1)(q2 − q + 1).

Czynniki po prawej nie muszą być względnie pierwsze, ale skoro q oraz q + 1 są względnie pierwsze, to:

NWD(q + 1, q2 + q − 1) = NWD(q + 1, (q + 1)2 − 3q) = NWD(q + 1, 3q) ∈ {1, 3}.

W dalszym rozwiązaniu korzystamy z następującej prostej obserwacji: jeśli a, b, c, d są liczbami dodatnimi,
zachodzi równość ac = bd oraz a ¬ b, to c ­ d. Rozważamy dwa przypadki.

• Niech NWD(q + 1, q2 − q + 1) = 1. Liczba p3 jest w całości dzielnikiem jednego z czynników. Mamy więc

p3 ¬ q + 1 lub p2 ¬ q2 − q + 1.

Skorzystamy teraz z uwagi wyżej.

– Jeśli p3 ¬ q + 1, to 20 ­ q2 − q + 1 > q − 1 ­ p3, co jest niemożliwe.

– Jeśli p3 ¬ q2 − q + 1, to 20 ­ q + 1, czyli q ­ 19. Stąd:

p3 ¬ q2 − q + 1 ¬ 192 + 1 < 73 = 373.

Po krótkiej analizie dostajemy p = 7, q = 19.

• Niech NWD(q + 1, q2 − q + 1) = 3. Wtedy liczba 9 jest dzielnikiem 20p3, czyli p = 3. co nie jest jednak
rozwiązaniem naszego równania.

�

Kolejne zadania pokazują jak wiele drobnych obserwacji algebraicznych lub teorioliczbowych trzeba czasem wy-
korzystać w rozwiązaniu, którego generalna idea wydaje się podobna. Na koniec tej części rozważań przyjrzymy
się dwóm wyraźnie trudniejszym zadaniom, gdzie tezę uzyskuje się dzięki subtelnym obserwacjom.



Zadanie 10 (Obóz OMJ 2023). Dodatnie liczby całkowite spełniają warunek

n(4n+ 1) = m(5m+ 1).

Wykaż, że liczba n−m jest kwadratem liczby całkowitej.

Rozwiązanie. Mamy

n(4n+ 1)−m(5m+ 1) = 4n2 + n− 5m2 −m
= (n−m)(4n+ 4m+ 1)−m2

= (n−m)(5m+ 5n+ 1)− n2 = 0.

W rezultacie

(n−m)(4n+ 4m+ 1) = m2,

(n−m)(5m+ 5n+ 1) = n2.

Liczby 4m+4n+1 oraz 5m+5n+1 są jednak względnie pierwsze, gdyż każdy ich wspólny dzielnik jest również
dzielnikiem liczby

5(4m+ 4n+ 1)− 4(5m+ 5n+ 1) = 1.

W rezultacie największy wspólny dzielnik liczb m2 oraz n2 równy jest m − n. Największy wspólny dzielnik
dwóch kwadratów jest jednak kwadratem. �

Zadanie 11 (XVI OM). Znajdź liczby całkowite x oraz y, spełniające równanie:

1 + x+ x2 + x3 = 2y.

Rozwiązanie. Przypuśćmy, że liczby całkowite x oraz y spełniają równanie wyżej. Wówczas 2y jest liczbą
całkowitą, więc y ­ 0. Równanie to możemy przepisać w postaci:

(1 + x)(1 + x2) = 2y.

Ponieważ 2y > 0 oraz 1 + x2 > 0, więc 1 + x > 0, czyli x > −1. Rozważmy dwa przypadki.

• Gdy x = 0, wtedy 2y = 1, czyli y = 0.

• Gdy x > 0, wtedy 1 +x oraz 1 +x2 są dzielnikami liczby 2y większymi od 1, czyli istnieją liczby naturalne
k, l, że:

1 + x = 2l, 1 + x2 = 2l.

Ponieważ x ­ −1, więc 1 + x2 ­ 1 + x oraz l ¬ k. Eliminując x z równań wyżej, otrzymujemy

(2k − 1)2 + 1 = 2l,

a stąd
22k−1 − 2k + 1 = 2l−1.

Lewa strona powyższej równości jest liczbą nieparzystą, zatem 2l−1 jest liczbą nieparzystą, czyli l = 1.
W takim razie k = 1, x = 1, y = 2. Równanie ma zatem rozwiązania x = y = 0, x = 1, y = 2.

�

* * *

W tym miejscu zakończymy przegląd zadań pokazujących wykorzystanie trzech własności wymienionych na
początku naszych rozważań. Ostatnie kilka zadań poświęcimy pojęciu względnej pierwszości i rozpoznawaniu
układów liczb względnie pierwszych. W ten sposób uzyskamy więcej narzędzi do stwierdzania kiedy czynniki
w pojawiających się w różnych zadaniach wyrażeniach algebraicznych mogą być w istocie względnie pierwsze.
Zacznijmy od podstaw (nie podajemy źródeł — te zadania są tak znane, że traktujemy je jako olimpijski folklor).



Zadanie 12. Ze zbioru liczb całkowitych od 1 do 100 wybrano 51 elementów. Wykaż, że pewne dwa z wybranych
elementów są względnie pierwsze.

Rozwiązanie. Podzielmy zbiór liczb całkowitych od 1 do 100 na 50 par postaci:

{1, 2}, {3, 4}, {5, 6}, . . . , {99, 100}.

Skoro wybraliśmy 51 liczb całkowitych, pewne dwie z tych liczb tworzą jedną z wybranych par liczb względnie
pierwszych. �

Zadanie 13. Wykaż, że wśród dowolnych pięciu kolejnych dodatnich liczb całkowitych istnieje taka, która jest
względnie pierwsza z pozostałymi czterema.

Rozwiązanie. Twierdzimy, że wśród pięciu kolejnych liczb całkowitych istnieje liczba a, które jest jednocześnie
nieparzysta i niepodzielna przez 3. Rzeczywiście, wśród pięciu kolejnych liczb są co najmniej dwie nieparzyste,
a wśród dwóch kolejnych liczb nieparzystych, co najmniej jedna nie jest podzielna przez 3.

Zauważmy, że wskazana liczba a jest względnie pierwsza z pozostałymi czterema. Dzielniki pierwsze tej liczby
są niemniejsze niż 5, a dla dowolnej liczby pierwszej p > 3 reszty z dzielenia liczby a przez p pięciu kolejnych
liczb naturalnych są parami rożne. �

Dodatnie liczby całkowite a, b są względnie pierwsze, jeśli NWD(a, b) = 1. Na seminarium o NWD wykazaliśmy,
że każda kombinacja na + mb, gdzie n,m są liczbami całkowitymi, jest wielokrotnością NWD(a, b), a nawet
— że samo NWD(a, b) jest najmniejszą z dodatnich liczb tej postaci. Praktyczne zastosowanie tego twierdzenia
wykorzystuje algorytm Euklidesa, opierający się na równościach typu NWD(a, b) = NWD(a− b, b).

W zadaniach konkursowych stwierdzanie względnej pierwszości bywa nieco trudniejsze. Zobaczmy to na trzech
przykładach, wymagających nieco innych technik.

Zadanie 14. Dane są liczby całkowite a oraz b, takie że a > b > 1 oraz liczba ab+ 1 jest podzielna przez a+ b.
Wykaż, że liczby a, b są względnie pierwsze.

Rozwiązanie. Gdyby liczby a, b miały wspólny dzielnik dodatni d, to dzielnik ten byłby również dzielnikiem
liczb a+ b oraz ab+1 (zgodnie z założeniami zadania). Tymczasem liczba d jest w sposób oczywisty dzielnikiem
liczby ab, skąd d = 1. �

Zadanie 15. Wykaż, że poniższy ciąg liczb zawiera nieskończenie wiele elementów, z których każde dwa są
względnie pierwsze.

1, 11, 111, 1111, 11111, . . .

Rozwiązanie. Rozważmy dwie liczby postaci n = 111 . . . 11︸ ︷︷ ︸
p

, m = 111 . . . 11︸ ︷︷ ︸
q

„ gdzie p > q są dowolnymi liczbami

pierwszymi większymi od 3. Liczby te nie są podzielne przez 9, zaś 9n = 10p − 1 oraz 9m = 10q − 1. Wystarczy
więc wykazać, że NWD(9n, 9m) = 9. Zauważmy jednak, że

NWD(10p − 1, 10q − 1) = NWD(10p − 10q, 10q − 1) = NWD(10q(10p−q − 1), 10q − 1).

Liczby 10q oraz 10q − 1 są względnie pierwsze, zatem

NWD(10p − 1, 10q − 1) = NWD(10q(10p−q − 1), 10q − 1) = NWD(10p−q − 1, 10q − 1).

Wykazaliśmy zatem, że dla dowolnych liczb całkowitych p, q mamy powyższą równość. Stąd, korzystając z al-
gorytmu Euklidesa, wnioskujemy:

NWD(10p − 1, 10q − 1) = 10NWD(p,q) − 1.

Skoro liczby p, q są pierwsze, uzyskany rezultat jest równy 9. Stąd NWD(9n, 9m) = 9, czyli NWD(n,m) = 1.
�



Zadanie 16. Wykaż, że dla każdych dodatnich liczb całkowitych m, n liczby 22
m

+ 1 oraz 22
n

+ 1 są względnie
pierwsze:

Rozwiązanie. Tym razem wykażemy, że jeśli m < n, to liczba 22
m

+ 1 jest dzielnikiem liczby 22
n − 1. Rzeczy-

wiście. korzystając n−m razy ze wzoru na różnicę kwadratów, mamy:

22
n

− 1 = (22
n−1

+ 1)(22
n−1
− 1)

= (22
n−1

+ 1)(22
n−2

+ 1)(22
n−2
− 1)

= (22
n−1

+ 1)(22
n−2

+ 1)(22
n−3

+ 1)(22
n−3
− 1)

= · · ·

= (22
n−1

+ 1)(22
n−2

+ 1)(22
n−3

+ 1)(22
n−3
− 1) . . . (22

m

+ 1)(22
m

− 1).

Zauważmy, że 22
n − 1 oraz 22

n

+ 1 są dwiema kolejnymi liczbami nieparzystymi, czyli są względnie pierwsze.
Tymczasem 22

m

+ 1 ma, jako dzielnik pierwszej z nich, tylko dzielniki pierwsze tej liczby. A zatem

NWD(22
n

+ 1, 22
m

+ 1) = 1.

�

Powyższy dowód można też łatwo przeprowadzić za pomocą indukcji (lub zasady minimum). Wystarczy zauwa-
żyć, że jeśli Fn = 22

n

+ 1, to:
Fn = Fn−1Fn−2 · F1 · F0 + 2.

O liczbach postaci Fn, zwanych liczbami Fermata, można zresztą opowiadać bardzo wiele. Odsyłam zaintereso-
wanych do pierwszego rozdziału książki Arytmetyka i algebra prof. Wojciecha Guzickiego (wyd. Omega), gdzie
za pomocą tych liczb przeprowadzony jest między innymi dowód istnienia nieskończenie wielu liczb pierwszych.

Jak widzimy, wykorzystaliśmy wyżej szereg technik: zasadę szufladkową, algorytm Euklidesa, wzory skrócone-
go mnożenia, a także samą definicję wspólnego dzielnika, wprowadzonego jako dodatkowa liczba do zadania.
Takich technik składowych jest więcej na poziomie olimpiady w liceum, choćby małe twierdzenie Fermata, chiń-
skie twierdzenie o resztach czy zaawansowane wykorzystanie rachunku na resztach z dzielenia (kongruencji). Jeśli
dodamy do tego świadomość, że zwykle stwierdzenie względnej pierwszości jest (na pewno tak bywa zwłaszcza
w zawodach dla licealistów) jedynie krokiem do rozwiązania dłuższego zadania, możemy wywnioskować potrzebę
solidnego opanowania podstaw algebry i teorii liczb przez osobę przygotowującą się do Olimpiady.

* * *

Dodajmy epilog do ostatnich zdań. Czytelnik może bowiem na koniec tych rozważań zwątpić w poczytalność
autora. Czy rzeczywiście czynniki takie, jak 22

n

+ 1, czyli tak zwane liczby Fermata, mogą być wykorzystane
w zadaniu o względnej pierwszości? Oto przykład zadania z finału olimpiady w Korei z 1999 roku.

Zadanie. Znajdź wszystkie dodatnie liczby całkowite n, takie że:

• liczba 2n − 1 jest podzielna przez 3,

• liczba 2
n−1
3 jest dzielnikiem liczby 4m2 + 1, dla pewnej liczby całkowitej m.

Nie chcę tu wchodzić w szczegóły rozwiązania, wymagającego między innymi użycia tzw. chińskiego twierdzenia
o resztach, ale wspomnę jaki jest podstawowy pomysł. Skoro 2n−1 jest liczbą podzielną przez 3, to n jest liczbą
parzystą, postaci 2k. A zatem chcemy, aby liczba (4k − 1)/3 była dzielnikiem liczby 4m2 + 1, dla pewnego m.
Jak się okazuje, taką liczbą k jest 2p. Innymi słowy chcemy pokazać, że liczba (42

p −1)/3 jest dzielnikiem liczby
postaci 4m2 + 1. Tymczasem mamy:

42
p − 1
3

=
(42

p−1
+ 1)(42

p−2
+ 1)(· · · )(4 + 1)(4− 1)

3
,

co po uproszczeniu trójki daje nam iloczyn liczb Fermata, względnie pierwszych, i to postaci 4m2+ 1. Chińskie
twierdzenie o resztach (plus komentarze) zapewnia, że także iloczyn jest w związku z tym w postaci 4m2 + 1.


