Assignment 1

Assume that formulas of a system \mathcal{L} have the form

$$\begin{array}{l} \varphi, \psi ::= \forall x. \sigma \mid \exists x. \varphi \\ \sigma, \tau ::= P(x) \mid \sigma \vee \tau \mid \sigma \wedge \tau \mid \neg \sigma \end{array}$$

where P ranges over an infinite set \mathcal{P} of predicate variables of arity 1. The semantics of this logic is the semantics of the first-order classical logic.

Prove the following proposition.

For each sentence φ of \mathcal{L} if there is a model \mathcal{M} of φ then there is a model \mathcal{M}' of φ such that the size of the carrier of \mathcal{M}' is less than or equal to $|\varphi|$ (i.e. the size of the sentence φ).

Solution The sentence φ has the general form: $\exists x_1 \dots \exists x_n. \forall y. \varphi_0$ where φ_0 does not contain quantifiers. If there is a model \mathcal{M} such that $\mathcal{M} \models \varphi$ then there is a valuation v such that $\mathcal{M}, v \models \forall y. \varphi_0$. Consider a model $\mathcal{M}|_A$ the carrier of which is $A = \{v(x_1), \dots, v(x_n)\}$ and predicates are interpreted as in \mathcal{M} . It is obvious that $\mathcal{M}|_A, v \models \forall y. \varphi_0$. The carrier size of $\mathcal{M}|_A$ is less than or equal to $n \leq |\varphi|$.

Assignment 2

Show that the provability problem for the logic in Assignment 1 is decidable.

Solution We have the following statement

$$\vdash \varphi \quad \text{iff} \quad \not\models \neg \varphi.$$

If $\varphi = \exists x_1 \dots \exists x_n . \forall y. \varphi_0$, where φ_0 is a monadic formula without quantifiers, then $\neg \varphi$ is equivalent to $\psi = \forall x_1 \dots \forall x_n . \exists y. \varphi_0$. This formula is a formula of the fragment $[all, (\omega), (\omega)]$, which is decidable. So if ψ is satisfiable, we announce that φ is unprovable. Otherwise φ is provable.

Assignment 3

Prove that the satisfiability problem for the logic in Assignment 1 is NP-complete.

Solution The satisfiability problem is in NP, because it is enough to guess a model of size not greater than the size n of the formula $\varphi = \exists x_1 \dots \exists x_n . \forall y. \varphi_0$ that is verified for satisfiability and then guess the assignment of the monadic predicates that occur in φ_0 (see the solution of assignment 1). In this way we obtained a model \mathcal{M} . Guess an assignment v of v, v, v to elements of the model. After that for each of the elements v of the model check the value of

 $\mathcal{M}, v[y := a] \models \varphi_0$. The latter can be computed in $O(n^2)$ time and must be repeated n times. Thus the whole procedure is polynomial.

To prove that the problem is NP-hard, we reduce the SAT problem. Consider a formula σ of the propositional logic. For each propositional variable α in σ we take a monadic predicate P_{α} and translate σ to $\overline{\sigma}$ by induction as follows

- $\overline{\alpha} = P_{\alpha}(x)$
- $\bullet \ \overline{\sigma_1 \vee \sigma_2} = \overline{\sigma_1} \vee \overline{\sigma_2}$
- $\bullet \ \overline{\sigma_1 \wedge \sigma_2} = \overline{\sigma_1} \wedge \overline{\sigma_2}$
- $\bullet \ \overline{\neg \tau} = \neg \overline{\tau}$

Finally, we take the formula $\exists x.\overline{\sigma}$. Suppose that σ is satisfied by a boolean valuation v_b . Consider a model \mathcal{M} with carrier $\{0\}$ and predicates defined so that $P_{\alpha}^{\mathcal{M}}(0)$ iff $v_b(\alpha) = 1$. By a straightforward induction over σ we show that $\mathcal{M} \models \exists x.\overline{\sigma}$.

If there is a model \mathcal{N} of $\exists x.\overline{\sigma}$ then there is a valuation v such that $\mathcal{N}, v \models \exists x.\overline{\sigma}$. We take a boolean valuation $v_b(\alpha) = 1$ iff $P_{\alpha}^{\mathcal{N}}(v(x))$. Again, by a straightforward induction over σ we show that $v_b(\sigma) = 1$.