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Abstract. For a given p ≥ 2, let X be an Lp bounded martingale and let Y be a
martingale of bounded mean oscillation. The paper contains the proof of the estimate∥∥∥∥∫ ∞

0
|d⟨X,Y ⟩t|

∥∥∥∥
p

≤ p∥X∥p∥Y ∥bmo.

The inequality is sharp for each p and the range p ≥ 2 cannot be expanded without
additional assumptions on X and Y . The proof rests on the existence of a certain
special function, enjoying appropriate size and concavity requirements.

1. Introduction

Assume that (Ω,F ,P) is a probability space equipped with a discrete-time �ltration
(Fn)n≥0. Let H be a given separable Hilbert space, with the norm | · | and the scalar
product denoted by the dot ·; with no loss of generality, we may and will assume that
H = ℓ2. Suppose further that f = (fn)n≥0, g = (gn)n≥0 are two adapted martingales
taking values in H. The associated di�erence sequence df = (dfn)n≥0, dg = (dgn)n≥0 are
de�ned by df0 = f0 and dfn = fn − fn−1, and similarly for dg. The square function of f
is given by

S(f) =

( ∞∑
n=0

|dfn|2
)1/2

and the p-th norm of f is de�ned by ∥f∥p = supn≥0 ∥fn∥p, 0 < p < ∞. The martingale
g is said to belong to BMO, the class of martingales of bounded mean oscillation, if it is
uniformly integrable and we have the estimate

∥g∥BMO = esssup
n≥0

∥∥∥E(|g∞ − gn−1|2 | Fn

)∥∥∥1/2
∞

< ∞

(with the convention g−1 = 0). The space BMO, introduced by John and Nirenberg [4]
in the analytic setup, plays a fundamental role in probability and harmonic analysis. For
example, it forms a natural substitute for the space L∞: many classical operators (e.g.
singular integral) are not bounded on L∞, but map L∞ to BMO. This weaker bound-
edness is strong enough to apply appropriate interpolation and deduce the boundedness
of operators on other function spaces. Another important property was established by
Fe�erman in the seventies: BMO is a dual space to the Hardy space H1. The martingale
counterparts of these statements were proved by Getoor and Sharpe [1]. In particular, we
have the following quantitative version of Fe�erman's result: for any martingale f ∈ H1
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and any g ∈ BMO with g0 = 0, we have

(1.1) |E⟨f∞, g∞⟩| ≤
√
2∥f∥H1∥g∥BMO

and the constant is the best possible (cf. [5]). Here

⟨f∞, g∞⟩ =
∞∑

n=1

E(dfn · dgn|Fn−1)

is the discrete-time version of the skew bracket of f and g, and the Hp norm of f equals

∥f∥Hp =

E

( ∞∑
n=0

|dfn|2
)p/2

1/p

, 0 < p < ∞.

In our considerations below, we will work with a slightly di�erent class of martingales,
which originates in the works of Herz [2, 3]. We say that g lies in bmo, if it is uniformly
integrable and

∥g∥bmo = sup
n≥0

∥∥∥E(|g∞ − gn|2 | Fn

)∥∥∥1/2
∞

< ∞.

We easily check that bmo is bigger than BMO: this follows directly from the estimate

E
(
|g∞ − gn−1|2 | Fn

)
= E

(
|g∞ − gn|2 | Fn

)
+ |dgn|2 ≥ E

(
|g∞ − gn|2 | Fn

)
.

Thus, there is a natural question about versions of the above Fe�erman's inequality under
the assumption g ∈ bmo. It is not di�cult to construct examples showing that (1.1) fails
to hold, with any �nite constant, if we replace ∥g∥BMO with ∥g∥bmo. This leads to the
question about the Lp-extensions of the above estimate. We will prove the following.

Theorem 1.1. Let p ≥ 2 be a �xed exponent. Then for any Lp-bounded martingale f
and any g ∈ bmo we have the inequality

(1.2) ∥⟨f∞, g∞⟩∥p ≤ p∥f∥p∥g∥bmo

and

(1.3) ∥⟨f∞, g∞⟩∥p ≤ p∥f∥Hp∥g∥bmo.

The constant p is the best possible in both estimates. Furthermore, both inequalities do

not hold for p < 2 with any �nite constant.

To the best of our knowledge, this is a new result. Actually, we will be able to prove
the following stronger form of (1.2):

(1.4)

∥∥∥∥∥
∞∑

n=1

E(|dfn| · |dgn| |Fn−1)

∥∥∥∥∥
p

≤ p∥f∥p∥g∥bmo.

The following simple argument links the above estimates with classical Hardy inequal-
ities on the positive hal�ine. Suppose that the probability space is the unit interval [0, 1]
with its Borel subsets and Lebesgue's measure. For a given δ ∈ (0, 1), consider the �ltra-
tion (Fn)n≥0, where Fn is generated by [0, (1− δ)n] and all Borel subsets of ((1− δ)n, 1].
Then the random variable g(ω) = − lnω satis�es ∥g∥bmo = 1. Indeed, we have

gn(ω) =

{
− ln(1− δ)n + 1 if ω ≤ (1− δ)n,

− lnω if ω > (1− δ)n
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and hence for each n,∥∥E[(g − gn)
2|Fn]

∥∥
∞ =

1

(1− δ)n

∫ (1−δ)n

0

(ln(ω(1− δ)−n) + 1)2dω =

∫ 1

0

(lnu+ 1)2du = 1.

Now, �x arbitrary real-valued variables f ∈ Lp and h ∈ Lp′
(where p′ = p/(p − 1)) and

let (fn)n≥0, (hn)n≥0 stand for the associated martingales. Then we have

E

( ∞∑
n=1

E(h|Fn−1)dgn

)
f = E

∞∑
n=1

E(h|Fn−1)dgndfn = E⟨f∞, g∞⟩h ≤ p∥f∥p∥h∥p′ ,

by Hölder's inequality and (1.2). Taking the supremum over all f with ∥f∥p ≤ 1, we get∥∥∥∥∥
∞∑

n=1

E(h|Fn−1)dgn

∥∥∥∥∥
p′

≤ p∥h∥p′ .

It remains to note that as δ → 0, the expression
∑∞

n=1 E(h|Fn−1)dgn converges almost

surely to the random variable Th(ω) = ω−1
∫ ω

0
h. Thus by Fatou's lemma and some stan-

dard dilation (which allows to expand [0, 1] to the whole R+), we get Hardy's inequality
∥Th∥Lp′ (R+) ≤ p∥h∥Lp′ (R+), with the best constant (but for p′ ∈ (1, 2] only).

By a straightforward approximation, Theorem 1.1 immediately leads to a sharp esti-
mate for continuous-time martingales. Suppose that (Ω,F ,P) is a complete probability
space equipped with a �ltration (Ft)t≥0 satisfying the usual conditions. Let X = (Xt)t≥0,
Y = (Yt)t≥0 be adapted martingales taking values in a Hilbert space H. We impose stan-
dard regularity requirements on the trajectories of these processes: the paths are assumed
to be right-continuous and to have limits from the left. Next, we say that Y belongs to
the space bmo, if it is uniformly integrable and

∥Y ∥bmo = sup
t≥0

∥∥∥E[|Y∞ − Yt|2
∣∣Ft

]1/2∥∥∥
∞

< ∞.

Furthermore, the symbol
∫∞
0

|d⟨X,Y ⟩| will denote the total variation of the skew bracket

⟨X,Y ⟩ =
∑∞

j=1⟨Xj , Y j⟩, where Xj , Y j denote the j-th coordinates of X and Y , respec-

tively. Here is the continuous-time version of Theorem 1.1 and (1.4).

Theorem 1.2. Let p ≥ 2 be a �xed exponent. Then for any Lp-bounded martingale X
and any Y ∈ bmo we have the sharp estimate

(1.5)

∥∥∥∥∫ ∞

0

|d⟨X,Y ⟩t|
∥∥∥∥
p

≤ p∥X∥p∥Y ∥bmo

and

(1.6)

∥∥∥∥∫ ∞

0

|d⟨X,Y ⟩t|
∥∥∥∥
p

≤ p∥[X,X]1/2∥p∥Y ∥bmo.

The inequalities do not hold, with any �nite constant, in the range p < 2.

As we mentioned above, it is enough to focus on Theorem 1.1. The proof of (1.2) will
rest on the existence of a certain special function of four variables, enjoying appropriate
size and concavity requirements. This type of approach, called Burkholder's method
or Bellman function method, has been exploited intensively in the last forty years and
yielded numerous signi�cant results in probability theory and harmonic analysis.
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The remaining part of the paper is divided into two sections. Section 2 is devoted to
the analysis of the special function and the proof of (1.2). The last part of the paper
contains examples showing that the constant p, as well as the range p ≥ 2, are optimal.

2. Proof of (1.2) and (1.3)

Let p ≥ 2 be a �xed parameter and let D = H × R+ × R × R. The proof of the Lp

estimate rests on the special function U = Up : D → R, given by

U(x, s, y, z) = sp(1 + z − y2)− p2|x|2sp−2.

We will prove the following property of this object.

Lemma 2.1. Suppose that a point (x, s, y, z) ∈ D satis�es z ≤ y2 + 1. Let d, h, k be

centered random variables, with d taking values in H and h, k taking values in R. If

E|d|p < ∞ and Eh2 < ∞, then

(2.1) EU(x+ d, s+ E|dh|, y + h, z + k) ≤ U(x, s, y, z).

Proof. Since the variables d, h and k are centered, we compute that

EU(x+ d, s+ E|dh|, y + h, z + k)

= E
[
(s+ E|dh|)p(1 + z + k − (y + h)2)− p2(s+ E|dh|)p−2(x+ d)2

]
= E

[
(s+ E|dh|)p(1 + z − y2)− p2(s+ E|dh|)p−2x2

]
− E(s+ E|dh|)p−2

[
(s+ E|dh|)2h2 + p2d2

]
.

But (s+ E|dh|)2h2 + p2d2 ≥ 2p(s+ E|dh|)|dh| almost surely, so we obtain

EU(x+ d, s+ E|dh|, y + h, z + k)

≤ (s+ E|dh|)p(1 + z − y2)− p2(s+ E|dh|)p−2x2 − 2p(s+ E|dh|)p−1E|dh|.

Now we substitute t = E|dh| and maximize the right-hand side with respect to t. To this
end, observe that the function

t 7→ (s+ t)p(1 + z − y2)− p2(s+ t)p−2x2 − 2p(s+ t)p−1t

is decreasing on R+; indeed, its derivative is equal to

p(s+ t)p−2
[
(s+ t)(z − y2 − 1)− 2(p− 1)t

]
− p2(p− 2)(s+ t)p−3x2 ≤ 0,

where the latter bound comes from the assumed estimates p ≥ 2 and z ≤ y2 + 1. Thus,

EU(x+ d, s+ E|dh|, y + h, z + k) ≤ sp(1 + z − y2)− psp−2 = U(x, s, y, z),

which is precisely the claim. □

Proof of (1.2). Fix martingales f ∈ Lp and g ∈ bmo as in the statement. Introduce
the auxiliary martingale h = (hn)n≥0 and the increasing process s = (sn)n≥0 given by
hn = E(g2|Fn) and sn =

∑n
k=1 E(|dfk| · |dgk| |Fk−1) for n = 0, 1, 2, . . . (we set s0 = 0).

By homogeneity, we may and do assume that ∥g∥bmo ≤ 1; then the two-dimensional
process (g, h) takes values in the parabolic domain {(y, z) : y2 ≤ z ≤ y2 + 1}. The key
ingredient of the proof is the observation that the process

(U (fn, sn, gn, hn))n≥1
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is a supermartingale. To show this, �x n ≥ 1 and apply the estimate (2.1), or rather its

conditional version with respect to Fn−1, with x = fn−1, s =
∑n−1

k=1 |dfk||dgk|, y = gn−1,
z = hn−1 and d = dfn, h = dgn and k = dhn (if n = 1, then s = 0). Then d, h and
k are centered (relative to Fn−1) and we have the estimate z ≤ y2 + 1, directly from
the condition ∥g∥bmo ≤ 1. Note that the conditional version of (2.1) is precisely the
aforementioned supermartingale property and hence we may write

EU (fn, sn, gn, hn) ≤ EU(f0, 0, g0, h0) = 0.

However, we have

spn(1 + hn − g2n)− p2sp−2
n f2

n ≥ spn − p2sp−2
n f2

n ≥ 2

p
(spn − pp|fn|p) ,

where the �rst estimate follows from Schwarz' inequality, while the second is due to
Young's inequality. Thus we obtain

E(spn − pp|fn|p) ≤ 0,

and letting n → ∞ completes the proof. □

Proof of (1.3). Consider the larger Hilbert space K = ℓ2(H). Consider the K-valued
martingales

Fn = (df0, df1, df2, . . . , dfn, 0, 0, . . .) and Gn = (gn, 0, 0, . . .).

Since g ∈ bmo, we have G ∈ bmo as well and ∥G∥bmo = ∥g∥bmo. Thus, by (1.4), we get∥∥∥∥∥
∞∑

n=1

E(|dfn||dgn| |Fn−1)

∥∥∥∥∥
p

=

∥∥∥∥∥
∞∑

n=1

E(|dFn||dGn| |Fn−1)

∥∥∥∥∥
p

≤ p∥F∥p∥G∥bmo = p∥F∥p∥g∥bmo.

It remains to observe that ∥F∥p = ∥f∥Hp and hence the claim follows. □

3. Sharpness and the optimality of the range of p

We start with showing that the estimates (1.2), (1.3), (1.5) and (1.6) fail to hold for
p < 2, no matter what the multiplicative constant is. By a straightforward embedding
argument, it is enough to focus on the discrete-time case. Fix δ > 0 and let f = g be
real-valued martingales starting from zero, satisfying

P(df1 = −δ) = (1 + δ2)−1 = 1− P(df1 = δ−1)

and df2 = df3 = . . . = 0. Let (Fn)n≥0 be the natural �ltration. Then

∥g∥bmo = ∥f∥bmo =
∥∥E(df2

1 |F0)
∥∥1/2
∞ =

(
Edf2

1

)1/2
= 1

and ∥f∥pp = ∥f∥pHp = δp(1 + δ2)−1 + δ2−p(1 + δ)−1 → 0 as δ → 0. Since ⟨f∞, g∞⟩ =

Edf2
1 = 1 almost surely, the ratio

∥⟨f∞, g∞⟩∥p
∥f∥p∥g∥bmo

=
∥⟨f∞, g∞⟩∥p
∥f∥Hp∥g∥bmo

can be made arbitrarily big by picking δ su�ciently small, and hence indeed the range
p ∈ [2,∞) cannot be expanded.

Next, we turn our attention to examples showing that the constant p in the estimates
(1.2) and (1.3) is optimal. Fix p ≥ 2 and let α < p−1, δ ∈ (0, 1) be auxiliary parameters.
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Introduce the sequence pn = (1−2δ)n, n = 0, 1, 2, . . ., and consider the probability space
((0, 1],B(0, 1), | · |), where | · | stands for the Lebesgue's measure. We endow the space
with the �ltration (Fn)n≥0, where

Fn = σ

(
(0, pn],

(
pk,

pk + pk−1

2

]
,

(
pk + pk−1

2
, pk−1

]
: k = 1, 2, . . . , n

)
.

Next, consider the real-valued martingale f with the di�erences given by df0 = 0 and

dfn =


α(1 + 2αδ)n on ((pn + pn−1)/2, pn−1] ,

−α(1 + 2αδ)n on (pn, (pn + pn−1)/2] ,

0 elsewhere

for n = 1, 2, . . .. Note that the supports of the di�erences are pairwise disjoint, and hence
in particular we have

(3.1) S(f) = |f | = α(1 + 2αδ)n on (pn, pn−1]

almost surely. Finally, let g be the martingale generated by the sign of f : then is, we
let gn = E(sgn f |Fn), n = 0, 1, 2, . . .. Obviously, g is a martingale bounded by 1, in
particular, we have the estimate ∥g∥bmo ≤ 1. We easily compute that dg0 = 0 and

dgn =


1 on ((pn + pn−1)/2, pn−1] ,

−1 on (pn, (pn + pn−1)/2] ,

0 elsewhere

for n = 1, 2, . . .. Directly from the above formulas for df and dg, we compute that

E(|dfn||dgn||Fn−1) =

{
1

pn−1
· α(1 + 2αδ)n(pn−1 − pn) on (0, pn−1],

0 elsewhere,

=

{
2αδ(1 + 2αδ)n on (0, pn−1],

0 elsewhere

and hence we have
∞∑
k=1

E(|dfn||dgn||Fn−1) = (1 + 2αδ)n − 1 = α−1|f | − 1 on (pn, pn−1].

Here in the last passage we have used the formula (3.1). We are ready to compare the Lp

norms of
∑∞

k=1 E(|dfn||dgn||Fn−1) and f . Directly from (3.1), we check that

∥f∥pp =

∞∑
n=1

αp(1 + 2αδ)np(pn−1 − pn) =
2αpδ

1− 2δ

∞∑
n=1

[
(1 + 2αδ)p(1− 2δ)

]n
.

Recall that α < p−1; consequently, if δ is su�ciently close to 0, then the above series is
convergent. On the other hand, if α is taken close enough to p−1, then the value of ∥f∥p
can be made arbitrarily large. Denoting by Cp the optimal constant in (1.5), we obtain

Cp ≥
∥
∑∞

k=1 E(|dfn||dgn||Fn−1)∥p
∥f∥p

≥ α−1∥f∥p − 1

∥f∥p
.

By the above discussion, the right-hand side can be made arbitrarily close to p. This
gives the desired sharpness of (1.5). Since S(f) = |f | almost surely, the constant p in
(1.3) is also the best possible.
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