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Abstract. Let MD be the dyadic maximal operator on Rn. The pa-
per contains the identi�cation of the best constant in the two-weight
estimate

∥MDf∥Lp(w) ≤ Cp,σ,w∥f∥Lp(σ1−p)

under the assumption that the pair (σ,w) of weights satis�es an ap-
propriate bump condition. The result is shown to be true in the larger
context of abstract probability spaces equipped with a tree-like struc-
ture.
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1. Introduction

The purpose of this paper is to study a class of sharp two-weight Lp esti-
mates for maximal operators, under the assumption that the weights satisfy
a certain bump condition. To present the results from an appropriate per-
spective, we start with the dyadic setting. Suppose that D = D(Rn) is a
class of dyadic cubes contained in Rn and let MD be the associated maximal
operator, acting on locally integrable functions f : Rn → R by

MDf = sup
Q∈D(Rn)

⟨|f |⟩QχQ.

Here we have used the notation ⟨f⟩Q for 1
|Q|
∫
Q
f , the average of f over

Q (with respect to the Lebesgue measure). This operator is a fundamental
object in analysis and there is a huge literature devoted to the study of tight
estimates for this object. For example, MD satis�es the weak-type (1, 1)
inequality

λ
∣∣ {x ∈ Rn : MDf(x) ≥ λ}

∣∣ ≤ ∫
{MDf≥λ}

|f(u)|du, f ∈ L1(Rn), (1.1)
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which, after integration, gives the corresponding Lp estimate

||MDf ||Lp(Rn) ≤
p

p− 1
||f ||Lp(Rn), 1 < p ≤ ∞. (1.2)

Both estimates are sharp: the constant 1 in (1.1) and the constant p/(p−1) in
(1.2) cannot be decreased. These two results are of fundamental importance
to analysis and have been extended and applied in numerous directions. For
some related sharp estimates, see e.g. [6, 7, 8, 9, 10, 13, 14, 16].

Let us turn our attention to the weighted versions of (1.1) and (1.2). In
what follows, the word `weight' will refer to a nonnegative, integrable function
on the underlying measure space (here, Rn with Lebesgue's measure). A
weight w gives rise to the corresponding Lp and weak Lp spaces, given by

Lp(w) =

{
f : Rn → R : ||f ||Lp(w) =

(∫
Rn

|f |pwdx
)1/p

<∞

}
and

Lp,∞(w) =

f : Rn → R : ∥f∥Lp,∞(w) = sup
λ>0

(
λp
∫
{x:|f(x)|≥λ}

w

)1/p

<∞

 .

The following statement is due to Muckenhoupt [11]. Suppose that 1 ≤ p <∞
is given and �xed, and let w be a weight on Rn. Then MD is bounded as an
operator from Lp(w) → Lp,∞(w) if and only if w belongs to the dyadic Ap
class, i.e.,

[w]Ap := sup⟨w⟩Q⟨w−1/(p−1)⟩p−1
Q <∞,

where the supremum is taken over all dyadic cubes in Rn (for p = 1, we
need to pass to the limit: [w]A1 = sup⟨w⟩Q esssupQ w

−1). This condition also
characterizes the boundedness of MD as an operator on Lp(w), for a given
1 < p <∞.

In this paper, we will be interested in the two-weight context, in which
the weights v and w in the base and in the target space are di�erent. Following
the customary convention, we will make the substitution v = σ1−p. The
argument of Muckenhoupt [11] shows that we have ∥MD∥Lp(σ1−p)→Lp,∞(w) <
∞ if and only if

[σ,w]Ap
= sup
Q∈D(Rn)

⟨w⟩Q⟨σ⟩p−1
Q <∞. (1.3)

Actually, we have the quantitative result ∥MD∥Lp(σ1−p)→Lp,∞(w) = [σ,w]Ap .
Quite unexpectedly - at least in the light of the aforementioned one-weight
setting - the condition [σ,w]Ap

< ∞ does not characterize the boundedness

of MD as an operator from Lp(σ1−p) to Lp(w). The correct characterization
was given by Sawyer [18], by means of the so-called testing condition: we
have ∥MD∥Lp(σ1−p)→Lp(w) <∞ if and only if∫

Q

(
MD(σχQ)

)p
wdx ≤ C

∫
Q

σdx for all Q ∈ D(Rn),
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where C depends only on p, w and σ. One of the drawbacks of this require-
ment is that it is hard to verify in practice, in contrast to the much simpler
criterion [σ,w]Ap < ∞. This observation leads to the very natural question
about the modi�cation of the latter simple criterion which would be su�cient

for the Lp boundedness: the idea is to enlarge (�bump�) one or two factors
appearing under the supremum in (1.3). This problem has gained a lot of in-
terest in the literature and has also been studied in the wider context of the
boundedness of singular integral operators. The �rst result in this direction
was the following theorem of Neugebauer [12].

Theorem 1.1. Let (σ,w) be a pair of weights and let 1 < p < ∞ be a �xed

exponent. If there is r > 1 for which

sup
Q∈D(Rn)

⟨wr⟩1/rQ ⟨σr⟩(p−1)/r
Q <∞,

then MD is bounded as an operator from Lp(σ1−p) to Lp(w).

The paper of Lerner [5] contains the following related result. Let ψ be
a positive function on (0,∞), with

∫∞
0

dt
tψ(t) <∞ (for example, one can take

a function which behaves as log1+ε(ε + 1/t) as t → 0 and log1+e(ε + t) as
t→ ∞). Then the requirement

sup
Q∈D(Rn)

⟨w⟩Q⟨σ⟩p−1ψ(⟨σ⟩Q) <∞, (1.4)

is su�cient for the Lp boundedness of MD. So, it is enough to bump the
factor depending on σ. See also [2, 4] for related Orlicz bump conditions,
[3, 17, 19] for the so-called entropy bounds and the monograph [1] for much
more in the direction.

The principal purpose of this paper is to establish a sharp version of
Lerner's result. For technical reasons, it will be convenient for us to denote
the expression ⟨σ⟩p−1ψ(⟨σ⟩Q), appearing in (1.4), by (γ(⟨σ⟩Q))−1. Here is
our main result.

Theorem 1.2. Let γ : (0,∞) → (0,∞) be a convex and decreasing function

such that ∫ ∞

0

tp−2γ(t)dt <∞. (1.5)

If the pair (σ,w) satis�es the condition

[σ,w]γ := sup
Q∈D(Rn)

⟨w⟩Q
(
γ(⟨σ⟩Q)

)−1
<∞, (1.6)

then we have the sharp estimate

∥MD∥Lp(σ1−p)→Lp(w) ≤
(
p[σ,w]γ

∫ ∞

0

tp−2γ(t)dt

)1/p

. (1.7)

Here by sharpness we mean that for any ε > 0 and any function γ as in
the statement, there is a pair (σ,w) of weights satisfying (1.6) such that

∥MD∥Lp(σ1−p)→Lp(w) >

(
p[σ,w]γ

∫ ∞

0

tp−2γ(t)dt

)1/p

− ε.
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This is indeed a sharp form of the aforementioned result of Lerner: we see
that under the substitution γ(s) = s1−p/ψ(s), the integrability condition
(1.5) becomes

∫∞
0

dt
tγ(t) <∞.

Actually, we will manage to obtain the extension of the above result in
the context of abstract probability measures equipped with tree-like struc-
tures.

De�nition 1.3. Suppose that (X,µ) is a nonatomic probability space. A set
T of measurable subsets of X will be called a tree if the following conditions
are satis�ed:

(i) X ∈ T and for every Q ∈ T we have µ(Q) > 0.

(ii) For every Q ∈ T there is a �nite subset C(Q) ⊂ T containing at least
two elements such that

(a) the elements of C(Q) are pairwise almost disjoint subsets of Q,
(b) Q =

⋃
C(Q).

(iii) T =
⋃
m≥0 T m, where T 0 = {X} and T m+1 =

⋃
Q∈T m C(Q).

(iv) We have limm→∞ supQ∈T m µ(Q) = 0.

Here and in what follows, two measurable subsets A, B ⊆ X are said
to be almost disjoint, if µ(A ∩B) = 0.

An important example, which links the above de�nition with the preced-
ing considerations, is the cube X = [0, 1)n endowed with Lebesgue measure
and the tree of its dyadic subcubes. Any probability space equipped with a
tree gives rise to the corresponding maximal operator MT , acting on inte-
grable functions f : X → R by the formula

MT f(x) = sup {⟨|f |⟩Q : x ∈ Q,Q ∈ T } ,

where ⟨f⟩Q = 1
µ(Q)

∫
Q
fdµ is the average of f over Q with respect to the

measure µ. One extends the notions of weights and weighted Lp spaces to
this new context in an obvious manner. Here is the version of Theorem 1.2.

Theorem 1.4. Let γ : (0,∞) → (0,∞) be a convex and decreasing function

satisfying (1.5). If the pair (σ,w) satis�es the condition

[σ,w]γ := sup
Q∈T

⟨w⟩Q
(
γ(⟨σ⟩Q)

)−1
<∞, (1.8)

then we have the sharp estimate

∥MT ∥Lp(σ1−p)→Lp(w) ≤
(
p[σ,w]γ

∫ ∞

0

tp−2γ(t)dt

)1/p

. (1.9)

Here the sharpness of (1.9) is understood as in the dyadic context. Let
us emphasize that the estimate is sharp for each individual probability space
with a tree-like structure and each individual function γ satisfying the above
requirements. From now on, we will assume that [σ,w]γ = 1, which is allowed
by a simple homogeneity argument: the function γ̃(s) = γ(s) · [σ,w]γ inherits
the structural properties and we have [σ,w]γ̃ = 1.
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The remaining part of the paper is organized as follows. Section 2 con-
tains the proofs of the two-weight estimates (1.7) and (1.9), which are ob-
tained with the use of Bellman function method. The �nal part of the paper
is devoted to the construction of extremal examples, which show that the
constant cannot be improved.

2. Proof of (1.7) and (1.9)

The central role in this section is played by the function B : (0,∞)4 → R
given by

B(x, y, u, v) = ypu− pxpv1−p
∫ yv/x

0

tp−2γ(t)dt.

As we shall see, it enjoys certain concavity and size conditions which enable
the extraction of the sharp weighted Lp bound. We start the analysis with
the following statement.

Lemma 2.1. For any parameter y > 0, the function

ξ(x, v) = xpv1−p
∫ yv/x

0

tp−2γ(t)dt

is convex on (0,∞)2.

Proof. By homogeneity, we may and do assume that y = 1. Note that if
φ : (0,∞) → [0,∞) is convex and of class C2, then the function ζ(x, v) =
xφ(v/x) is convex on (0,∞)× (0,∞). Indeed, we compute that the Hessian
matrix of ζ on (0,∞)2 is given by

D2ζ(x, v) =

[
x−3v2φ′′(v/x) −x−2vφ′′(v/x)
−x−2vφ′′(v/x) x−1φ′′(v/x)

]
,

which is semipositive de�nite: the determinant of the full matrix is zero and
the entry in the upper-left corner is nonnegative. Therefore, the assertion of
the lemma will follow if we show that the function

φ(s) = s1−p
∫ s

0

tp−2γ(t)dt

is convex on (0,∞). We compute directly that the second derivative of φ is
given by

φ′′(s) = p(p− 1)s−p−1

∫ s

0

tp−2γ(t)dt− ps−2γ(s) + s−1γ′(s).

Since γ is convex, we have γ(t) ≥ γ(s) + γ′(s)(t − s) for all t > 0. Applying
this estimate under the above integral, we obtain the desired inequality φ′′ ≥
0. □

We will also need the following monotonicity of B.

Lemma 2.2. For any (x, y, u, v) ∈ (0,∞)4 such that x ≥ y and u ≤ γ(v), we
have

B(x, y, u, v) ≥ B(x, x, u, v).
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Proof. This is straightforward. We compute that

By(x, y, u, v) = pxyp−2
(yu
x

− γ
(yv
x

))
≤ pxyp−2

(
γ(v)− γ

(yv
x

))
≤ pxyp−2(γ(v)− γ(v)) = 0,

since y/x ≤ 1 and the function γ is nonincreasing. This gives the claim. □

Proof of (1.9). For the sake of clarity, we split the reasoning into a few sep-
arate parts.

Step 1. Notation. Let f be an arbitrary function on X and let w, σ be
weights on X satisfying [σ,w]γ = 1. We introduce the auxiliary functional
sequences (fn)n≥0, (gn)n≥0, (wn)n≥0 and (σn)n≥0 as follows. For any n ≥ 0
and any ω ∈ X,

fn(ω) = ⟨f⟩Qn(ω), gn(ω) = max
0≤k≤n

fk(ω),

wn(ω) = ⟨w⟩Qn(ω), σn(ω) = ⟨σ⟩Qn(ω),

where Qn(ω) is the unique element of T n which contains ω. One can inter-
pret these sequences from the probabilistic point of view: one easily checks
that (fn)n≥0, (wn)n≥0 and (σn)n≥0 are martingales induced by the �ltration
(T n)n≥0 , with the terminal variables equal to f , w and σ, respectively; fur-
thermore, (gn)n≥0 is the maximal process associated with (fn)n≥0. Note that
by Lebesgue's di�erentiation theorem (or martingale covergence theorem),
we obtain gn → MT f and wn → w almost surely as n→ ∞.

Step 2. Monotonicity. Now we will prove that the four functional se-
quences above combine nicely with B. More precisely, we will show that the
sequence (∫

X

B(fn, gn, wn, σn)dµ

)
n≥0

is nonincreasing. To see this, �x an integer n ≥ 0, let Q be an arbitrary
element of T n and let Q1, Q2, . . ., Qm be the collection of all children of Q in
T n+1. Observe that the functions fn, gn, wn and σn are constant on Q, while
the functions fn+1, gn+1, wn+1 and σn+1 are constant on each Qj . Next, we
have the inequality

B(fn+1, gn+1, wn+1, σn+1) ≤ B(fn+1, gn, wn+1, σn+1)

on each Qj . Indeed, if gn+1 = gn on Qj , then there is nothing to prove;
otherwise, by the de�nition of g, we must have gn+1 = fn+1 and hence the
above estimate follows from Lemma 2.2. Integrating over Qj and summing
over j, we obtain the estimate∫

Q

B(fn+1, gn+1, wn+1, σn+1)dµ ≤
∫
Q

B(fn+1, gn, wn+1, σn+1)dµ.
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Observe that B depends linearly on u; furthermore, gn is constant on Q.
Consequently,∫

Q

B(fn+1, gn, wn+1, σn+1)dµ =

∫
Q

B(fn+1, gn, wn, σn+1)dµ.

It remains to note that the integral on the right does is not bigger than∫
Q
B(fn, gn, wn, σn)dµ. This is due to the identities fn|Q = ⟨fn+1⟩Q, σn|Q =

⟨σn+1⟩Q, Lemma 2.1 and the formula for B. Summing over all Q ∈ T n we
obtain the desired monotonicity.

Step 3. Completion of the proof. By the previous step, for any n ≥ 0 we
have ∫

X

B(fn, gn, wn, σn)dµ ≤
∫
X

B(f0, g0, w0, σ0)dµ. (2.1)

But we have g0 = f0 and w0 ≤ γ(σ0), so the monotonicity of γ gives

B(f0, g0, w0, σ0) ≤ fp0 γ(σ0)− pfp0σ
1−p
0

∫ σ0

0

tp−2γ(t)dt

≤ fp0 γ(σ0)− pfp0σ
1−p
0

∫ σ0

0

tp−2γ(σ0)dt = −f
p
0 γ(σ0)

p− 1
≤ 0.

Hence the right-hand side of (2.1) is nonpositive and the estimate yields∫
X

gpnwndµ ≤ p

∫
X

(
fpnσ

1−p
n

∫ gnσn/fn

0

tp−2γ(t)dt

)
dµ

≤ p

∫ ∞

0

tp−2γ(t)dt ·
∫
X

fpnσ
1−p
n dµ

≤ p

∫ ∞

0

tp−2γ(t)dt ·
∫
X

fpσ1−pdµ.

Here in the last passage we used the conditional version of Jensen's inequal-
ity, applied to the convex function (x, u) 7→ xpu1−p. Letting n → ∞ and
exploiting Fatou's lemma, we get the claim (see the limiting behavior of the
sequences (gn)n≥0 and (wn)n≥0, described at the end of Step 1 above). □

Proof of (1.7). This follows from a straightforward dilation argument. By
(1.9), we get

∥MD(fχQ)∥Lp(w) ≤
(
p

∫ ∞

0

tp−2γ(t)dt

)1/p

∥fχQ∥Lp(σ1−p),

for an arbitrary cube Q ∈ D(Rn). Thus, by Lebesgue's monotone convergence
theorem,

∥MD(fχ[0,∞)n)∥Lp(w) ≤
(
p

∫ ∞

0

tp−2γ(t)dt

)1/p

∥fχ[0,∞)n∥Lp(σ1−p).

The same estimate holds if we replace [0,∞) by any product of the form
I1 × I2 × . . .× In, where each Ij is either [0,∞) or (−∞, 0]. Summing these
estimates over all such products, we obtain the claim. □
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3. Sharpness

Now we will show that the constants in (1.7) and (1.9) cannot be improved.
Actually, as we will brie�y explain now, we may restrict ourselves to the
sharpness of the localized estimate (1.9). Indeed, suppose that we have shown

that the constant
(
p
∫∞
0
tp−2γ(t)dt

)1/p
is optimal for the probability space

(X,µ) = ([0, 1)n, | · |) with the dyadic lattice. So, for any ε > 0 there is a
function f : [0, 1)n → R and a pair (σ,w) of weights on [0, 1)n satisfying
[σ,w]γ = 1, for which

∥MT f∥Lp(w) >

((
p

∫ ∞

0

tp−2γ(t)dt

)1/p

− ε

)
∥f∥Lp(σ1−p).

We extend f , σ, w to functions f̃ , σ̃, w̃ on Rn, setting f̃(x) = 0, σ̃(x) =
⟨σ⟩[0,1)n , w̃(x) = ⟨w⟩[0,1)n for x ̸∈ [0, 1)n. Then the condition [σ̃, w̃]γ = 1 is
preserved, since for Q ̸⊆ [0, 1)n we have

⟨w̃⟩Q
(
γ(⟨σ̃⟩Q)

)−1
= ⟨w⟩[0,1)n

(
γ(⟨σ⟩[0,1)n)

)−1 ≤ 1.

Furthermore,

∥MDf̃∥Lp(w̃) ≥ ∥MT f∥Lp(w) >

((
p

∫ ∞

0

tp−2γ(t)dt

)1/p

− ε

)
∥f∥Lp(σ1−p))

=

((
p

∫ ∞

0

tp−2γ(t)dt

)1/p

− ε

)
∥f̃∥Lp(σ̃1−p)).

So, from now on we focus on (1.9). Fix an arbitrary probability space
(X,µ), a tree-like structure T and an arbitrary function γ satisfying the
conditions listed in the statement of Theorem 1.2. It is convenient to split
the reasoning into a few parts.

Step 1. Construction. We start with the following technical fact, which
can be found in Melas' paper [6].

Lemma 3.1. For every Q ∈ T and every β ∈ (0, 1) there is a subfamily

F (Q) ⊂ T consisting of pairwise almost disjoint subsets of Q such that

µ

 ⋃
R∈F (Q)

R

 =
∑

R∈F (Q)

µ(R) = βµ(Q).

We use this fact inductively, to construct an appropriate family A0 ⊃
A1 ⊃ A2 ⊃ . . . of sets. First, we let A0 = X. Next, suppose that we have
constructed the set An and assume further, that this set is a union of pairwise
almost disjoint elements of T , called the atoms of An. (Note that this condi-
tion is satis�ed for n = 0: we have A0 = X ∈ T ). Then, for each atomQ of An,
we apply the above lemma with β = (1 + δ)−1, obtaining a subfamily F (Q).
We de�ne the next set of the sequence, putting An+1 =

⋃
Q

⋃
Q′∈F (Q)Q

′,

the �rst union taken over all atoms Q of An. Directly from the de�nition,
this set is a union of the family {F (Q) : Q an atom of An}, which consists of
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pairwise almost disjoint elements of T . We call these elements the atoms of
An+1 and conclude the description of the induction step.

It follows at once from the above construction that if Q is an atom of
An, then for any m ≥ n we have µ(Q ∩Am) = µ(Q)(1 + δ)n−m and hence

µ(Q∩(Am\Am+1)) = µ(Q∩Am)−µ(Q∩Am+1) = µ(Q)(1+δ)n−m−1δ. (3.1)

Now we introduce some additional geometric objects. Suppose that γ̃ :
(0,∞) → (0,∞) is a C1 convex function lying strictly below γ. Next, �x
parameters S > s > 0, ε > 0 and let N be a large positive integer. Let
δ > 0 be uniquely determined by the requirement s(1 + δ)N = S. For n =
0, 1, 2, . . . , N we de�ne sn = s(1 + δ)n + ε; furthermore, let

tn = γ̃(sn) +
γ̃(sn)− γ̃(sn+1)

δ
, n = 0, 1, 2, . . . , N − 1.

Note that if N is taken su�ciently large, then δ can be made as small as we
wish and hence we may assume that the piecewise linear curve joining the
points (sn, γ̃(sn)), n = 0, 1, 2, . . . , N , lies entirely below the graph of γ. See
Figure 1 below.

Figure 1. The geometric parameters used in the construction.

We are ready to de�ne w, σ and f . Set

w = γ̃(sN )χAN
+

N−1∑
n=0

tnχAn\An+1
and f = σ = γ̃(sN )χAN

+εχX\AN
.
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Step 2. The veri�cation of the bump condition. We start with the ob-
servation that if Q is an atom of An, then, by (3.1),

⟨w⟩Q = γ̃(sN )(1 + δ)N−n +

N−1∑
m=n

tm(1 + δ)n−m−1δ

= γ̃(sN )(1 + δ)N−n +

N−1∑
m=n

(
γ̃(sm)δ + γ̃(sm)− γ̃(sm+1)

)
(1 + δ)n−m−1

= γ̃(sN )(1 + δ)N−n +

N−1∑
m=n

γ̃(sm)(1 + δ)n−m −
N−1∑
m=n

γ̃(sm+1)(1 + δ)n−m−1

= γ̃(sn)

(3.2)

and

⟨σ⟩Q =
1

µ(Q)

∫
Q∩AN

s(1 + δ)Ndµ+ ε = s(1 + δ)n + ε = sn. (3.3)

We are ready for the veri�cation of the bump condition [σ,w]γ ≤ 1: we will
show that ⟨w⟩Q ≤ γ(⟨σ⟩Q) for all Q ∈ T . For an arbitrary Q, we have three
possibilities.

1◦ We haveQ ⊆ AN , up to a set of measure zero (that is, µ(Q\AN ) = 0).
Then ⟨w⟩Q = γ̃(sN ) = γ̃(⟨σ⟩Q) ≤ γ(⟨σ⟩Q), as desired.

2◦ There is n ≤ N such that Q ⊆ An−1 and Q ∩ An = ∅, up to
a set of measure zero (precisely, µ(Q \ An−1) = µ(Q ∩ An) = 0). Then
⟨w⟩Q = tn−1 < γ(ε) = γ(⟨σ⟩), so the required condition holds.

3◦ There is n < N such that Q ⊆ An−1 (up to a set of measure zero)
and µ(Q\An) < µ(Q): this corresponds to the case in which Q has nontrivial
intersections with An and An−1 \An. Then, by the very de�nition of w and
σ, we have∫

Q\An

wdµ = tn−1µ(Q \An) and

∫
Q\An

σdµ = εµ(Q \An).

Furthermore, if Q′ is any atom of An contained in Q, then by (3.2) and (3.3)
we have ⟨w⟩Q′ = γ̃(sn) and ⟨σ⟩Q′ = sn. Summing over all such Q′, we get∫

Q∩An

wdµ = γ̃(sn)µ(Q ∩An) and

∫
Q∩An

σdµ = snµ(Q),

which implies∫
Q

wdµ =

∫
Q\An

wdµ+

∫
Q∩An

wdµ = tn−1µ(Q \An) + γ̃(sn)µ(Q ∩An)

and ∫
Q

σdµ =

∫
Q\An

σdµ+

∫
Q∩An

σdµ = εµ(Q \An) + snµ(Q ∩An)
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That is, the point (⟨σ⟩Q, ⟨w⟩Q) lies on the line segment with endpoints
(ε, tn−1) and (sn, γ̃(sn)). However, this line segment lies below the graph
of the function γ: this is guaranteed by taking N su�ciently large (see the
discussion above Figure 1). This implies ⟨w⟩Q ≤ γ(⟨σ⟩Q), and hence the
bump condition holds true. Before we proceed, let us note that by (3.2) and
(3.3) applied to Q = X, we have ⟨w⟩Q = γ̃(⟨σ⟩Q). Hence, if γ̃ is chosen su�-
ciently close to γ, then the quantity [σ,w⟩]γ can be made arbitrarily close to
1.

Step 3. Completion of the proof. We proceed to the study the behavior
of the ratio ∥MT f∥Lp(w)/∥f∥Lp(σ1−p). The denominator equals(∫

X

fpσ1−pdµ

)1/p

=

(∫
X

σdµ

)1/p

= (s+ ε)1/p. (3.4)

The main technical di�culty lies in the analysis of ∥MT f∥Lp(w). We start
with the observation that if Q is an atom of An, then, by (3.3), ⟨f⟩Q =
⟨σ⟩Q = sn. Hence, by the de�nition of the maximal operator, we have

MT f ≥ sNχAN
+

N−1∑
n=0

snχAn\An+1
.

Consequently,

∥MT f∥pLp(w)

≥ spN γ̃(sN )µ(AN ) +

N−1∑
n=0

spntnµ(An \An+1)

= spN γ̃(sN )(1 + δ)−N +

N−1∑
n=0

spn

(
γ̃(sn) +

γ̃(sn)− γ̃(sn+1)

δ

)
δ(1 + δ)−n−1

= (S + ε)pγ̃(S + ε) · s
S

+

N−1∑
n=0

spn

(
γ̃(sn) +

γ̃(sn)− γ̃(sn+1)

δ

)
δ(1 + δ)−n−1.

Now we perform a limiting procedure and let N → ∞; then the parameter δ
goes to zero. Since sn+1 − sn = s(1 + δ)nδ = (sn − ε)δ and

γ̃(sn)− γ̃(sn+1)

δ
= −γ̃′(sn)(sn − ε) +O(δ),

we easily check that the above expression converges to

(S + ε)pγ̃(S + ε) · s
S

+ s

∫ S

s

(γ̃(t+ ε)− γ̃′(t+ ε)t) · (t+ ε)p

t2
dt.

Next, if we let ε→ 0, this tends further to

sSp−1γ̃(S) + s

∫ S

s

γ̃(t)− γ̃′(t)t

t2
· tpdt = spγ̃(s) + ps

∫ S

s

tp−2γ̃(t)dt

> ps

∫ S

s

tp−2γ̃(t)dt,
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where the latter equality follows from integration by parts. Thus, taking ε
small enough and then N su�ciently large, we may make ∥MT f∥Lp(w) bigger

than
(
ps
∫ S
s
tp−2γ̃(t)dt

)1/p
. Combining this with (3.4) and noting that the

auxiliary C1 convex function γ̃ was chosen arbitrarily (which in particular
implies that [σ,w]γ is as close to 1 as we wish, see the previous step), the
best constant in the Lp estimate cannot be smaller than(

p

∫ S

s

tp−2γ(t)dt

)1/p

.

It remains to observe that if we let s→ 0 and S → ∞, then the latter expres-

sion converges to
(
p
∫∞
0
tp−2γ(t)dt

)1/p
. This proves the desired sharpness.

References

[1] D. V. Cruz-Uribe, J. M. Martell, C. Pérez, Weights, extrapolation and the
theory of Rubio de Francia. Operator Theory: Advances and Applications,
215. Birkhäuser/Springer Basel AG, Basel, 2011.

[2] M. T. Lacey, On the separated bumps conjecture for Calderón-Zygmund oper-

ators, Hokkaido Math. J. 45 (2016), 223�242.

[3] M. T. Lacey and S. Spencer, On entropy bumps for Calderón-Zygmund opera-

tors, Concr. Oper. 2 (2015), 47�52.

[4] K. Li, Two weight inequalities for bilinear forms, Collect. Math. 68 (2017),
129�144.

[5] A. Lerner, On separated bump conditions for Calderon-Zygmund operators,
available at https://arxiv.org/abs/2008.05866.

[6] A. D. Melas, The Bellman functions of dyadic-like maximal operators and re-

lated inequalities, Adv. Math. 192 (2005), 310�340.

[7] A. D. Melas, Dyadic-like maximal operators on LlogL functions, J. Funct.
Anal. 257 (2009), 1631�1654.

[8] A. D. Melas, Sharp general local estimates for dyadic-like maximal operators

and related Bellman functions, Adv. Math. 220 (2009) 367�426.

[9] A. D. Melas and E. N. Nikolidakis, On weak-type inequalities for dyadic maxi-

mal functions, J. Math. Anal. Appl. 367 (2008), 404�410.

[10] A. D. Melas and E. N. Nikolidakis, Dyadic-like maximal operators on integrable

functions and Bellman functions related to Kolmogorov's inequality, Trans.
Amer. Math. Soc. 362 (2010), 1571�1597.

[11] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function,
Trans. Amer. Math. Soc 165 (1972), 207�226.

[12] C. J. Neugebauer, Inserting Ap-weights, Proc. Amer. Math. Soc. 87 (1983),
644�648.

[13] A. Os¦kowski, Sharp Lp,∞ → Lq estimates for the dyadic-like maximal opera-

tors, J. Fourier Anal. Appl. 20 (2014), pp. 911�933.

[14] A. Os¦kowski, Sharp weak-type estimates for the dyadic-like maximal operators,
Taiwanese J. Math. 19 (2015), pp. 1031�1050.



Separated bump condition 13

[15] A. Os¦kowski, Best constants in Muckenhoupt's inequality, Ann. Acad. Sci.
Fenn. Math. 42 (2017), 889�904.

[16] A. Os¦kowski, M. Rapicki, Sharp Lorentz-norm estimates for dyadic-like max-

imal operators, Studia Math. 257 (2021), 87�110.

[17] R. Rahm and S. Spencer, Entropy bumps and another su�cient condition for

the two-weight boundedness of sparse operators, Israel J. Math. 223 (2018), no.
1, 197�204.

[18] E. T. Sawyer, A characterization of a two-weight norm inequality for maximal

operators, Studia Math. 75 (1982), 1�11.

[19] S. Treil and A. Volberg, Entropy conditions in two weight inequalities for sin-

gular integral operators, Adv. Math. 301 (2016), 499�548.

Adam Os¦kowski
Faculty of Mathematics, Informatics and Mechanics
University of Warsaw
Banacha 2, 02-097 Warsaw
Poland
e-mail: ados@mimuw.edu.pl


