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Abstract. The purpose of the paper is to establish weighted maximal Lp-inequalities in the
context of operator-valued martingales on semi�nite von Neumann algebras. The main emphasis
is put on the dependence of the Lp constants on the characteristic of the weight involved. As
applications, we establish weighted estimates for the noncommutative version of Hardy-Littlewood
maximal operator and weighted bounds for noncommutative maximal truncations of a wide class
of singular integrals.

1. Introduction

The theory of noncommutative martingales is a fast-expanding area of mathematics, and its
fruitful connections with the theory of operator algebras and noncommutative harmonic analysis
have been evidenced in numerous articles. One of the primary goals of this paper is to study the
context of maximal inequalities for operator-valued martingales in the presence of a weight, i.e.,
a nonnegative and integrable function.

To present the results from the appropriate perspective, let us discuss several closely related
areas in the literature. For the relevant de�nitions and notations, we refer the reader to the next
section. The fundamental results of Doob assert that if x = (xn)n≥0 is a martingale on some
classical probability space (Ω,F ,P), then we have the weak-type estimate

λP(sup
n≥0
|xn| ≥ λ) ≤ ‖x‖L1 , λ > 0,

and its strong-type analogue∥∥∥∥sup
n≥0
|xn|

∥∥∥∥
Lp

≤ p

p− 1
‖x‖Lp , 1 < p ≤ ∞.

One may ask about the noncommutative version of the above estimates. In this new context the
martingale becomes a sequence of operators and one of the di�culties which need to be overcome
is the lack of maximal functions. In a celebrated paper [10], Cuculescu proposed the following
approach towards the weak-type estimate. Suppose that x = (xn)n≥0 is an L1-bounded martingale
on a �ltered, tracial von Neumann algebra (M, τ). Then for any λ > 0 there is a projection qλ
such that qλxnqλ ≤ λ for each n and

λτ (1− qλ) ≤ ‖x‖L1(M).

It is easy to see that this estimate does extend the above weak-type bound, the projection qλ
plays the role of the indicator function of the event {supn≥0 |xn| ≥ λ}.
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Thirty years later, Junge [21] proved the corresponding strong type bound, thus obtaining
the noncommutative analogue of the classical result of Doob. He bypassed the de�nition of
the maximal function and, instead, introduced the maximal Lp-norm of a martingale directly,
exploiting vector-valued Lp spaces Lp (M; `∞) introduced by Pisier [42] in the mid-nineties. The
result can be formulated as

(1.1) ‖x‖Lp(M;`∞) .

(
p

p− 1

)2

‖x‖Lp(M), 1 < p ≤ ∞,

and the quadratic order O((p− 1)−2) as p→ 1 is the best possible [22]. In the proof of the above
inequality, Junge passed to the dual estimate

(1.2)

∥∥∥∥∥∥
∑
n≥0

Enan

∥∥∥∥∥∥
Lp(M)

. p2

∥∥∥∥∥∥
∑
n≥0

an

∥∥∥∥∥∥
Lp(M)

, 1 ≤ p <∞,

and established it with the use of complex interpolation and Hilbert module theory arguments.
A di�erent proof, based on real interpolation, was given by Junge and Xu in [23].

The motivation for the results obtained in this paper comes from a very natural question about
the weighted analogue of (1.1). Let us recall some basic facts from the commutative setting, in
which the theory of weighted estimates has been widely developed. Let d ≥ 1 be a �xed dimension.
The Hardy-Littlewood maximal operatorM on Rd acts on locally integrable functions f : Rd → R
by the formula

Mf (x) = sup
1

|Q|

∫
Q
|f (y) |dy,

where the supremum is taken over all cubes Q containing x, having sides parallel to the axes. Let
w be a weight, i.e., a nonnegative and locally integrable function and let 1 < p < ∞ be a �xed
exponent. In the seminal paper [35], Muckenhoupt characterized those w, for which the maximal
operator is bounded as an operator on Lp(w), i.e., those w, for which there exists a �nite constant
Cp,w depending only on the parameters indicated such that

(1.3)

∫
Rd

(Mf)pwdx ≤ Cp,w
∫
Rd
|f |pwdx.

He also studied the analogous problem for weak-type (p, p) inequality:

(1.4) λp
∫
{x:Mf(x)≥λ}

wdx ≤ Cp,w
∫
Rd
|f |pwdx.

It turns out that both inequalities are true if and only if w satis�es the so-called Ap condition.
The latter means that the Ap characteristic of w, given by

(1.5) [w]Ap := sup
Q

(
1

|Q|

∫
Q
wdx

)(
1

|Q|

∫
Q
w

1
1−pdx

)p−1

(the supremum is taken over all cubes Q ⊂ Rd with sides parallel to the axes), is �nite. Soon
after the appearance of [35], it was shown that the Ap condition characterizes the weighted Lp
and weak-Lp boundedness of large families of classical operators, including the Hilbert transform
(Hunt, Muckenhoupt and Wheeden [16]), general Caldeón-Zygmund singular integrals (Coifman
and Fe�erman [8], Hytönen [17]), fractional and Poisson integrals (Sawyer [45, 46]), area func-
tionals (Buckley [5], Lerner [30]) and many more. In addition, following the works of Ikeda and
Kazamaki [20] (see also Kazamaki [25]), most of the results have been successfully transferred from
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the analytic to the probabilistic, martingale context (for some recent progress in this direction,
see [1, 2, 3, 38, 39, 41]).

There is a very interesting aspect of the theory, concerning the extraction of the optimal depen-
dence of the constants involved on the characteristic of a weight. Let us illustrate this problem
on the estimate (1.3) above. As we have already discussed above, if w ∈ Ap, then the inequality
holds with some �nite constant Cp,w. The question is: given 1 < p < ∞, what is the optimal
(i.e., the least) exponent κp such that Cp,w ≤ cp[w]

κp
Ap

for some constant cp depending only on p?

This topic has appeared for the �rst time in Buckley's work [5], where it was shown that in the
context of maximal functions, the exponent κp = 1/(p − 1) is the best. For similar results for
other classical operators, see e.g. [2, 17, 28, 30, 41] and consult the references therein.

There is a natural question how much of the weighted theory can be carried over to the non-
commutative setting discussed previously. A partial answer to this question was provided in the
context of matrix weights, which has been developed very intensively during the last decade. We
will discuss here only the extension of Muckenhoupt's estimates. Suppose that n > 1, d ≥ 1 are
�xed integers. A matrix weight W is an n × n self-adjoint matrix function on Rd (with locally
integrable entries) such thatW (x) is nonnegative-de�nite for almost all x ∈ Rd. Given 1 ≤ p <∞
and an n× n matrix weight W on Rd, we de�ne the associated weighted space Lp(W ) to be the

class of all measurable, vector-valued functions f : Rd → Rn such that

‖f‖Lp(W ) =

(∫
Rd
|W (x)1/pf(x)|pdx

)1/p

<∞.

One of the challenging problems (see also (1.1) above) is to generalize e�ciently the Hardy-
Littlewood maximal operator M to this new setting. Another question arising immediately con-
cerns the appropriate interpretation of the boundedness of this operator on weighted spaces: since
M acts between di�erent spaces (it is reasonable to expect Mf to be a nonnegative function on
Rd), the symbol ‖Mf‖Lp(W ) simply makes no sense. To handle this di�culty, it is instructive
to inspect the following change-of-measure argument. Namely, for a given linear operator T , its
boundedness on the space Lp(W ) is equivalent to the boundedness of W 1/pTW−1/p on the (un-

weighted) space Lp(Rn;Rd). This suggests that for the maximal operator, one should compose
it appropriately with powers of the weight W , and then study the boundedness of the resulting
operator on the usual unweighted spaces. This idea has turned out to be successful, and it has
been generalized to the wide class of Calderón-Zygmund singular integral operators by a number
of authors (cf. [4, 9, 11, 14, 36]), as well as to the context of fractional operators [9].

However, essentially nothing is known in the context of martingales on tracial von Neumann
algebras. While it is natural to treat the weights and martingales as operators, the noncommu-
tativity makes the analysis of the joint behavior of these objects extremely di�cult. We have
decided to restrict ourselves to the special, semicomutative setting, in which many technicalities
disappear, but on the other hand, the questions are still interesting and challenging. Namely, we
will assume that the underlying von Neumann algebra is of the formM = L∞(X,F , µ)⊗̄N , where
(X,F , µ) is a classical σ-�nite measure space and N is another von Neumann algebra. We will
consider �ltrations which act on the �rst component only (i.e., are of the form L∞(X,Fn, µ)⊗N ,
n = 0, 1, 2, . . .). Furthermore, a weight will be a nonnegative operator of the form w ⊗ I, and
hence it will commute with every element of M: this, in particular, allows a very simple (and
natural) de�nition of the Ap characteristic: [w⊗ I]Ap := [w]Ap . With no risk of confusion, we will
often simplify the notation and write w instead of w ⊗ I.

Note that M can be identi�ed with L∞(X;N ), the space of functions on X taking values in
N . That is, we will consider the case of operator-valued martingales on X, with weights being
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elements of the commutant. This semicomutative context has been studied by many authors and
applied in various problems of noncommutative harmonic analysis; we mention here the excellent
exposition [33] by Mei.

We will establish the following statement.

Theorem 1.1. Let 1 < p <∞. Then for any x ∈M and any weight w ∈ Ap,

(1.6) ‖x‖Lwp (M;`∞) .p [w]
1/(p−1)
Ap

‖x‖Lwp (M).

The exponent 1/(p− 1) is the best possible, since it is already optimal in the classical case.

An important comment about the commutative setting is in order. The (classical) version of
the above statement was �rst obtained by Buckley [5] in the special dyadic case, with the use
of interpolation and self-improving properties of Muckenhoupt's weights. An alternative proof
in the commutative setting, basing on Bellman function method, can be found in [40], but it
still exploits some regularity of martingales (the continuity of paths is used there). However, the
above result holds true for arbitrary �ltrations, without any additional regularity assumptions.
This required the development of new ideas: the classical arguments in the theory of weights
(e.g., self-improvement or reverse Hölder inequalities) simply fail to hold in the general context:
see Remark 3.6 below. The full version of Theorem 1.1 was established in [29, 38] with the use
of some change-of-measure arguments, elements of theory of sparse operators and the Bellman
function method.

In our considerations below, we will also study the estimate (1.6) without any assumption
about the �ltration. Both `commutative' proofs, presented in [29] and [38], exploit a number
of pointwise estimates which are no longer valid in the context of operators. Fortunately, some
special estimates and a certain change-of-measure argument can still be used, and this will give
us the main result.

The paper is organized as follows. Preliminary results and notation are presented in Section
2. In Section 3 we prove the main theorem, which is noncommutative weighted Doob's inequality
with optimal dependence on the characteristic [w]Ap . Sections 4 and 5 contain applications of
Theorem 1.1. In Section 4 we study a version of the noncommutative Lp bound in the context
of maximal operators on general metric spaces satisfying the doubling condition. Section 5 is
devoted to a weighted noncommutative Lp bound for maximal truncations of a certain wide class
of singular integral operators on R. In the appendix, the �nal part of the paper, we have decided
to present alternative proofs of (1.6). Although the arguments yield suboptimal dependence on
the characteristic (and exploit stronger regularity assumptions on the �ltration), we believe that
they are of independent interest and connections.

2. Preliminaries

We will introduce and discuss here some basic facts from the operator theory which will be
needed in our later considerations. For the detailed and systematic exposition of the subject we
refer the reader to the monographs [24] and [47].

Measurable operators. Throughout, the letter M will stand for a semi�nite von Neumann
algebra of operators acting on some given Hilbert space H, equipped with a faithful and normal
trace τ . Let x be a densely de�ned self-adjoint operator on H, with the spectral resolution

x =

∫ ∞
−∞

sdexs .
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Then for any Borel set B ⊂ R, we de�ne the associated spectral projection by

IB (x) =

∫ ∞
−∞

χB (s) dexs .

One similarly introduces the operator f(x) for su�ciently regular function f on R. A closed,
densely de�ned operator x on H is said to be a�liated with M if for all unitary operators u
belonging to the commutant M′ of M, we have the identity u∗au = a. An operator x ∈ H
a�liated withM is said to be τ -measurable, if there is s ≥ 0 such that τ

(
I(s,∞) (|x|)

)
<∞, where

|x| = (x∗x)
1
2 . We denote the space of all τ -measurable operators by L0 (M, τ). Then, for all

0 < p ≤ ∞, the noncommutative Lp space associated with (M, τ) is

Lp (M, τ) = {x ∈ L0 (M, τ) : τ (|x|p) <∞}.

The associated (semi-)norm is de�ned by ‖x‖p = (τ (|x|p))1/p , which is understood as the standard
operator norm in the boundary case p =∞.

Martingales and martingale transforms. A �ltration is an increasing sequence (Mn)n≥0 of von

Neumann subalgebras ofM such that the union
⋃
n≥0Mn is w∗-dense inM. In such a case, for

each n ≥ 0 there is a conditional expectation En : M → Mn associated with Mn: one de�nes
this object as the dual map of natural inclusion i : L1 (Mn) → L1 (M). It can be easily veri�ed
that En (axb) = aEn (x) b for all x ∈ M and a, b ∈ Mn; furthermore, En is τ -preserving, i.e., we
have τ ◦En = τ . In addition, the collection of conditional expectations satis�es the tower property
EnEm = EmEn = Emin (m,n). Finally, for any 1 ≤ p ≤ ∞, the operator En extends to a contractive

projection from Lp (M, τ) onto Lp
(
Mn, τ|Mn

)
.

A sequence x = (xn)n≥0 ⊂ L1 (M) + L∞(M) is called a martingale with respect to (Mn)n≥0,

if the equality En (xn+1) = xn holds for all n ≥ 0. If, in addition, xn ∈ Lp (M) for all n ≥ 0, then
x is called Lp-martingale with respect to (Mn)n≥0 and we set

‖x‖p = sup
n≥0
‖xn‖p.

The martingale x is said to be Lp-bounded, if ‖x‖p <∞.
Given a martingale x = (xn)n≥0, we de�ne its di�erence sequence dx = (dxn)n≥0 by dx0 = x0

and dxn = xn−xn−1, n = 1, 2, . . .. A martingale y = (yn)n≥0 is called a transform of x = (xn)n≥0,
if there is a deterministic sequence ε = (εn)n≥0 with values in [−1, 1] such that dyn = εndxn for
all n ≥ 0. Martingale transforms satisfy the Lp estimate

(2.1) ‖yn‖p ≤ Cp‖xn‖p, n = 0, 1, 2 . . . , 1 < p <∞,

for some constant Cp depending only on p. Actually, it can be shown that the optimal orders, as
p→ 1 or p→∞, are O((p− 1)−1) and O(p), respectively. Furthermore, one can allow a slightly
larger class of transforming sequences ε. See [43] and [44] for more on this subject.

Maximal spaces. Now we discuss the suitable space required to de�ne meaningful maximal
functions. We de�ne Lp (M; `∞) as the space of all sequences x = (xn)n≥0 ⊂ Lp (M) which
admit the decomposition

xn = aynb for all n ≥ 0,

for some a, b ∈ L2p (M) and y = (yn)n≥0 ⊂ L∞ (M). We equip this space with the norm

‖x‖Lp(M;`∞) = inf

{
‖a‖2p sup

n≥0
‖yn‖∞‖b‖2p

}
,
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where in�mum runs over all factorizations of x as above. The following dual reformulation will be
important to us later. Namely, we de�ne Lp (M; `1) as the space of all sequences x = (xn)n≥0 ⊂
Lp (M), which are of the form

xn =
∑
k≥0

u∗knvkn for all n ≥ 0,

where families (ukn)k,n≥0 , (ukn)k,n≥0 ⊂ L2p (M) satisfy∑
k,n≥0

u∗knukn ∈ Lp (M) and
∑
k,n≥0

v∗knvkn ∈ Lp (M) .

The space Lp (M; `1) is equipped with the norm

‖x‖Lp(M;`1) = inf

{∥∥∥∥∥∥
∑
k,n≥0

u∗knukn

∥∥∥∥∥∥
1
2

p

∥∥∥∥∥∥
∑
k,n≥0

v∗knvkn

∥∥∥∥∥∥
1
2

p

}
,

where in�mum runs over all decompositions of x as above. Both Lp (M; `∞) and Lp (M; `1) are
Banach spaces and the following theorem is true (see [21]).

Theorem 2.1. Let 1 ≤ p <∞ and p′ be the conjugate of p. Then

Lp (M; `∞) = Lp′ (M; `1)∗ isometrically

with the duality bracket given by

(x, y) =
∑
n≥0

τ (xnyn)

for x ∈ Lp (M; `∞) and y ∈ Lp′ (M; `1).

The above spaces have a much simpler description when restricted to nonnegative operators.

Consider x = (xn)n≥0, where xn ≥ 0 for all n ≥ 0. Then we have ‖x‖Lp(M;`1) =
∥∥∥∑n≥0 xn

∥∥∥
Lp
.

Furthermore, x belongs to Lp (M; `∞) if and only if there exists a positive operator a ∈ Lp (M)
such that xn ≤ a for all n ≥ 0. In addition, ‖x‖Lp(M;`∞) = inf{‖a‖Lp : xn ≤ a for all n}.

We would also like to conclude with the remark that the de�nition of Lp(M, `∞) extends easily
to the case in which the sequences are indexed by an arbitrary set I: the relevant factorization
makes perfect sense. Denoting the corresponding space by Lp(M, `∞(I)), it is not di�cult to
check the identity

‖x‖Lp(M,`∞(Z)) = sup
J �nite

‖x‖Lp(M,`∞(J)).

This observation, with I = Z or I = [0,∞), will be important for our applications below.

Martingale weights. We conclude this section with some basic information on weighted theory
in the commutative context. Suppose that (X,F , µ) is a classical measure space, �ltered by

(Fn)n≥0, a nondecreasing family of sub-σ-�elds of F such that σ
(⋃

n≥0Fn
)

= F . A weight is a

positive function belonging to L1(X) +L∞(X); typically, such an object will be denoted by u, w
or v. Any weight w gives rise to the corresponding measure on X, also denoted by w, and de�ned
by w(A) =

∫
Awdµ for all A ∈ F . Given 1 < p < ∞, a weight w satis�es the (martingale) Ap

condition, if the Ap characteristic

[w]Ap = sup
n≥0

∥∥∥En(w)En(w1/(1−p))p−1
∥∥∥
L∞(X)
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is �nite. If the �ltration is atomic, i.e., for each n the σ-�eld Fn is generated by pairwise disjoint
sets of positive and �nite measure, then the characteristic can be rewritten in the more usual form

[w]Ap = sup

(
1

µ(Q)

∫
Q
wdµ

)(
1

µ(Q)

∫
Q
w1/(1−p)dµ

)p−1

,

where the supremum is taken over atoms Q of the �ltration. The dual weight to w ∈ Ap is given
by v = w1/(1−p). It follows directly from the de�nition of the characteristic that v ∈ Ap′ and

[v]Ap′ = [w]
1/(p−1)
Ap

. There are versions of the Ap condition in the boundary cases p ∈ {1,∞},
which can be obtained by a simple passage to the limit. We will one present here the case p = 1,
as the choice p = ∞ will not be present in our considerations. Namely, a weight w satis�es
Muckenhoupt's condition A1, if its characteristic

[w]A1 = sup
n≥0
‖En(w)/w‖L∞(X)

is �nite. If the �ltration is atomic, then we have the identity

[w]A1 = sup
Q

esssup
X

1
µ(Q)

∫
Qwdµ

w
.

3. Weighted Doob's maximal inequality

3.1. Noncommutative weighted Lp spaces. Assume that (X,F , µ) is a classical measure space
and let (Fn)n≥0 be a discrete-time �ltration such that σ(

⋃
n≥0Fn) = F . Suppose that N is a

given semi�nite von Neumann algebra with a faithful, normal trace ν. We setM = L∞(X,F , µ)⊗
N and endow this algebra with a standard tensor trace τ = µ ⊗ ν and the �ltration Mn =
L∞(X,Fn, µ) ⊗ N , n = 0, 1, 2, . . .. Then the associated conditional expectations are given by
En = E(·|Fn) ⊗ IN , where E(·|Fn) is the classical conditional expectation with respect to Fn.
Furthermore, the elements of M can be regarded as bounded functions taking values in N and
the Lp-bounded martingales in this context can be identi�ed with Lp-bounded martingales on
(X,F , µ) with values in Lp(N ).

In our considerations below, a weight will be a positive operator of the form w⊗I, where w is a
classical weight on (X,F , µ). Such operators commute with all elements ofM and all conditional
expectations En(w ⊗ I) also enjoy this property. We say that w ⊗ I satis�es Muckenhoupt's
condition Ap (or belongs to the Ap class), if the scalar weight w has this property. Furthermore,
we set [w ⊗ I]Ap = [w]Ap . From now on, we will skip the tensor and identify w ⊗ I with w; this
should not lead to any confusion.

Given 1 ≤ p <∞ and w as above, the associated noncommutative weighted Lp space is de�ned
by

Lwp (M) =
{
x ∈ L0(M, τ) : xw1/p ∈ Lp(M)

}
.

That is to say, Lwp (M) is the usual noncommutative Lp space with respect to the weighted trace
τw(x) := τ(xw), x ∈ M. (The fact that w is positive and commutes with all the elements ofM
implies that τw is indeed a trace). This change-of-measure argument, based on passing from one
trace to another, will play an important role in our considerations below. In particular, we will
need the following simple fact. Here and in what follows, Ewn denotes the conditional expectation,
with respect to Mn and the trace τw (while En is the usual conditional expectation, relative to
the unweighted trace τ).

Lemma 3.1. For any x ∈ L1(M) we have

(3.1) Ewn (x) = En (xw) (En (w))−1 .
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Proof. Let us check whether the right-hand side of (3.1) enjoys all the properties of conditional
expectation. Obviously, it belongs to Mn. Furthermore, if a, b are arbitrary elements of Mn,
then by the commuting property of w,

En (axbw) (En (w))−1 = En (axwb) (En (w))−1 = aEn (xw) b (En (w))−1 = aEn (xw) (En (w))−1 b.

Finally, the right-hand side of (3.1) preserves the trace τw: indeed,

τw
(
En (xw) (En (w))−1

)
= τ

(
En (xw) (En (w))−1w

)
= τ

(
En (xw) (En (w))−1 En(w)

)
= τ (En (xw)) = τ(xw) = τw(x).

This proves the claim. �

Remark 3.2. The above lemma has a very transparent meaning if the underlying �ltration
(Fn)n≥0 is atomic. In such a case, we have the following explicit formula for Ewn : if we identify
M with operator-valued random variables, then

Ewn x =
∑
Q∈Atn

1

w (Q)

∫
Q
x (ω)wµ(dω) · χQ,

where Atn is the collection of all atoms of Fn and w (Q) =
∫
Qwdµ.

By a similar argument, which rests on the passage from the trace τ to its weighted version τw,
one de�nes the appropriate weighted maximal spaces Lwp (M; `∞) and Lwp (M; `1).

3.2. A maximal inequality. We will establish the following statement.

Theorem 3.3. Let 1 ≤ p < ∞ and w ∈ Ap. For any sequence (an)n≥0 of positive elements of

Lwp (M) we have

(3.2)

∥∥∥∥∥∥
∑
n≥0

En (an)

∥∥∥∥∥∥
Lwp (M)

≤ cp[w ]Ap

∥∥∥∥∥∥
∑
n≥0

an

∥∥∥∥∥∥
Lwp (M)

,

where cp depends only on p.

Proof for p = 1 or p ≥ 2. If p = 1, then we have∥∥∥∥∥∥
∑
n≥0

En (an)

∥∥∥∥∥∥
Lw1 (M)

= τ

∑
n≥0

En (an)w

 = τ

∑
n≥0

anEn (w)

 ≤ [w]A1τ

∑
n≥0

anw

 ,

so the desired bound holds with c1 = 1. Next, suppose that p ≥ 2 and let v = w1/(1−p) be the
dual weight to w. Muckenhoupt's condition implies that for any n ≥ 0,

(3.3) En(w)En(v) = E(w|Fn)E(v|Fn)⊗ I ≤ [w]Ap(E(v|Fn))2−p ⊗ I ≤ [w]ApE(v2−p|Fn)⊗ I,

where the last passage is due to Jensen's inequality (and the assumption p ≥ 2). Now, �x a
positive operator g ∈ M satisfying ‖g‖Lv

p′
≤ 1. Note that g ∈ L1(M): by Hölder's inequality,

‖g‖L1(M) ≤ ‖g‖Lv
p′
‖w‖L1 <∞. By properties of conditional expectations, we may write

τ

∑
n≥0

En(an)g

 =
∑
n≥0

τ (En (an) g) =
∑
n≥0

τ (En (an) En (g)) .
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Using the identity (3.1) and the commuting properties of w, v and their conditional expectations,
we obtain ∑

n≥0

τ (En (an) En (g)) =
∑
n≥0

τ
(
Evn
(
anv

−1
)
Ewn
(
gw−1

)
En (v) En (w)

)
,

which, by (3.3), does not exceed∑
n≥0

τ
(
Evn
(
anv

−1
)
Ewn
(
gw−1

)
[w]ApEn

(
v2−p)) = [w]Ap

∑
n≥0

τ
(
Evn
(
anv

−1
)
Ewn
(
gw−1

)
v2−p)

= [w]Ap
∑
n≥0

τ
(
Evn
(
anv

−1
)
Ewn
(
gw−1

)
v

1
pw

1
p′
)
.

As we mentioned above, g belongs to the space L1(M) and hence gw−1 ∈ Lw1 (M). By noncom-
mutative Doob's inequality in Lp′ , applied to the nonnegative martingale

(
Ewn
(
gw−1

))
n≥0

(on von

Neumann algebra (M, τw)), there exists an operator a such that Ewn
(
gw−1

)
≤ a for every n ≥ 0

and

‖a‖Lw
p′ (M) ≤ Cp′‖gw−1‖Lw

p′ (M) = Cp′
(
τ
(
gp
′
wp
′
w
)) 1

p′
= Cp′‖g‖Lv

p′
≤ Cp′ .

Here the last estimate follows from the assumption ‖g‖Lv
p′ (M) ≤ 1 we imposed at the beginning.

Consequently, by the tracial property (and the fact that w and v commute with all elements of
M) we get

τ
(
Evn
(
anv

−1
)
Ewn
(
gw−1

)
v

1
pw

1
p′
)
≤ τ

(
Evn
(
anv

−1
)
av

1
pw

1
p′
)
.

Therefore, by the Hölder inequality,

τ

∑
n≥0

En (an) g

 ≤ [w]Apτ

∑
n≥0

(
Evn
(
anv

−1
)
v

1
p

)
aw

1
p′


≤ [w ]Ap

∥∥∥∥∥∥
∑
n≥0

Evn
(
anv

−1
)∥∥∥∥∥∥
Lvp(M)

‖a‖Lw
p′ (M)

≤ Cp′Cp[w]Ap

∥∥∥∥∥∥
∑
n≥0

anv
−1

∥∥∥∥∥∥
Lvp(M)

= cp[w]Ap

∥∥∥∥∥∥
∑
n≥0

an

∥∥∥∥∥∥
Lwp (M)

.

Here in the last line we have exploited the dual form of Doob's inequality (1.2), applied to the
nonnegative sequence

(
anv

−1
)
n≥0

on von Neumann algebra (M, τv). To �nish the proof, we

specify g = (
∑

n≥0 Enan)p−1w/‖
∑

n≥0 Enan‖
p−1
Lwp (M): then ‖g‖Lvp′ = 1 and

τ

∑
n≥0

En (an) g

 =

∥∥∥∥∥∥
∑
n≥0

En (an)

∥∥∥∥∥∥
Lwp (M)

. �
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Remark 3.4. The above reasoning can be repeated in the case 1 < p < 2, but then (3.3) does
not hold any more. Instead, we may write

En(w)En(v) = E(w|Fn)E(v|Fn)⊗ I
= E(v1−p|Fn)E(v|Fn)⊗ I

= E(v
1

1−p′ |Fn)p
′−1E(v|Fn)E(v

1
1−p′ |Fn)2−p′ ⊗ I

≤ [v]Ap′E(v1−p|Fn)2−p′ ⊗ I

≤ [v]Ap′E(v(1−p)(2−p′)|Fn)⊗ I

= [v]Ap′E(v2−p|Fn)⊗ I

where the last inequality is due to Jensen's inequality and the assumption that p < 2. Note

that [v]Ap′ = [w]
1/(p−1)
Ap

, so we get (3.2), but with the worse, nonlinear dependence [w]
1/(p−1)
Ap

. To

overcome this di�culty, we will use a di�erent approach.

The proof in the range 1 < p < 2 is postponed for a while. Let us �rst show that (3.2) is a dual
version of the weighted Doob's inequality.

Theorem 3.5. For any 1 < p <∞ and any weight w ∈ Ap, we have

(3.4) ‖x‖Lwp (M;`∞) ≤ cp[w ]
1/(p−1)
Ap

‖x‖Lwp (M).

Proof for 1 < p ≤ 2. We deduce the assertion from the previous statement. Pick an arbitrary

positive element x of Lwp (M). Then ‖x‖L1(M) ≤ ‖x‖Lwp (M)‖v‖
1/p′

L1(M) < ∞ and hence (xn)n≥0 =

(En (x))n≥0 is a well-de�ned L1-bounded martingale on (M, τ). This sequence is contained in
Lwp (M), by (3.2). Next, consider an arbitrary operator y ∈ Lwp′ (M; `1) and let (akn)k,n≥0 , (bkn)k,n≥0

be families of elements of Lw2p′ (M), satisfying

yn =
∑
k≥0

a∗knbkn for all n ≥ 0.

Then, by Hölder's inequality and properties of conditional expectations,∣∣∣∣∣∑
n≥0

τw (xnyn)

∣∣∣∣∣ =

∣∣∣∣∣ ∑
n,k≥0

τ (En (x) a∗knbknw)

∣∣∣∣∣ =

∣∣∣∣∣ ∑
n,k≥0

τ (En (a∗knbknw)x)

∣∣∣∣∣
=

∣∣∣∣∣τ
∑
n,k≥0

(
En (a∗knbknw)w

− 1
p

)
xw

1
p

∣∣∣∣∣
≤
∥∥∥xw 1

p

∥∥∥
Lp(M)

∥∥∥∥∥∥
∑
n,k≥0

En (a∗knbknw)w
− 1
p

∥∥∥∥∥∥
Lp′ (M)

= ‖x‖Lwp (M)

∥∥∥∥∥∥
∑
n,k≥0

En (a∗knbknw)

∥∥∥∥∥∥
Lv
p′ (M)

.
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Now, by the Hölder inequality and Theorem 3.3 applied to v ∈ Ap′ (note that p′ ≥ 2), we may
proceed as follows:∥∥∥∥∥∥

∑
n,k≥0

En
(
a∗knw

1
2 bknw

1
2

)∥∥∥∥∥∥
Lv
p′ (M)

≤

∥∥∥∥∥∥
∑
n,k≥0

En (a∗knaknw)

∥∥∥∥∥∥
1
2

Lv
p′ (M)

∥∥∥∥∥∥
∑
n,k≥0

En (b∗knbknw)

∥∥∥∥∥∥
1
2

Lv
p′ (M)

≤ cp′ [v]Ap′

∥∥∥∥∥∥
∑
n,k≥0

a∗knaknw

∥∥∥∥∥∥
1
2

Lv
p′ (M)

∥∥∥∥∥∥
∑
n,k≥0

b∗knbknw

∥∥∥∥∥∥
1
2

Lv
p′ (M)

= cp′ [v]Ap′

∥∥∥∥∥∥
∑
n,k≥0

a∗knakn

∥∥∥∥∥∥
1
2

Lw
p′ (M)

∥∥∥∥∥∥
∑
n,k≥0

b∗knbkn

∥∥∥∥∥∥
1
2

Lw
p′ (M)

≤ cp′ [v]Ap′‖y‖Lwp′ (M;`1)

= cp′ [w]
1/(p−1)
Ap

‖y‖Lw
p′ (M;`1).

Since
∑

n≥0 τ
w (xnyn) is the duality bracket between Lwp (M; `∞) and Lwp′(M; `1), we obtain the

desired estimate

‖x‖Lwp (M;`∞) ≤ cp[w ]
1/(p−1)
Ap

‖x‖Lwp (M)

for positive x. The passage to general operators follows from a standard decomposition argument.
�

Proof of (3.4) for p > 2. Here the reasoning is entirely di�erent. Fix w ∈ Ap. By standard
decomposition, it is enough to show the claim for positive operators x ∈ Lwp (M). Our goal is
to majorize the martingale (xn)n≥0 by an operator, whose norm in Lwp (M) is not bigger than

[w]
1/(p−1)
Ap

‖x‖Lwp (M), up to some constant depending only on p.

We begin with the observation that xp−1v1−p is positive and belongs to Lvp′(M): this is due

to the identity ‖xp−1v1−p‖Lv
p′ (M) = ‖x‖p−1

Lwp (M). Thus, we may apply Doob's inequality in Lvp′(M)

to the nonnegative martingale
(
Evn
(
xp−1v1−p))

n≥0
in (M, τv), obtaining an operator a such that

Evn
(
xp−1v1−p) ≤ a for every n ≥ 0 and

(3.5) ‖a‖Lv
p′ (M) ≤ cp‖x‖

p−1
Lwp (M).

Next, we apply Doob's inequality again, this time in Lwp′(M), to the nonnegative martingale(
Ewn
(
aw−1

))
n≥0

. As the result, we get an operator b such that Ewn
(
aw−1

)
≤ b for n ≥ 0 and

whose norm satis�es

(3.6) ‖b‖Lw
p′ (M) ≤ cp‖aw−1‖Lw

p′ (M) = cp‖a‖Lv
p′ (M).

Using the change of measure formula (3.1), the fact that En (w) (En (v))p−1 ≤ [w ]Ap and the esti-

mate Evn
(
xv−1

)
≤ Evn

(
xp−1v1−p)1/(p−1)

which follows from the operator concavity of the function
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t 7→ t1/(p−1) (here we use the assumption p ≥ 2), we obtain

[w ]
− 1
p−1

Ap
xn ≤

(
(En (w))−1 (En (v))1−p (En (x))p−1

) 1
p−1

= (En (w))
− 1
p−1 Evn

(
xv−1

)
≤ (En (w))

− 1
p−1
(
Evn
(
xp−1v1−p)) 1

p−1 .

However, by the de�nition of a and the operator monotonicity of the function t 7→ t1/(p−1) (again,
here we use the assumption p ≥ 2) we get(

Evn
(
xp−1v1−p) ) 1

p−1
=
(
En
[
Evn
(
xp−1v1−p) ]) 1

p−1 ≤
(
En(a)

) 1
p−1 .

Therefore, we can proceed with the previous bound as follows:

[w ]
− 1
p−1

Ap
xn =

(
En (w)−1 En(a)

) 1
p−1

=
(
Ewn
(
aw−1

) ) 1
p−1 ≤ b

1
p−1 ,

where the last bound is due to the de�nition of b and the operator monotonicity of t 7→ t1/(p−1).

Thus we have obtained the majorant [w ]
1
p−1

Ap
b

1
p−1 for the nonnegative martingale (xn)n≥0, and it

remains to apply (3.5) and (3.6) to get

‖b
1
p−1 ‖Lwp (M) = ‖b‖

1
p−1

Lw
p′ (M) ≤ c

1
p−1
p ‖a‖

1
p−1

Lv
p′ (M) ≤ c

2
p−1
p ‖x‖Lwp (M).

That is, we have found the majorant of (xn)n≥0 whose L
w
p norm is bounded by c

2
p−1
p [w ]

1
p−1

Ap
‖x‖Lwp (M),

as desired. �

We are ready to complete the proof of Theorem 3.3.

Proof of (3.2) for 1 < p < 2. Again, we proceed by duality. Fix a weight w ∈ Ap, an arbitrary
�nite sequence (an)n≥0 of positive operators contained in Lwp (M) and any g ∈ Lvp′(M) of norm

one. By (3.4), there exists a majorant b of the martingale (En(g))n≥0, satisfying ‖b‖Lv
p′ (M) ≤

cp′ [v]
1/(p′−1)
Ap′

= cp′ [w]Ap . Therefore, by Hölder's inequality,

τ

∑
n≥0

En (an) g

 = τ

∑
n≥0

anEn(g)

 ≤ τ
∑
n≥0

anb

 ≤ cp′ [w]Ap

∥∥∥∥∥∥
∑
n≥0

an

∥∥∥∥∥∥
Lwp (M)

.

The proof is completed by taking the supremum over all g as above. �

The above proof works without any assumption on the regularity of the �ltration. We would
like to conclude this section by an example showing that in this general context, the standard
self-improving properties and reverse Hölder inequalities may fail for Ap weights.

Remark 3.6. Consider the sequence an = 2−n(n!)−1, n = 0, 1, 2, . . .. On the (commutative)
probability space ([0, 1],B([0, 1]), | · |), consider the �ltration (Fn)n≥0, where Fn is generated by
the intervals [0, an], (an, an−1], (an−1, an−2], . . ., (a1, a0]. Let w be the weight given by w =
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n=0 n!χ(an+1,an]. This is an A1 weight with [w]A1 ≤ 2: indeed, all the atoms of the �ltration are

of the form (an+1, an] or [0, an] for some n ≥ 0, and

1

|(an+1, an]|

∫ an

an+1

wdx ≤ 1

|[0, an]|

∫ an

0
wdx = 2n · n!

∞∑
k=n

k!
2k + 1

2k+1(k + 1)!

≤ 2n · n!

∞∑
k=n

1

2k
= 2 · n! = 2 essinf

[0,an]
w = 2 essinf

(an+1,an]
w.

Furthermore, it is evident that for any α > 1, the function wα is not integrable: the series
∞∑
n=0

(n!)α(2n+ 1)

2n+1(n+ 1)!

diverges. Therefore, w cannot satisfy reverse Hölder inequality. Similarly, the self-improvement
property does not hold. Given any 1 < p <∞, we know that w ∈ Ap′ (since Ap′ ⊂ A1) and hence

the dual weight v = w1/(1−p′) = w1−p belongs to Ap. However, if v lied in Ap−ε for some ε > 0,

then v1/(1−p+ε) = w(1−p)/(1−p+ε) would be integrable, a contradiction.

4. Maximal inequalities on metric spaces

Suppose that (X, d) is a metric space equipped with the σ-�eld of its Borel subsets F and a
Radon measure µ. The symbol B(x, r) = {y ∈ X : d(y, x) ≤ r} stands for the closed ball of
center x and radius r. We assume the non-degeneracy condition 0 < µ(B) < ∞ for any ball B
of positive radius. Furthermore, we will work with measures µ satisfying the so-called doubling
condition: there exists a �nite constant κ such that µ(B(x, 2r)) ≤ κµ(B(x, r)) for all x ∈ X and
r > 0.

Given 1 < p < ∞ and a weight w on X, we say that w satis�es Muckenhoupt's condition Ap,
if its Ap characteristic

[w]Ap := sup
x∈X, r>0

(
1

µ(B(x, r))

∫
B(x,r)

wdµ

)(
1

µ(B(x, r))

∫
B(x,r)

w1/(1−p)dµ

)p−1

is �nite. A weight w belongs to the class A1, if there is a constant c such that for all r > 0 and
all x ∈ X,

1

µ(B(x, r))

∫
B(x,r)

wdµ ≤ c essinf
B(x,r)

w.

The smallest c with the above property is denoted by [w]A1 and called the A1 characteristic of w.
Finally, consider the von Neumann algebra N and putM = L∞(X,F , µ)⊗̄N . Given 1 ≤ p <∞
and r > 0, de�ne the averaging operator Ar acting on locally integrable f : X → Lp(N ) by the
formula

Arf(x) =
1

µ(B(x, r))

∫
B(x,r)

fdµ, x ∈ X.

In particular, if 1 ≤ p <∞ and w ∈ Ap, then Arf is well de�ned for f ∈ Lwp (M): any f ∈ Lwp (M)
is locally integrable as a function from X to L1(N ). Indeed, if p > 1, then Hölder's inequality
gives ∫

B(x,r)
‖f‖L1(N )dµ ≤ ‖f‖Lwp (M)

(∫
B(x,r)

w1/(1−p)dµ

)(p−1)/p

<∞.

For p = 1 the argument is even simpler:
∫
B(x,r) ‖f‖L1(N )dµ ≤ ‖f‖Lw1 (M)

∫
B(x,r)w

−1dµ <∞.
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The following statement can be regarded as the noncommutative version of (1.3) and (1.4),
with the extraction of the optimal dependence on [w]Ap .

Theorem 4.1. Let 1 ≤ p <∞ and assume that w is an Ap weight on X. Then for any f ∈ Lwp (M)
and any λ > 0 there is a projection q ∈M satisfying

λ
[
τw(1− q)

]1/p
.p [w]

1/p
Ap
‖f‖Lwp (M)

and qArfq ≤ λq for all r > 0. Furthermore, if p > 1, then there exists a constant cp depending
only on p such that for any f ∈ Lp(X;Lp(M)),

‖(Arf)r>0‖Lwp (M,`∞) ≤ cp[w]
1/(p−1)
Ap

‖f‖Lwp (M).

Our argument will exploit the following fact proved in [18] (see Theorem 4.1 there).

Lemma 4.2. Let (X, d) be the metric space equipped with a Radon measure µ satisfying the above
requirements. Then there exist a constant C and a �nite collection of families P1, P2, . . ., PN ,
where each Pk = (Pkj )j∈Z is a sequence of partitions of X, such that the following holds.

(i) For each 1 ≤ k ≤ N and each j ∈ Z, the partition Pkj+1 is a re�nement of Pkj .
(ii) For all x ∈ X and r > 0, there is 1 ≤ k ≤ N , j ∈ Z and an element Q ∈ Pkj such that

B(x, r) ⊆ Q and µ(Q) ≤ Cµ(B(x, r)).
(iii) Any Q ∈

⋃
k,j Pkj is contained within some ball B(x, r) such that µ(B(x, r)) ≤ Cµ(Q).

Proof of Theorem 4.1. By a standard decomposition argument, we may assume that f is nonneg-
ative: we have f(ω) ≥ 0 for any ω ∈ X. Let N be the number guaranteed by the above lemma
and �x k ∈ {1, 2, . . . , N}. For n ∈ Z, let Fkn be the σ-�eld generated by Pkn and denote by Ekn
the associated conditional expectation. Note that the martingale w = (Eknw)n∈Z satis�es the Ap
condition: by Lemma 4.2 (iii), for any Q ∈

⋃
n∈Z Pkn we have(

1

µ(Q)

∫
Q
w

)(
1

µ(Q)

∫
Q
w1/(1−p)

)p−1

≤ Cp
(

1

µ(B(x, r))

∫
B(x,r)

wdµ

)(
1

µ(B(x, r))

∫
B(x,r)

w1/(1−p)dµ

)p−1

≤ Cp[w]Ap ,

where B(x, r) is the ball containing Q. An analogous argument works for p = 1. By Theorem 6.1
(see below), applied to the martingale f = (Eknf)n∈Z, for any λ > 0 there exists a projection qk

such that qkEnfqk ≤ λ for all n ∈ Z and λτw(1 − qk)1/p ≤ C[w]
1/p
Ap
‖f‖Lwp (M). Take q =

∧N
k=1 qk,

the projection onto the intersection
⋂
qk(H). Since 1−

∧N
k=1 qk ≤

∑N
k=1(1− qk), we get

λ
[
τw(1− q)

]1/p ≤ N1/pC[w]
1/p
Ap
‖f‖Lwp (M).

Now we apply the second part of Lemma 4.2: given an arbitrary ball B(x, r), there is an associated
set Q, belonging to some Pkn. Therefore,

(4.1) Arf(x) =
1

B(x, r)

∫
B(x,r)

fdµ ≤ C

µ(Q)

∫
Q
fdµ = CEknf(x)



WEIGHTED INEQUALITIES 15

and consequently qArfq ≤ Cλ for all r. This proves the weighted weak-type inequality for
(Arf)r>0. Concerning the strong-type estimate, note that (4.1) yields

‖(Arf)r>0‖Lwp (M,`∞) ≤ C

∥∥∥∥∥∥
(

N∑
k=1

Eknf

)
n∈Z

∥∥∥∥∥∥
Lwp (M,`∞)

≤ C
N∑
k=1

∥∥∥(Eknf)
n∈Z

∥∥∥
Lwp (M,`∞)

≤ C ′N [w]
1/p
Ap
‖f‖Lwp (M).

This gives the claim. �

In particular, one may apply the above estimates in the context when X is a locally compact
group G, equipped an invariant metric d and the right-invariant Haar measure m. The averaging
operators

Arf(g) =
1

µ(B(g, r))

∫
B(g,r)

f(h)dm(h) =
1

µ(B(e, r))

∫
B(e,r)

f(gh)dm(h)

appear naturally in the study of ergodic theorems, concerning the action of amenable groups on
noncommutative Lp spaces (cf. [15]).

5. A weighted inequality for maximal singular integrals

The next application of Theorem 3.4 concerns weighted bounds for maximal singular integrals
of operator-valued functions in dimension one. Let us start with some motivation. The Hilbert
transform H, the fundamental object in harmonic analysis, is an operator which acts on locally
integrable functions f : R→ R by

Hf(s) = p.v.
1

π

∫
R

f(t)

s− t
dt.

Here `p.v.' refers to the principal value of the integral: Hf(s) = limε↓0Hεf(s), and

Hεf(s) =
1

π

∫
|s−t|>ε

f(t)

s− t
dt

is the truncated Hilbert transform. The above limiting procedure makes sense for certain vector-
valued functions as well: one can de�ne Hf for f taking values in the so-called UMD Banach
spaces. Recall that a Banach space B is UMD (Unconditional for Martingale Di�erences), if the
following holds. For any (equivalently, for all) 1 < p <∞, there exists a �nite constant cp,B such
that for any (classical, commutative) martingale di�erence d = (dk)k≥0 with values in B, given
on some �ltered probability space (Ω,F , (Fk)k≥0,P), and any deterministic sequence ε = (εk)k≥0

with values in [−1, 1] we have∥∥∥∥∥
n∑
k=0

εkdk

∥∥∥∥∥
Lp(Ω;B)

≤ cp,B

∥∥∥∥∥
n∑
k=0

dk

∥∥∥∥∥
Lp(Ω;B)

, n = 0, 1, 2, . . . .

Here the probability space, as well as the �ltration, are allowed to vary. Note that for any
1 < p <∞ and any von Neumann algebra N , the space Lp(N ) is UMD: this follows directly from
(2.1), applied toM = L∞(Ω,F ,P)⊗̄N . Next, a well-known result of Burkholder [7] asserts that
if B is a UMD space, then ‖H‖Lp(R;B)→Lp(R;B) . c

2
p,B. Putting all the above facts together, we see

that the action of the Hilbert transform on Lp(M) = Lp(L∞(R)⊗N ), the space of Lp(N )-valued
functions on R, is well de�ned and bounded for 1 < p <∞.
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One can also study analogous weighted Lp estimates for martingale transforms and the Hilbert
transform. It follows from the results of Lacey [27] that if d = (dk)k≥0 is a martingale di�erence
with values in a UMD space B, ε = (εn)n≥0 is a predictable sequence of signs and w is an Ap
weight on Ω, then we have

(5.1)

∥∥∥∥∥
n∑
k=0

vkdk

∥∥∥∥∥
Lwp (Ω;B)

. [w]
max{1/(p−1),1}
Ap

∥∥∥∥∥
n∑
k=0

dk

∥∥∥∥∥
Lwp (Ω;B)

.

Here ‖f‖Lwp (Ω;B) =
(∫

Ω ‖f‖
p
BdP

)1/p
. Moreover, we have ‖H‖Lwp (R;B)→Lwp (R;B) . [w]

max{(p−1)−1,1}
Ap

.

The exponent max{(p− 1)−1, 1} is optimal in both estimates above. In particular, specifying
B = Lp(N ) andM = L∞(R)⊗N , as above, we get the corresponding version for noncommutative
martingale transforms and

(5.2) ‖H‖Lwp (M)→Lwp (M) . [w]
max{(p−1)−1,1}
Ap

.

There is another, related operator, playing an important role in harmonic analysis: the so-called
maximal truncation H∗, given by H∗f = supε>0 |Hεf |. This operator also satis�es the weighted
bound (5.2), which can be handled with the use of Cotlar's inequality or the direct majorization
in terms of sparse operators (see [27]). Both these approaches exploit a number of pointwise
estimates which cannot be used in the noncommutative context.

The purpose of this section is to establish a noncommutative maximal version for (5.2) (with a
slightly worse dependence on [w]Ap). On the positive side, we will work in the more general class of
convolution-type singular integrals on R. Throughout, we assume that K : (−∞, 0)∪ (0,∞)→ R
is an odd, twice di�erentiable function (in the sense that K ′ is absolutely continuous) which
satis�es

(5.3) lim
s→∞

K(s) = lim
s→∞

K ′(s) = 0

and

(5.4) s3K ′′(s) ∈ L∞(R).

We denote by TK the associated one-dimensional singular integral operator, de�ned by

TKf(s) = p. v.

∫
R
f(s)K(t− s)dt = lim

ε↓0
T εKf(s),

where T εKf(s) is the truncation at level ε:

T εKf(s) =

∫
|s−t|>ε

f(s)K(t− s)dt.

In analogy to the above setting, we may also introduce the maximal truncation T ∗K by T ∗Kf =
supε>0 |T εKf |. In all the above de�nitions, f is allowed to be vector-valued. Note that the choice
K(s) = 1/(πs) brings us back to the context of Hilbert transform.

As shown by Vagharshakyan [48], the operator TK can be expressed as an average of appropriate
one-dimensional dyadic shifts. To recall the necessary de�nitions, let ϕ, ψ : R → R be two
functions supported on the unit interval [0, 1] and given there by the formulas

ϕ(x) =


−1 if 0 ≤ x < 1/4,

1 if 1/4 ≤ x < 3/4,

−1 if 3/4 ≤ x ≤ 1

and ψ(x) =


7 if 0 < x < 1/4,

−1 if 1/4 ≤ x < 1/2,

1 if 1/2 ≤ x < 3/4,

−7 if 3/4 ≤ x ≤ 1.
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For any (real or vector-valued) function f on R and any interval I = [a, b], we de�ne the scaled
function fI by

fI(x) =
1√
b− a

f

(
x− a
b− a

)
, x ∈ R.

For any β = {βl} ∈ {0, 1}Z and any r ∈ [1, 2) we de�ne the dyadic grid Dr,β to be the following
collection of intervals (see [37] for the motivation and basic properties of this family):

Dr,β =

{
r2n

(
[0, 1) + k +

∑
i<n

2i−nβi

)}
n∈Z,k∈Z

.

We equip {0, 1}Z with the uniform probability measure µ, uniquely determined by the requirement

µ({β : (βi1 , βi2 , . . . , βin) = a}) = 2−n

for any n, any sequence i1 < i2 < . . . < in of integers and any a ∈ {0, 1}n.
The aforementioned result of Vagharshakyan asserts the following.

Theorem 5.1. Suppose that the kernel K satis�es (5.3) and (5.4). Then there exists a coe�cient
function γ : (0,∞)→ R satisfying

‖γ‖∞ ≤ C‖s2K ′′(s)‖∞
such that

(5.5) K(t− s) =

∫
{0,1}Z

∫ 2

1

∑
I∈Dr,β

γ(|I|)ϕI(s)ψI(t)
dr

r
dµ(β)

for all s 6= t. Here C is some absolute constant and the series on the right is absolutely convergent
almost everywhere.

In other words, TK can be expressed as an average of the Haar shift operators

Tr,βf =
∑
I∈Dr,β

γ(|I|)〈f, ϕI〉ψI ,

where 〈f, g〉 =
∫
R fg. Such objects can be handled with the use of martingale methods.

We are ready to establish the main result of this section. In what follows, M is the von
Neumann algebra L∞(R)⊗N , and hence Lwp (M) can be identi�ed with the class of appropriately
integrable operator-valued functions on R.

Theorem 5.2. For any 1 < p < ∞ and any kernel K satisfying the above assumptions and any
Ap weight w on the real line, we have the estimate

‖(T εK)ε>0‖Lwp (M;`∞) ≤ C̃p[w]
1/(p−1)+max{1/(p−1),1}
Ap

‖f‖Lwp (M).

Proof. Fix ε > 0 and f ∈ Lwp (M): we may treat it as a function on R with values in L0(N ). Take
two real numbers s, t satisfying |s− t| > ε. Since both ϕI and ψI are supported on I, we see that
ϕI(s)ψI(t) = 0 if |I| ≤ ε and we may rewrite the identity (5.5) in the form

K(t− s) =

∫
{0,1}Z

∫ 2

1

∑
I∈Dr,β ,|I|>ε

γ(|I|)ϕI(s)ψI(t)
dr

r
dµ(β).

Therefore we have

T εKf(s) =

∫
{0,1}Z

∫ 2

1

∑
I∈Dr,β ,|I|>ε

γ(|I|)〈f, ϕI〉ψI(s)
dr

r
dµ(β)
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and hence by Minkowski's inequality,

‖(T εKf)ε>0‖Lwp (M;`∞) ≤
∫
{0,1}Z

∫ 2

1

∥∥∥∥∥∥
 ∑
I∈Dr,β ,|I|>ε

γ(|I|)〈f, ϕI〉ψI


ε>0

∥∥∥∥∥∥
Lwp (M;`∞)

dr

r
dµ(β)

≤
∫
{0,1}Z

∫ 2

1

∥∥∥∥∥∥∥∥
 ∑

I∈Dr,β,|I|>ε,
I odd

γ(|I|)〈f, ϕI〉ψI


ε>0

∥∥∥∥∥∥∥∥
Lwp (M;`∞)

dr

r
dµ(β)

+

∫
{0,1}Z

∫ 2

1

∥∥∥∥∥∥∥∥
 ∑

I∈Dr,β,|I|>ε,
I even

γ(|I|)〈f, ϕI〉ψI


ε>0

∥∥∥∥∥∥∥∥
Lwp (M;`∞)

dr

r
dµ(β).

Here and below, I ∈ Dr,β is called odd (even), if so is the number log2(|I|/r). From now on, we
will restrict our analysis to `even sums' only; the �rst summand in the last line above can be dealt
with analogously. The sequence ∑

I∈Dr,β,|I|≥4n,

I even

γ(|I|)〈f, ϕI〉ψI , n ∈ Z,

is a martingale with respect to its natural �ltration. It is crucial here that we assume the `double
spread' on log2(|I|/r) (i.e., we assume that log2(|I|/r) has the �xed parity): thanks to this condi-
tion, (

∑
I∈Dr,β ,|I|=r4n γ(|I|)〈f, ϕI〉ψI)n∈Z is a martingale di�erence sequence. The application of

(3.4) yields∥∥∥∥∥∥∥∥
 ∑

I∈Dr,β,|I|>ε,
I even

γ(|I|)〈f, ϕI〉ψI


ε>0

∥∥∥∥∥∥∥∥
Lwp (M;`∞)

≤ Cp[w]
1/(p−1)
Ap

∥∥∥∥∥∥∥
∑

I∈Dr,β,
I even

γ(|I|)〈f, ϕI〉ψI

∥∥∥∥∥∥∥
Lwp (M)

.

The next step is to prove that the right-hand side is controlled by ‖f‖Lwp (M). This will follow

from the Theorem 5.3 below. �

From now on, we move to the classical context; all the functions and processes considered below
are commutative.

Theorem 5.3. Suppose that B is a UMD space and f : R→ B is a Bochner integrable function.
Then for 1 < p <∞ and any Ap weight w on R we have

(5.6)

∥∥∥∥∥∥∥
∑

I∈Dr,β,
I even

γ(|I|)〈f, ϕI〉ψI

∥∥∥∥∥∥∥
Lwp (R;B)

≤ Cp‖γ‖∞[w]
max{1/(p−1),1}
Ap

‖f‖Lwp (R;B).

The same estimate holds if the sum on the left is taken over I ∈ Dr,β with odd I.

This result follows from Theorem 5.1 in [19] in the real-valued case, the context of UMD spaces
requires more e�ort. We guess that even in the vector setting the result is known, however, the
proof presented below will use a number of novel arguments from martingale theory. We will
exploit the so-called sparse operators, which have gained a lot of interest in the recent literature
(we mention here the convenient references: Domelevo and Petermichl [13], Lerner [31], Lorist [32],
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which contain argumentation related to that below). Let us brie�y outline our approach. The idea
is to control pointwise the sum in (5.6) by a similar expression, in which the summation is taken
over much smaller collection of intervals, satisfying the so-called sparseness condition (the formal
de�nitions will appear later). The proof of such a domination rests on an unweighted, weak-type
version of (5.6), which will be obtained with the use of classical martingales; having established
the control, one shows the weighted estimate by a change-of-measure argument, similar to that
used in Section 3.

We proceed to the formal analysis. The starting point is the following Lp bound, the unweighted
version of Theorem 5.3.

Theorem 5.4. Suppose that B is a UMD space and f : R→ B is a Bochner integrable function.
Then for 1 < p <∞ and any bounded sequence (γ(I))I∈Dr,β we have∥∥∥∥∥∥∥

∑
I∈Dr,β,
I even

γ(I)〈f, ϕI〉ψI

∥∥∥∥∥∥∥
Lp(R;B)

≤ Cp‖γ‖∞‖f‖Lp(R;B).

The same estimate holds if the sum on the left is taken over I ∈ Dr,β with odd I.

Proof. We will apply three times the Lp estimate for martingale transforms, with respect to
di�erent �ltrations.

Step 1. Consider the truncated version of ψ, given by

ζ(x) =


1 if 0 < x < 1/4,

−1 if 1/4 ≤ x < 1/2,

1 if 1/2 ≤ x < 3/4,

−1 if 3/4 ≤ x ≤ 1.

Then for any even integers b < c we have∥∥∥∥∥∥∥∥
∑

I∈Dr,β,2b≤|I|/r≤2c,

I even

γ(I)〈f, ϕI〉ψI

∥∥∥∥∥∥∥∥
Lp(M)

≤ cp

∥∥∥∥∥∥∥∥
∑

I∈Dr,β,2b≤|I|/r≤2c,

I even

γ(I)〈f, ϕI〉ζI

∥∥∥∥∥∥∥∥
Lp(M)

.(5.7)

To see this, split the function ψ into two, the outer and the inner part:

ψout(x) =


7 if 0 ≤ x < 1/4,

0 if 1/4 ≤ x < 3/4,

−7 if 3/4 ≤ x ≤ 1

and ψinn(x) =


0 if 0 < x < 1/4,

−1 if 1/4 ≤ x < 1/2,

1 if 1/2 ≤ x < 3/4,

0 if 3/4 ≤ x ≤ 1.

Introduce the corresponding versions for ζ: then ζout = ψout/7 and ζ inn = ψinn. We have

(5.8)
∑

I∈Dr,β,2b≤|I|/r≤2c,

I even

γ(I)〈f, ϕI〉ψI =
∑

I∈Dr,β,2b≤|I|/r≤2c,

I even

[
γ(I)〈f, ϕI〉ψoutI + γ(I)〈f, ϕI〉ψinnI

]

and

(5.9)
∑

I∈Dr,β,2b≤|I|/r≤2c,

I even

γ(I)〈f, ϕI〉ζI =
∑

I∈Dr,β,2b≤|I|/r≤2c,

I even

[
γ(I)〈f, ϕI〉ζoutI + γ(I)〈f, ϕI〉ζ innI

]
.



20 T. GA��ZKA, Y. JIAO, A. OS�KOWSKI, AND L. WU

Since ψinn, ψout have integral zero, the partial sums corresponding to the right-hand sides of (5.8)
and (5.9) are martingales. Speci�cally, if n is an even integer between b and c, then the n-th
di�erences are ∑

I∈Dr,β ,|I|=r2n
γ(I)〈f, ϕI〉ψoutI and

∑
I∈Dr,β ,|I|=r2n

γ(I)〈f, ϕI〉ζoutI ,

while for odd n (satisfying b ≤ n− 1 ≤ c), the di�erences are∑
I∈Dr,β ,|I|=r2n−1

γ(|I|)〈f, ϕI〉ψinnI and
∑

I∈Dr,β ,|I|=r2n−1

γ(I)〈f, ϕI〉ζ innI .

Furthermore, by the above discussion, the martingale associated with (5.9) is the transform of the
martingale in (5.8) by a predictable sequence with values in {1, 7}. This yields (5.7).

Step 2. Now we will prove that for any even integers b < c we have∥∥∥∥∥∥∥∥
∑

I∈Dr,β,2b≤|I|/r≤2c,

I even

γ(I)〈f, ϕI〉ζI

∥∥∥∥∥∥∥∥
Lp(M)

≤ cp

∥∥∥∥∥∥∥∥
∑

I∈Dr,β,2b≤|I|/r≤2c,

I even

γ(I)〈f, ϕI〉ϕI

∥∥∥∥∥∥∥∥
Lp(M)

.(5.10)

The argument is the same as previously, but we need a di�erent �ltration. Namely, we take ζout =
ζχ[0,1/2), ζ

inn = ζχ[1/2,1) and similarly for ϕout and ϕinn. Then ζout = −ϕout and ζ inn = ϕinn, so
the corresponding `�ner' martingales associated with the left- and the right-hand side of (5.10)
are transforms of each other by a predictable sequence of signs.

Step 3. The �nal part is to note that∥∥∥∥∥∥∥∥
∑

I∈Dr,β,2b≤|I|/r≤2c,

I even

γ(I)〈f, ϕI〉ϕI

∥∥∥∥∥∥∥∥
Lp(M)

≤ cp‖γ‖∞‖f‖Lp(R;B).(5.11)

Let ζ inn and ζout be the functions introduced in Step 1 above. It is easy to see that the collection
{ϕI , ζ innI , ζoutI }I∈Dr,β , I even is a basis in Lp(R;B) for any �xed r and β: this is just the Haar basis,
under scaling and translation. Expanding f ∈ Lp(R;B) into this basis, we get

f =
∑

I∈Dr,β , I even

(
〈f, ϕI〉ϕI + 〈f, ζ innI 〉ζ innI + 〈f, ζoutI 〉ζoutI

)
and we see that the sum on the left of (5.11) is obtained by skipping some of the above terms and
multiplying the other by the corresponding terms γ(I). Thus (5.11) follows by the Lp estimate for
martingale transforms, where the transforming sequence takes values in the set {0, γ(I)}I∈Dr,β .

Putting the above three steps together and letting b → −∞, c → ∞, we get the desired
assertion. �

Remark 5.5. One might repeat the above argumentation, replacing the Lp space with its weighted
version Lwp . Then one gets the estimate (5.6), but with a worse dependence on the characteristic:

[w]
3 max{1/(p−1),1}
Ap

.

Now let us �x some additional notation. From now on, we will work with a single dyadic lattice
D1,0. Given Ω ∈ D1,0 with |Ω| = 4N for some integer N , we introduce its �ltration (FΩ

n )n≥0
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de�ned by FΩ
0 = {∅,Ω} and, for any n ≥ 0,

FΩ
2n+1 = σ

({
ϕI : I is a dyadic subinterval of Ω, |I| = 4−n|Ω|

})
,

FΩ
2n+2 = σ

({
ψI : I is a dyadic subinterval of Ω, |I| = 4−n|Ω|

})
.

Next, suppose that f ∈ L1(R;B) is a given function, let γ = {γ(I)}I∈D1,0 be an arbitrary sequence

bounded by 1 and de�ne gΩ =
∑

I∈D1,0, I⊆Ω, I even γ(I)〈f, ϕI〉ψI . Let (fΩ
n )n≥0, (gΩ

n )n≥0 be the

martingales generated by f |Ω and gΩ|Ω, relative to the �ltration FΩ. It is easy to check that the
associated di�erences are dfΩ

0 = 1
|Ω|
∫

Ω f , dg
Ω
0 = 0 and for n ≥ 0,

dfΩ
2n+1 =

∑
|I|/|Ω|=4−n

〈f, ϕI〉ϕI , dgΩ
2n+1 = 0

dfΩ
2n+2 =

∑
|I|/|Ω|=4−n

(
〈f, ζ innI 〉ζ innI + 〈f, ζoutI 〉ζoutI

)
, dgΩ

2n+2 =
∑

|I|/|Ω|=4−n

γ(I)〈f, ϕI〉ψI ,

where ζ inn, ζout have been de�ned in Step 1 of the proof of the previous theorem. Observe that
‖dgΩ

2n+2‖B ≤ 7‖dfΩ
2n+1‖B for all n. Furthermore, note that the real-valued variables (‖dfΩ

n ‖B)n≥0

are predictable: for any n ≥ 1, ‖dfΩ
n ‖B is FΩ

n−1-measurable.

Theorem 5.6. Under the above notation, there is a universal constant C for which

(5.12)

∥∥∥∥sup
n≥0

∥∥∥gΩ
n

∥∥∥
B

∥∥∥∥
L1,∞(Ω;R)

≤ C ‖f‖L1,∞(Ω;B) .

Proof. We will use the previous theorem combined with the extrapolation (good-lambda) method
of Burkholder and Gundy. Fix β > 1, δ ∈ (0, 1) (the values will be speci�ed later) and introduce
the stopping times µ, ν, σ by

µ = inf{n ≥ 0 : ‖gΩ
n ‖B ≥ 1},

ν = inf{n ≥ 0 : ‖gΩ
n ‖B ≥ β}

σ = inf
{
n ≥ 0 : ‖fΩ

n ‖B ∨ ‖dfΩ
n+1‖B ≥ δ

}
,

with the standard convention inf ∅ = ∞ and a ∨ b = max{a, b}. To see that σ is also a stopping
time, one needs to refer to the predictability of (‖dfΩ

n ‖B)n≥0 discussed above. Denoting by a ∧ b
the minimum of a and b, we may write

P
(

sup
n≥0
‖gΩ
n ‖B ≥ β, sup

n≥0
(‖fΩ

n ‖B ∨ ‖dfΩ
n+1‖B) < δ

)
= P(µ ≤ ν <∞, σ =∞)

≤ P(‖gΩ
ν∧σ − gΩ

µ∧σ‖B ≥ β − 1− 7δ).

(5.13)

Here the latter passage is due to the triangle inequality: on the set {µ ≤ ν <∞, σ =∞} we have
‖gΩ
ν∧σ‖B ≥ β and ‖gΩ

µ∧σ‖B ≤ ‖gΩ
µ∧σ−1‖B + 7‖dfΩ

µ∧σ−1‖B ≤ 1 + 7δ. Now, by Chebyshev's inequality,

the last expression in (5.13) does not exceed ‖gΩ
ν∧σ − gΩ

µ∧σ‖2L2(Ω;B)/(β − 1 − 7δ)2. The previous

theorem implies that

‖gΩ
ν∧σ − gΩ

µ∧σ‖L2(Ω;B) ≤ C2‖fΩ
ν∧σ − fΩ

µ∧σ‖L2(Ω;B).
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(Indeed, set f := fΩ
ν∧σ − fΩ

µ∧σ and use the same transforming sequence (γ(I))I∈D1,0). Hence we
obtain

P
(

sup
n≥0
‖gΩ
n ‖B ≥ β, sup

n≥0
(‖fΩ

n ‖B ∨ ‖dfΩ
n+1‖B) < δ

)
≤
C2

2E‖fΩ
ν∧σ − fΩ

µ∧σ‖2B
(β − 1− 7δ)2

=
C2

2E‖fΩ
ν∧σ − fΩ

µ∧σ‖2Bχ{µ<∞}
(β − 1− 7δ)2

,

where the latter passage is due to the identity fΩ
ν∧σ = fΩ

µ∧σ on the set µ = ∞. But by the

de�nition of σ, we have ‖fΩ
ν∧σ − fΩ

µ∧σ‖B ≤ ‖fΩ
ν∧σ‖B + ‖fΩ

µ∧σ‖B ≤ 4δ. Now, since P(µ < ∞) =

P
(
supn≥0 ‖gΩ

n ‖B ≥ 1
)
, putting all the above observations together gives

P
(

sup
n≥0
‖gΩ
n ‖B ≥ β, sup

n≥0
(‖fΩ

n ‖B ∨ ‖dfΩ
n+1‖B) < δ

)
≤ 16C2

2δ
2

(β − 1− 7δ)2
P
(

sup
n≥0
‖gΩ
n ‖B ≥ 1

)
.

Now we specify β = 3 and δ = (32C2)−1, and apply homogeneity argument to obtain that

P
(

sup
n≥0
‖gΩ
n ‖B ≥ 3λ, sup

n≥0
(‖fΩ

n ‖B ∨ ‖dfΩ
n+1‖B) < δλ

)
≤ 1

12
P
(

sup
n≥0
‖gΩ
n ‖B ≥ λ

)
for λ > 0 (here we used the fact that δ < 1/4, so β − 1− 7δ ≥

√
3). This implies

P
(

sup
n≥0
‖gΩ
n ‖B ≥ 3λ

)
≤ P

(
sup
n≥0

(‖fΩ
n ‖B ∨ ‖dfΩ

n+1‖B) ≥ δλ
)

+
1

12
P
(

sup
n≥0
‖gΩ
n ‖B ≥ λ

)
and hence, multiplying both sides by λ, we obtain

1

3

∥∥∥∥sup
n≥0
‖gΩ
n ‖B

∥∥∥∥
L1,∞(Ω;R)

≤ 32C2

∥∥∥∥sup
n≥0

(‖fΩ
n ‖B ∨ ‖dfΩ

n+1‖B)

∥∥∥∥
L1,∞(Ω;R)

+
1

12

∥∥∥∥sup
n≥0
‖gΩ
n ‖B

∥∥∥∥
L1,∞(Ω;R)

.

It remains to observe that by the triangle inequality and the weak-type (1, 1) bound for the
(sub-)martingale maximal function,∥∥∥∥sup

n≥0
(‖fΩ

n ‖B ∨ ‖dfΩ
n+1‖B)

∥∥∥∥
L1,∞(Ω;R)

≤
∥∥∥∥sup
n≥0
‖fn‖B

∥∥∥∥
L1,∞(Ω;R)

+

∥∥∥∥sup
n≥0
‖dfΩ

n+1‖B
∥∥∥∥
L1,∞(Ω;R)

≤ 5

∥∥∥∥sup
n≥0
‖fn‖B

∥∥∥∥
L1,∞(Ω;R)

≤ 5‖f‖L1(Ω;B).

The proof is complete. �

We turn our attention to the sparse domination. Let D denote the class of all dyadic subintervals
of [0, 1) having measure 4−n for some n.

De�nition 5.7. A collection S ⊂ D is called sparse, if there is a family {E(Ω)}Ω∈S of pairwise
disjoint sets such that E(Ω) ⊆ Ω and |E(Ω)| ≥ |Ω|/2 for all Ω ∈ S .

Proposition 5.8. Let f : R → B be a Bochner integrable function and let γ = {γ(I)}I∈D be a
sequence with values in [−1, 1]. Then there exists a sparse family S ⊂ D for which we have

(5.14)

∥∥∥∥∥∑
I∈D

γ(I)〈f, ϕI〉ψI

∥∥∥∥∥
B

≤ (2C + 7)
∑
Ω∈S

(
1

|Ω|

∫
Ω
‖f‖B

)
χΩ

almost everywhere on [0, 1). Here C is the weak-type constant in (5.12).
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Proof of Theorem 5.3. The collection S will be obtained by the following algorithm.

Step 1. We put [0, 1) into S and mark it as `unused'.

Step 2. We pick an unused element Ω ∈ S of maximal measure and de�ne λΩ = 2C
|Ω|
∫

Ω ‖f‖B.
Consider the martingale (gΩ

n )n≥0 and split the set {ω ∈ Ω : supn≥0 ‖gΩ
n ‖B ≥ λΩ} into the union of

pairwise disjoint and maximal elements Ω1, Ω2, . . . of D . There might be �nite or in�nite number
of such terms, we put them all into S .

Step 3. We de�ne E(Ω) = {ω ∈ Ω : supn≥0 ‖gΩ
n ‖B < λΩ}, mark Ω as `used' and go to Step 2.

Let us study the properties of the above objects. The class S we obtain is indeed contained
in D . By the construction, the sets {E(Ω)}Ω∈S are pairwise disjoint, furthermore, the weak-type
inequality (5.12) implies |E(Ω)| ≥ |Ω|/2 for any Ω ∈ S . This in particular gives

∑
Ω∈S |Ω| ≤ 2

and hence almost all ω ∈ [0, 1) belong to a �nite number of elements of S . Let j(w) be the unique
positive integer such that ω ∈ E(Ωω

j(ω)) ⊂ Ωω
j(ω) ⊂ Ωω

j(ω)−1 ⊂ . . . ⊂ Ωω
1 = [0, 1), with Ωω

j ∈ S .

We are ready to verify (5.14). Outside [0, 1) both sides vanish, and for ω ∈ [0, 1) we write∥∥∥∥∥∑
I∈D

γ(I)〈f, ϕI〉ψI(ω)

∥∥∥∥∥
B

≤
j(ω)∑
k=1

∥∥∥∥∥∥
∑

I∈D ,Ωωk−1⊇I)Ωωk

γ(I)〈f, ϕI〉ψI(ω)

∥∥∥∥∥∥
B

+

∥∥∥∥∥∥∥
∑

I∈D ,Ωω
j(ω)
⊇I
γ(I)〈f, ϕI〉ψI(ω)

∥∥∥∥∥∥∥
B

.

However, for any Ω, the partial sums of
∑

I∈D ,Ω⊇I γ(I)〈f, ϕI〉ψI form the martingale gΩ. Thus,
by the very de�nition of the splitting procedure in Step 2, we have∥∥∥∥∥∥∥

∑
I∈D ,Ωω

j(ω)
⊇I
γ(I)〈f, ϕI〉ψI(ω)

∥∥∥∥∥∥∥
B

≤ 2C

|Ωω
j(ω)|

(∫
Ωω
j(ω)

‖f‖B

)
χΩω

j(ω)
(ω).

For the expression ∥∥∥∥∥∥
∑

I∈D ,Ωωk−1⊇I)Ωωk

γ(I)〈f, ϕI〉ψI(ω)

∥∥∥∥∥∥
B

we proceed similarly, however, we need a small modi�cation, as the above construction shows that
this is larger than 2C

|Ωωk−1|
∫

Ωωk−1
‖f‖B. Denoting the parent of Ωω

k in D by (Ωω
k )′, we obtain∥∥∥∥∥∥

∑
I∈D ,Ωωk−1⊇I)Ωωk

γ(I)〈f, ϕI〉ψI(ω)

∥∥∥∥∥∥
B

≤

∥∥∥∥∥∥
∑

I∈D ,Ωωk−1⊇I)(Ωωk )′

γ(I)〈f, ϕI〉ψI(ω)

∥∥∥∥∥∥
B

+ 7‖γ‖∞‖〈f, ϕ(Ωωk )′〉‖B|(Ωω
k )′|−1/2

≤ 2C

(
1

|Ωω
k−1|

∫
Ωωk−1

‖f‖B

)
χΩωk−1

(ω) + 7

(
1

|Ωω
k |

∫
Ωωk

‖f‖B

)
χΩωk

(ω).

This gives the claim. �
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Finally, we are ready for the proof of the weighted estimate (5.6). The change-of-measure
argument used below is inspired by [34].

Proof of Theorem 5.3. We start with reductions. It su�ces to show the claim for p ≥ 2, then
the case 1 < p < 2 follows by duality. Next, by the approximation, scaling and translating, it is
enough to show that∥∥∥∥∥∑

I∈D

γ(|I|)〈f, ϕI〉ψI

∥∥∥∥∥
Lwp (R;B)

≤ Cp‖γ‖∞[w]
max{1/(p−1),1}
Ap

‖f‖Lwp (R;B).

By homogeneity, we may and do assume that ‖γ‖∞ ≤ 1. Therefore, using the (5.14), we will be
done if we prove the estimate∥∥∥∥∥∑

Ω∈S

(
1

|Ω|

∫
Ω
‖f‖B

)
χΩ

∥∥∥∥∥
Lwp (R;B)

≤ Cp‖γ‖∞[w]
max{1/(p−1),1}
Ap

‖f‖Lwp (R;B).

To this end, we let v = w1/(1−p) be the dual weight to w and pick an arbitrary nonnegative
h ∈ Lvp′(R;R). For any I ∈ D and any weight u, the symbol EuI f = 1

u(I)

∫
I fudω will stand for the

average of f over I with respect to the measure udω. Then∫ 1

0

(∑
Ω∈S

(
1

|Ω|

∫
Ω
‖f‖B

)
χΩ

)
hdω

=
∑
Ω∈S

w(Ω)v(Ω)p−1

|Ω|p
· |Ω|p−1v(Ω)2−pEvΩ(‖f‖Bv−1)EwΩ (hw−1)

≤ [w]Ap
∑
Ω∈S

|Ω|p−1v(Ω)2−pEvΩ(‖f‖Bv−1)EwΩ (hw−1)

≤ 2p−1[w]Ap
∑
Ω∈S

|E(Ω)|p−1v(Ω)2−pEvΩ(‖f‖Bv−1)EwΩ (hw−1),

where in the last passage we have used the sparseness estimate |Ω| ≤ 2|E(Ω)| for Ω ∈ S . Since
p ≥ 2 and E(Ω) ⊂ Ω, we have v(Ω)2−p ≤ v(E(Ω))2−p. Furthermore, by Hölder's inequality, we

see that |E(Ω)| ≤ w(E(Ω))
1
p v(E(Ω))

1
p′ , so |E(Ω)|p−1v(E(Ω))2−p ≤ v(E(Ω))

1
pw(E(Ω))

1
p′ . Plugging

these observations above and applying Hölder's inequality again, we get∑
Ω∈S

|E(Ω)|p−1v(E(Ω))2−pEvΩ(‖f‖Bv−1)EwΩ (hw−1)

≤
∑
Ω∈S

v(E(Ω))
1
pw(E(Ω))

1
p′ · EvΩ(‖f‖Bv−1)EwΩ (hw−1)

≤

(∑
Ω∈S

(
EvΩ(‖f‖Bv−1)

)p
v(E(Ω))

) 1
p
(∑

Ω∈S

(
EwΩ (hw−1)

)p′
w(E(Ω))

) 1
p′

≤ ‖Mv(‖f‖Bv−1)‖Lvp(R;R)‖Mw(hw−1)‖Lw
p′ (R;R)

≤ pp′
∥∥‖f‖Bv−1

∥∥
Lvp(R;R)

∥∥hw−1
∥∥
Lw
p′ (R;R)

= pp′‖f‖Lwp (R;B)‖h‖Lv
p′ (R;R).

Here Mw and Mv are the classical dyadic maximal operators with respect to the measures w and
v, respectively. This yields the desired assertion by taking the supremum over all h as above. �
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6. Appendix: Alternative approaches to Theorem 3.3

Now we will discuss di�erent approaches, which unfortunately do not seem to yield the sharp
dependence on the Ap characteristic for any p. Anyhow, we believe that the alternative argumen-
tation is of its own interest and connections, which might be useful in other contexts. We would
also like to point out that the �rst method below (which rests on interpolation) does give the
optimal exponent in the classical case.

6.1. A weighted weak-type bound and Marcinkiewicz-type interpolation. Our starting
point is the weighted weak-type inequality inspired by the classical result of Cuculescu [10].

Theorem 6.1. Let 1 ≤ p < ∞ and w ∈ Ap. Then for any positive x ∈ Lwp (M) and any λ > 0
there exists a projection q ∈M such that

(6.1) λ
[
τw (1− q)

]1/p
≤ [w]

1/p
Ap
‖x‖Lwp (M)

and qEn (x) q ≤ λ for all n ≥ 0. The dependence [w]
1/p
Ap

on the characteristic cannot be improved

(i.e., the exponent 1/p cannot be decreased) already in the commutative case.

Proof. We study the case p > 1 only; the argument in the boundary case p = 1 is analogous, and
we leave the details to the reader. By homogeneity, it is enough to consider the case λ = 1. We
recall construction of Cuculescu's projections: let q0 = I and for n ≥ 1 de�ne qn inductively by
the equation

qn = qn−1I[0,1] (qn−1En (x) qn−1) .

The sequence (qn)n≥0 is nonincreasing and it enjoys following properties (for detailed proofs,

see [10] or [44]):

(1) for every n ≥ 1, qn ∈Mn;
(2) qn commutes with qn−1En (x) qn−1;
(3) qnEn (x) qn ≤ qn;
(4) (qn−1 − qn) En (x) (qn−1 − qn) ≥ qn−1 − qn.

Set q =
∧∞
n=1 qn. Then qEn (x) q = qqnEn (x) qnq ≤ qqnq ≤ I, so by the above properties, we

obtain

τw (1− qn) =
n∑
k=1

τ ((qk−1 − qk)w) ≤
n∑
k=1

τ ((qk−1 − qk) Ek (x) (qk−1 − qk)w)

=
n∑
k=1

τ ((qk−1 − qk)x (qk−1 − qk) Ek (w))

= τ

(
n∑
k=1

(qk−1 − qk) Ek (w)w
− 1
pxw

1
p

)
,

where in the last line we have exploited the tracial property and commuting of w with all ele-
ments ofM. By Hölder's inequality, mutual orthogonality of projections ((qk−1 − qk))k≥1 and the
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de�nition of [w]Ap , we may proceed as follows (recall that v = w1−p′ is the dual weight of w):

τw (1− qn) ≤ τ

( n∑
k=1

(qk−1 − qk) Ek (w)

)p′
w
− 1
p−1

 1
p′

τ (xpw)
1
p

=

(
n∑
k=1

τ
(

(qk−1 − qk) (Ek (w))p
′
v
)) 1

p′

‖x‖Lwp (M)

=

(
n∑
k=1

τ
(

(qk−1 − qk) Ek (w) (Ek (w))
1
p−1 Ek (v)

)) 1
p′

‖x‖Lwp (M)

≤

(
[w]

1
p−1

Ap

n∑
k=1

τ ((qk−1 − qk) Ek (w))

) 1
p′

‖x‖Lwp (M)

= [w]
1
p

Ap

(
n∑
k=1

τ ((qk−1 − qk)w)

) 1
p′

‖x‖Lwp (M)

= [w]
1
p

Ap
(τw (1− qn))

1
p′ ‖x‖Lwp (M).

Multiplying both sides by (τw (1− qn))
− 1
p′ we obtain (τw (1− qn))

1
p ≤ [w]

1
p

Ap
‖x‖Lwp (M), and

passing with n→∞ gives the weighted weak type inequality. �

Proof of (1.6) with a suboptimal exponent 2/(p− 1). Let us �rst recall an interpolation result es-
tablished by Dirksen [12] (see also Junge and Xu [23]). Let 1 ≤ r < p < q be two parameters
and suppose that (Tα)α∈A is a net of positive, subadditive maps on L0(M), which is of weak type
(r, r) with a constant Cr and of weak type (q, q) with a constant Cq. Then we have

∥∥(Tα (x))α∈A
∥∥
Lp(M;`∞)

. max{Cr, Cq}
(

pr

p− r
+

pq

q − p

)2

‖x‖Lp(M).

Also, recall the celebrated self-improvement property of dyadic Ap weights established by Coifman

and Fe�erman [8]: if w ∈ Ap for some p > 1, then w ∈ Ap−ε for ε ≈ [w]
− 1
p−1

Ap
and [w]Ap−ε . [w]Ap .

Now we will combine all the above facts to obtain the desired estimate. Let 1 < p < ∞ and
suppose that w is an Ap weight. We use interpolation for maps (En)n≥0 with r = p − ε and

q = p + ε, where ε is as above. Then w ∈ Ap−ε and w ∈ Ap+ε (since Ap ⊂ Ap+ε), so the weak-
type estimates hold true due to Theorem 6.1. This yields the desired weighted Doob's maximal

inequality with the constant cp[w]
2/(p−1)
Ap

. By duality, this implies the estimate

(6.2)

∥∥∥∥∥∥
∑
n≥0

En(an)

∥∥∥∥∥∥
Lwp (M)

. [w]2Ap

∥∥∥∥∥∥
∑
n≥0

an

∥∥∥∥∥∥
Lwp (M)

, 1 < p <∞,

with the suboptimal, quadratic dependence on the characteristic. �

6.2. Factorization and complex interpolation. There is a natural question whether the above
exponent 2/(p−1) can be improved with the use of structural properties of Muckenhoupt's weights.
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This question is motivated by the trivial bound

(6.3)

∥∥∥∥∥∥
∑
n≥0

En(an)

∥∥∥∥∥∥
Lw1 (M)

≤ [w]A1

∥∥∥∥∥∥
∑
n≥0

an

∥∥∥∥∥∥
Lw1 (M)

,

which gives hope that some interpolation arguments might lead to an improvement. We start with
the factorization of weights. In the statement below, we work on the (classical) measure space
(X,F , µ) equipped with some �ltration (Fn)n≥0.

Theorem 6.2. Let 1 < p <∞ and suppose that w is an Ap weight. Then there exist A1 weights

w1, w2 satisfying [w1]A1 . [w]Ap , [w2]A1 . [w]
1/(p−1)
Ap

and w = w1w
1−p
2 .

Proof. Suppose �rst that p ≥ 2. LetM be the classical maximal operator associated with (Fn)n≥0.
Introduce the auxiliary operator T acting on nonnegative random variables by

T (f) = (w−1/pM(fp−1w1/p))1/(p−1) + w1/pM(fw−1/p).

This operator is well-de�ned and bounded on (unweighted) Lp(X,F , µ): this follows at once from

the fact that M maps Lp′(w
−1/(p−1)) to itself and Lp(w) to itself. Actually, since ‖M‖Lwp→Lwp .

[w]
1/(p−1)
Ap

and ‖M‖
Lw
−1/(p−1)

p′ →Lw−1/(p−1)

p′
. [w−1/(p−1)]

1/(p′−1)
Ap′

= [w]Ap , we obtain

(6.4) ‖T‖Lp→Lp . [w]
1/(p−1)
Ap

.

Furthermore, the operator T is positive and sublinear (the latter property holds since p ≥ 2).
Now, de�ne ϕ ∈ Lp as the sum of Lp convergent series

ϕ =
∞∑
n=1

(2‖T‖Lp→Lp)−nTn(ψ),

where ψ is an arbitrary �xed norm-one element of Lp(X). We de�ne the A1 factors by w1 =

w1/pϕp−1 and w2 = w−1/pϕ, so that w = w1w
1−p
2 . Directly by the de�nition of ϕ, we get

Tϕ ≤ 2‖T‖Lp→Lp
∞∑
n=1

(2‖T‖Lp→Lp)−n−1Tn+1(ψ) ≤ 2‖T‖Lp→Lpϕ,

which is equivalent to

(w−1/pM(ϕp−1w1/p))1/(p−1) + w1/pM(ϕw−1/p) ≤ 2‖T‖Lp→Lpϕ.

But ϕ = (w−1/pw1)1/(p−1), so we obtainM(w1) ≤
(
2‖T‖Lp→Lp

)p−1
w1 andM(w2) ≤ 2‖T‖Lp→Lpw2.

It remains to apply (6.4) to complete the analysis for p ≥ 2.

If 1 < p < 2, we pass to the dual weight v = w−1/(p−1) ∈ Ap′ . By what we have just proved,

v = v1v
1−p′
2 with [v1]A1 . [v]Ap′ = [w]

1/(p−1)
Ap

and [v2]A1 . [v]
1/(p′−1)
Ap′

= [w]Ap . Thus, w = v2v
1−p
1

is the desired factorization. �

We will prove the following fact.

Theorem 6.3. Suppose that for some q > 1 and some κ > 0 we have

(6.5)

∥∥∥∥∥∥
∑
n≥0

En(an)

∥∥∥∥∥∥
Lwq (M)

≤ [w]κAq

∥∥∥∥∥∥
∑
n≥0

an

∥∥∥∥∥∥
Lwq (M)
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for all Aq weights w. Then for any 1 < p < q we have∥∥∥∥∥∥
∑
n≥0

En(an)

∥∥∥∥∥∥
Lwp (M)

≤ [w]γAp

∥∥∥∥∥∥
∑
n≥0

an

∥∥∥∥∥∥
Lwp (M)

,

where γ = 1− q′/p′ + κ(q′/p′ + q/p).

Proof. Let θ ∈ (0, 1) be uniquely determined by the condition p−1 = (1 − θ) + θq−1 (that is,

θ = q′/p′). Assume that w is an arbitrary Ap weight and let w = w1w
1−p
2 be the factorization

granted by the previous theorem; let us also distinguish the weight w0 = w1w2. Suppose that

(xn)n≥0 is a �nite sequence in L2p(M), satisfying

∥∥∥∥(∑n≥0 |xn|2
)1/2

∥∥∥∥
L
w0
2p (M)

≤ 1 and let b be

an element of Lw0
p′ (M) of norm not exceeding one. By the results of Kosaki [26], there exist

continuous functions Xn, B : {z ∈ C : 0 ≤ Re z ≤ 1} → M, n = 0, 1, 2, . . ., analytic in the
interior of the strip, such that Xn(θ) = xn, B(θ) = b,

max


∥∥∥∥∥∥∥
∑
n≥0

|Xn(it)|2
1/2

∥∥∥∥∥∥∥
L
w0
2 (M)

,

∥∥∥∥∥∥∥
∑
n≥0

|Xn(1 + it)|2
1/2

∥∥∥∥∥∥∥
L
w0
2q (M)

 ≤ 1

and

max

{
‖B(it)‖Lw0∞ (M), ‖B(1 + it)‖Lw0

q′ (M)

}
≤ 1.

Consider the analytic function

F (z) = τ

∑
n≥0

En
(
|Xn(z)|2w2

)
B(z)w1


de�ned for z ∈ C with 0 ≤ Re z ≤ 1. We have

|F (it)| ≤ τ

∑
n≥0

En
(
|Xn(it)|2w2

)
w1

 ‖B(it)‖Lw0∞ (M) ≤ τ

∑
n≥0

En
(
|Xn(it)|2w2

)
w1

 .

Putting an = |Xn(it)|2w2, we see that (6.3) yields

|F (it)| ≤ [w1]A1τ

∑
n≥0

anw1

 = [w1]A1

∥∥∥∥∥∥∥
∑
n≥0

|Xn(it)|2
1/2

∥∥∥∥∥∥∥
2

L
w0
2 (M)

≤ [w1]A1 .

Furthermore, by Hölder's inequality,

|F (1 + it)| ≤

∥∥∥∥∥∥
∑
n≥0

En
(
|Xn(1 + it)|2w2

)∥∥∥∥∥∥
L
w1w

1−q
2

q (M)

‖B(1 + it)‖Lw0
q′ (M)

≤

∥∥∥∥∥∥
∑
n≥0

En
(
|Xn(1 + it)|2w2

)∥∥∥∥∥∥
L
w1w

1−q
2

q (M)

.
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However, by a simple application of Hölder's inequality, we get [w1w
1−q
2 ]Aq ≤ [w1]A1 [w2]q−1

A1
and

hence (6.5), applied to an = |Xn(1 + it)|2w2, gives

|F (1 + it)| .
(

[w1]A1 [w2]q−1
A1

)2

∥∥∥∥∥∥∥
∑
n≥0

|Xn(1 + it)|2
1/2

∥∥∥∥∥∥∥
2

L
w0
2q (M)

≤
(

[w1]A1 [w2]q−1
A1

)κ
.

Consequently, by the three lines lemma, we get |F (θ)| . [w1]1−θA1

(
[w1]A1 [w2]q−1

A1

)κθ
. But [w1]A1 .

[w]Ap and [w2]A2 . [w]
1/(p−1)
Ap

, so

τ

∑
n≥0

En
(
|xn|2w2

)
bw1

 . [w]
1−θ+κθ+(q−1)κθ/(p−1)
Ap

.

But θ = q′/p′, so taking the supremum over all b as above, we obtain∥∥∥∥∥∥
∑
n≥0

En
(
|xn|2w2

)∥∥∥∥∥∥
Lwp (M)

. [w]γAp

∥∥∥∥∥∥∥
∑
n≥0

|xn|2
1/2

∥∥∥∥∥∥∥
L
w0
2p (M)

.

It remains to plug an = |xn|2w2, n = 0, 1, 2, . . . to get the claim. �
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