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Abstract. The paper contains the study of the weighted Lp1 × Lp2 × . . .×
Lpm → Lp estimates for the multilinear maximal operator, in the context
of abstract probability spaces equipped with a tree-like structure. Using the
Bellman function method, we identify the associated optimal constants in the
symmetric case p1 = p2 = . . . = pm, and a tight constant for remaining choices
of exponents.

1. Introduction

The purpose of this paper is to study a class of weighted inequalities for the
multilinear maximal operator, an important object in harmonic analysis. We will
be particularly interested in the size of the constants involved. To present the results
from an appropriate perspective, let us start with the necessary background. Fix a
dimension N and suppose that D is the standard dyadic lattice in RN . Let M be
the dyadic maximal operator, acting on locally integrable functions f on RN by

Mf(x) = sup
Q∈D

⟨|f |⟩QχQ.

Here the symbol ⟨φ⟩Q stands for the average of φ over Q, calculated with respect
to the Lebesgue measure: ⟨φ⟩Q = 1

|Q|
∫
Q
φ. Maximal operators play a prominent

role in many areas of mathematics, and from the viewpoint of applications, it is
often of interest to study the boundedness properties of these objects, treated as
operators on various function spaces. A fundamental example is the sharp estimate

(1.1) ∥Mf∥Lp ≤ p′∥f∥Lp , 1 < p ≤ ∞
(here and below, p′ denotes the conjugate exponent to p, given by p′ = p/(p− 1)).
One can investigate numerous generalizations of this result, our motivation comes
from an extension to the weighted theory. In what follows, the word `weight' refers
to a positive and locally integrable function on RN . Any weight w gives rise to the
corresponding Borel measure, also denoted by w, and given by w(A) =

∫
A
wdx.

One can also introduce the associated weighted Lp spaces, de�ned as the classes of
all (equivalence classes of) functions f : RN → R for which

∥f∥Lp(w) :=

(∫
RN

|f |pwdx
)1/p

< ∞, 0 < p < ∞.

Now one can study the following problem related to (1.1): given 1 < p < ∞,
characterize those weights w, for which the dyadic maximal operator M is bounded
as an operator on Lp(w). This problem was solved by Muckenhoupt [8] in the

2010 Mathematics Subject Classi�cation. Primary: 42B25. Secondary: 42B35, 46E30.
Key words and phrases. maximal operator; multilinear; weight; best constants.

1



2 ADAM OS�KOWSKI

seventies: the boundedness is true if and only if w satis�es the so-called dyadic Ap

condition (or w belongs to the dyadic Ap class). The latter means that the quantity

[w]Ap
:= sup

Q∈D
⟨w⟩Q⟨σ⟩p−1

Q ,

called the Ap characteristic of w, is �nite. Here σ = w1−p′
is the dual weight to w.

There is a stronger, quantitative version of this result, established by Buckley at the
beginning of the nineties. Namely, the problem is to �nd, for any �xed 1 < p < ∞,
the least exponent β(p) such that

(1.2) ∥M∥Lp(w)→Lp(w) ≤ κp[w]
β(p)
Ap

,

where κp depends only on p. In other words, one is interested in the extraction of
the optimal dependence of ∥M∥Lp(w)→Lp(w) on the Ap characteristic [w]Ap . The
aforementioned result of Buckley [1] asserts that the optimal choice is given by
β(p) = (p−1)−1. This statement can be further improved: we need some additional
notation for the further discussion. Given 1 < p < ∞ and c ≥ 1, let d = d(p, c) be
the unique positive root of the equation

(1.3) c(1 + d)(p− 1− d)p−1 = (p− 1)p−1.

This parameter has a nice geometric interpretation: see Figure 1 below.

Figure 1. The tangent to the curve xyp−1 = c at the point
(1, c1/(p−1)) intersects the curve xyp−1 = 1 at (1+d, (1+d)1/(p−1)).

The paper [9] contains the proof of the following extension of Buckley's result.

Theorem 1.1. For any 1 < p < ∞ we have the inequality

∥M∥Lp(w)→Lp(w) ≤
p

p− 1− d(p, [w]Ap
)
.

The constant on the right is the best possible: for any c ≥ 1 and ε > 0 there is an
Ap weight w satisfying [w]Ap ≤ c such that

∥M∥Lp(w)→Lp(w) ≥
p

p− 1− d(p, c)
− ε.
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In our considerations below, we will be interested in the multilinear analogues
of the above theorem. Suppose that m ≥ 1 is a �xed integer. Following [5], the

m-linear dyadic maximal operator M acts on vectors f⃗ = (f1, f2, . . . , fm) of locally
integrable functions on RN by the formula

Mf⃗ = sup
Q∈D

m∏
j=1

⟨|fj |⟩QχQ.

A straightforward combination of (1.1) and the Hölder inequality implies that if

P⃗ = (p1, p2, . . . , pm) is a sequence of exponents satisfying 1 < p1, p2, . . . , pm ≤ ∞
and 1

p = 1
p1

+ 1
p2

+ . . .+ 1
pm

, then we have the sharp bound

∥Mf⃗∥Lp ≤
m∏
j=1

p′j∥fj∥Lpj .

One can ask about the weighted version of this estimate, motivated by the above
discussion for M . The precise answer was given by Lerner et. al. in [5]. Given a
vector w⃗ = (w1, w2, . . . , wm) of weights on RN , we set

vw⃗ =

m∏
j=1

w
p/pj

j

and say that w⃗ satis�es the dyadic multilinear condition AP⃗ , if

[w⃗]AP⃗
:= sup

Q∈D
⟨vw⃗⟩Q

m∏
j=1

⟨σj⟩
p/p′

j

Q < ∞.

Here, as before, σj = w
1−p′

j

j is the dual weight to wj , j = 1, 2, . . . , m. Note that
for m = 1, the above requirement reduces to the classical Muckenhoupt's condition
Ap. Actually, the connection to the one-dimensional setting goes deeper: as proved
in [5], we have w⃗ ∈ AP⃗ if and only if σj ∈ Amp′

j
for all j and vw⃗ ∈ Amp. The

multilinear AP⃗ condition provides us with the answer to the above question: M is
bounded as an operator from Lp1(w1)×Lp2(w2)× . . .×Lpm(wm) to Lp(vw⃗) if and
only if w⃗ ∈ AP⃗ . In [3], the authors established the following version of (1.2):

(1.4) ∥Mf⃗∥Lp(vw⃗) ≤ κP⃗ [w⃗]
β(P⃗ )
AP⃗

m∏
j=1

∥fj∥Lpj (wj),

with β(P⃗ ) satisfying m
mp−1 ≤ β(P⃗ ) ≤ 1

p

(
1 +

∑m
j=1

1
pj−1

)
. Furthermore, in the

special case p1 = p2 = . . . = pm = mp, they showed that the estimate holds

with β(P⃗ ) = m/(mp − 1) = p′1/p, which is optimal. The question about the

best exponent for an arbitrary vector P⃗ was answered in [6]: the optimal choice is

β(P⃗ ) = max {p′1/p, p′2/p, . . . , p′m/p} .
The purpose of this paper is to present a di�erent approach to the estimate

(1.4), which will yield the further information about the size of the constant κP⃗ . In
addition, it will allow us to identify the best constant in the special case p1 = p2 =
. . . = pm = mp. Actually, we will work in the more general context of probability
spaces equipped with a tree-like structure. Here is the precise de�nition (cf. [7]).

De�nition 1.2. Suppose that (X,µ) is a nonatomic probability space. A set T of
measurable subsets of X will be called a tree if the following conditions are satis�ed:
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(i) X ∈ T and for every Q ∈ T we have µ(Q) > 0.

(ii) For every Q ∈ T there is a �nite subset C(Q) ⊂ T containing at least two
elements such that

(a) the elements of C(Q) are pairwise disjoint subsets of Q,
(b) Q =

⋃
C(Q).

(iii) T =
⋃

n≥0 T n, where T 0 = {X} and Tn+1 =
⋃

Q∈T n C(Q).

(iv) We have limn→∞ supQ∈T n µ(Q) = 0.

An important example, which links this de�nition with the preceding consid-
erations, is the cube X = [0, 1)n endowed with Lebesgue measure and the tree
of its dyadic subcubes. Any probability space equipped with a tree gives rise to
the corresponding multilinear maximal operators M = MX,T and Muckenhoupt's
classes AP⃗ = AP⃗ (X, T ): the de�nitions are word-by-word the same, one only needs

to change the base space RN to X and replace the dyadic lattice D by the tree T .
Our main results are gathered in two statements below.

Theorem 1.3. Let (X,µ) be an arbitrary nonatomic probability space with a tree
structure T . Fix m−1 < p < ∞ and put p1 = p2 = . . . = pm = mp. Then for any
vector w⃗ ∈ AP⃗ (X, T ) we have the inequality
(1.5)

∥MX,T ∥Lp1 (w1)×Lp2 (w2)×...×Lpm (wm)→Lp(vw⃗) ≤

(
mp

mp− 1− d(mp, [w]AP⃗
)

)m

.

The constant on the right is the best possible: for any c ≥ 1 and ε > 0 there is a
weight w⃗ satisfying [w⃗]AP⃗

≤ c such that

∥MX,T ∥Lp1 (w1)×Lp2 (w2)×...×Lpm (wm)→Lp(vw⃗) >

(
mp

mp− 1− d(mp, [w]AP⃗
)
− ε

)m

.

Theorem 1.4. Let (X,µ) be an arbitrary nonatomic probability space with a tree

structure T . Suppose that P⃗ = (p1, p2, . . . , pm) with 1 < p1, p2, . . . , pm < ∞ and let
1
p = 1

p1
+ 1

p2
+ . . .+ 1

pm
. Then the optimal constant KP⃗ ,c in the estimate

(1.6) ∥MX,T ∥Lp1 (w1)×Lp2 (w2)×...×Lpm (wm)→Lp(vw⃗) ≤ KP⃗ ,[w]A
P⃗

m∏
j=1

p′j

satis�es

([w]AP⃗
(1 + d(q, c)))p

′
∗/p ≤ KP⃗ ,[w]A

P⃗

≤ ([w]AP⃗
(1 + d(p∗, c)))

p′
∗/p,

where p∗ = min{p1, p2, . . . , pm} and q = p/p′∗ + 1.

In particular, in (1.6) we recover the optimal dependence on the characteristic
[w⃗]AP⃗

. Interestingly, the lower and the upper bound for KP⃗ ,[w]A
P⃗

involves the

multiplicative constant of the same type: (1 + d(·, c))p′
∗/p (unfortunately, these

constants can be quite distant if p∗ is close to 1). We would also like to emphasize
that the estimate (1.5) is sharp for each individual probability space. Finally, let
us mention that standard translation and scaling arguments allow to extend the
above results to the non-probabilistic, dyadic context studied at the beginning.

Our reasoning will rest on a multilinear version of Carleson embedding theorem
and a tight `testing' estimate (2.4) below. To show the latter bound, we will exploit
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the so-called Bellman function method, a powerful tool for establishing inequalities,
used widely in probability and analysis. Quite interestingly, the function we invent
involves as many as m + 2 variables, and still, as we will see, the calculations are
quite quick and do not require elaborate analysis.

The paper is organized as follows. In the next section, we present the proof of
the estimates (1.5) and (1.6). Section 3 is devoted to the lower bounds for the
constants involved in these estimates.

2. Proof of (1.5) and (1.6)

Throughout, P⃗ = (p1, p2, . . . , pm) is a vector of exponents belonging to (1,∞)
and the parameter p is given by 1

p = 1
p1

+ 1
p2

+ . . . + 1
pm

. By symmetry, we may

and will assume that p1 is the smallest exponent.
Let us brie�y describe the idea behind our approach. We will exploit the following

multilinear version of Carleson embedding theorem established in [2] (see also [4]).
Here and below, the symbol ⟨f⟩Q,σ stands for the weighted average 1

σ(Q)

∫
Q
fdµ.

Theorem 2.1. Suppose that a sequence (aQ)Q∈T of nonnegative numbers satis�es
the following condition: for any R ∈ T we have the estimate

(2.1)
∑
Q⊆R

aQ ≤ C

∫
R

m∏
j=1

σ
p/pj

j dµ.

Then for any vector f⃗ = (f1, f2, . . . , fm) such that fj ∈ Lpj (σj) for all j, we have

(2.2)

∑
Q∈T

aQ

m∏
j=1

⟨fj⟩pQ,σj

1/p

≤ C1/p
m∏
j=1

p′j∥fj∥Lpj (σj).

It is well known (see [6], for example) that the appropriate choice of the sequence
(aQ)Q∈T transforms the estimate (2.2) into (1.5) and (1.6). Thus the problem
reduces to the identi�cation of the appropriate constant C in (2.1). To handle this,
we will apply the Bellman function method. We introduce the auxiliary constants

α = 1 +
1

d(p1, c)
and C =

c(1 + d(p1, c))(p1 − 1)

p1 − 1− d(p1, c)
= (c(1 + d(p1, c)))

p′
1 ,

where the last equality follows from (1.3). Consider the Bellman function B =
BP⃗ ,c : R

m+2
+ → R given by

B(s1, s2, . . . , sm, t, u) = α

tpu+ c(p1 − 1)

m∏
j=1

s
p/pj

j − cp1t
p/p1

m∏
j=1

s
p/pj−p/p1

j

 .

Sometimes, for the sake of brevity, it will be convenient to write B(s, t, u) instead
of B(s1, s2, . . . , sm, t, u). The function B is the key ingredient of the proof of the
weighted estimates (1.5) and (1.6). Let us study several crucial properties of this
object.

Lemma 2.2. (i) For any �xed t and u, the function

(s1, s2, . . . , sm) → B(s1, s2, . . . , sm, t, u)

is concave.



6 ADAM OS�KOWSKI

(ii) For any �xed s and u, the function t 7→ B(s, t, u) is nonincreasing on the

interval

(
0,
(
c
∏m

j=1 s
p/pj−p/p1

j u−1
)p′

1/p
)
.

(iii) If u ≥
∏m

j=1 s
−p/p′

j

j , then we have the majorization

(2.3) B(s, t, u) ≥ tpu− Cs
p/p1

1 s
p/p2

2 . . . sp/pm
m .

Proof. (i) If γ1, γ2, . . ., γm is a sequence of positive numbers summing up to 1, then
the function (s1, s2, . . . , sm) 7→ sγ1

1 sγ2

2 . . . sγm
m is concave. Furthermore, if λ1, λ2, . . .,

λm are nonpositive numbers, then the function (s1, s2, . . . , sm) 7→ sλ1
1 sλ2

2 . . . sλm
m is

convex. Both these facts can be easily proved by the induction on m, and they
immediately yield the desired claim.

(ii) This is straightforward: we have

Bt(s, t, u) = αptp/p1−1

tp/p
′
1u− c

m∏
j=1

s
p/pj−p/p1

j

 .

(iii) The assertion is equivalent to

(α− 1)tpu+ (C + αc(p1 − 1))

m∏
j=1

s
p/pj

j ≥ αcp1t
p/p1

m∏
j=1

s
p/pj−p/p1

j .

The left-hand side is an increasing function of u, so it is enough to prove the

estimate for u =
∏m

j=1 s
−p/p′

j

j . Divide both sides by (α− 1)p1
∏m

j=1 s
p/pj

j to obtain
the equivalent bound

1

p1
·
(

t

s1s2 . . . sm

)p

+
1

p′1
· C + αc(p1 − 1)

(α− 1)(p1 − 1)
≥ αc

α− 1

(
t

s1s2 . . . sm

)p/p1

.

This will follow immediately from Young's inequality (with exponents p1 and p′1),
as soon as we show that

C + αc(p1 − 1)

(α− 1)(p1 − 1)
=

(
αc

α− 1

)p′
1

.

Plugging the formulas for α and C, we transform the above identity into

p1 − 1

p1 − 1− d(p1, c)
= (c(1 + d(p1, c)))

1/(p1−1)
,

which holds true by the very de�nition (1.3) of the parameter d(p1, c). □

The following result will imply the validity of (2.1).

Theorem 2.3. Suppose that (X,µ) is a probability space with a tree structure T .
Fix c ≥ 1 and let w⃗ be a vector of weights on X, satisfying [w⃗]AP⃗

≤ c. Then for

any R ∈ T , the vector σ⃗ = (σ1, σ2, . . . , σm) of dual weights satis�es

(2.4)

∫
R

M(σ⃗χR)
pvw⃗dµ ≤ C

∫
R

m∏
j=1

σ
p/pj

j dµ.
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Proof. It is convenient to split the reasoning into a few intermediate parts.

Step 1. An auxiliary notation. Fix w and R as in the statement and let n0 be the
unique integer such that R ∈ T n0 . We introduce the auxiliary functional sequences
(xn)n≥n0 , (yn)n≥n0 and (zn)n≥n0 as follows: for any n ≥ n0 and ω ∈ Ω,

xn(ω) = (xn1(ω), xn2(ω), . . . , xnm(ω)) =
(
⟨σ1⟩Qn(ω), ⟨σ2⟩Qn(ω), . . . , ⟨σm⟩Qn(ω)

)
yn(ω) = max

n0≤k≤n

(
xk1(ω)xk2(ω) . . . xkm(ω)

)
,

zn(ω) = ⟨vw⃗⟩Qn(ω),

where Qn(ω) is the unique element of T n which contains ω. There is a nice
probabilistic interpretation of these sequences: (xn)n≥N and (zn)n≥N are mar-
tingales induced by the �ltration (T n)n≥N , with the terminal variables equal to
(σ1, σ2, . . . , σm) and vw⃗, respectively; in addition, (yn)n≥N is the maximal pro-
cess associated with the sequence of products (xk1xk2 . . . xkm)k≥n0

. Observe that
by Lebesgue's di�erentiation theorem (or rather, by Doob's martingale convergence
theorem), we have xnj → σj , yn → M(σ⃗χR) and zn → vw⃗ almost surely as n → ∞.

Step 2. Monotonicity. Now we will show that the sequences (xn)n≥n0 , (yn)n≥n0

and (zn)n≥n0 combine nicely with the Bellman function B de�ned previously. More
speci�cally, we will prove that the sequence(∫

Q

B(xn, yn, zn)dµ

)
n≥n0

is nonincreasing. To see this, �x an integer n ≥ n0, let Q be an arbitrary element
of T n and let Q1, Q2, . . ., Qℓ be the collection of all children of Q in T n+1. The
functions xn, yn, zn are constant on Q, while xn+1, yn+1 and zn+1 are constant on
each Qj . It is easy to check that these constant values satisfy

(2.5) ⟨xn⟩Q =

ℓ∑
j=1

|Qj |
|Q|

⟨xn+1⟩Qj , ⟨zn⟩Q =

ℓ∑
j=1

|Qj |
|Q|

⟨zn+1⟩Qj .

(This is nothing but the martingale property, expressed in analytic terms). Next,
observe that for any j we have

(2.6)

∫
Qj

B(xn+1, yn+1, zn+1)dµ ≤
∫
Qj

B(xn+1, yn, zn+1)dµ.

Indeed, if yn+1 = yn on Qj , then there is nothing to prove; on the other hand,
if yn+1 ̸= yn on Qj , then by the de�nition of the sequence y we must have yn <
yn+1 = x(n+1)1x(n+1)2 . . . x(n+1)m. The latter product is equal to

⟨σ1⟩Qj
⟨σ2⟩Qj

. . . ⟨σm⟩Qj
≤

(
c

m∏
k=1

⟨σk⟩p/pk−p/p1

Qj
⟨vw⃗⟩−1

Qj

)p′
1/p

=

(
c

m∏
k=1

x
p/pk−p/p1

(n+1)k · z−1
n+1

)p′
1/p

,

where the estimate follows from the condition AP⃗ . By Lemma 2.2 (ii), this implies
B(xn+1, yn+1, zn+1) ≤ B(xn+1, yn, zn+1) on Qj and hence (2.6) follows. Summing



8 ADAM OS�KOWSKI

over j, we thus obtain∫
Q

B(xn+1, yn+1, zn+1)dµ ≤
∫
Q

B(xn+1, yn, zn+1)dµ.

Now, by the very de�nition of B, the second identity in (2.5) and the fact that yn is
constant on Q, the right-hand side above is equal to

∫
Q
B(xn+1, yn, zn)dµ. Finally,

by the �rst part of Lemma 2.2 and the �rst identity in (2.5), we have∫
Q

B(xn+1, yn, zn)dµ ≤
∫
Q

B(xn, yn, zn)dµ.

Hence, summing over all Q ∈ T n contained in R, we obtain the aforementioned
monotonicity.

Step 3. Completion of the proof. By the previous step, we obtain that for any
n ≥ n0 we have

(2.7)

∫
R

B(xn, yn, zn)dµ ≤
∫
R

B(xn0 , yn0 , zn0)dµ.

Let us inspect the expression on the right. By the very de�nition of y, we have
yn0

= xn01xn02 . . . xn0m; furthermore, by the AP⃗ condition, we obtain zn0
≤

c
∏m

j=1 x
−p/p′

j

n0j
. Consequently,

B(xn0
, yn0

, zn0
) ≤ α

c

m∏
j=1

x
p/pj

n0j
+ c(p1 − 1)

m∏
j=1

x
p/pj

n0j
− cp1

m∏
j=1

x
p/pj

n0j

 = 0.

To handle the left-hand side of (2.7), we apply the third part of Lemma 2.2. As
the result, we get ∫

R

ypnzndµ ≤ C

∫
R

m∏
j=1

x
p/pj

nj dµ.

It remains to let n → ∞ and carry out an appropriate limiting procedure. Recall
that we have the almost sure convergence xnj → σj , yn → M(σ⃗χR) and zn → vw⃗.
Therefore, the left-hand side above can be handled by Fatou's lemma:∫

R

M(σ⃗χR)
pvw⃗dµ ≤ lim inf

n→∞

∫
R

ypnzndµ.

To deal with the right hand side, we will apply Lebesgue's dominated convergence

theorem: we have
∏m

j=1 x
p/pj

nj →
∏m

j=1 σ
p/pj

j almost surely, so all we need is a

suitable majorant. The inclusion w⃗ ∈ AP⃗ implies σj ∈ Amp′
j
(cf. [5]), which gives

that σj , and hence also the maximal function Mσj , belongs to Lr for some r > 1.

Thus, by the Hölder inequality, the majorant
∏m

j=1

(
supn≥0 xnj

)p/pj

is integrable

and the assertion follows. □

We are ready for the proof of our main estimates.

Proof of (1.5) and (1.6). Fix a vector w⃗ ∈ AP⃗ (X, T ) and an arbitrary sequence

f⃗ = (f1, f2, . . . , fm) of functions on X such that fj ∈ Lpj (wj) for each j. Clearly,
we may assume that fj > 0 for all j. Let ε > 0 be a �xed parameter. By the
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de�nition of the multilinear maximal operator, for any ω ∈ X there is a set Q(ω)
containing ω such that

Mf⃗(ω) ≤ (1 + ε)⟨f1⟩Q(ω)⟨f2⟩Q(ω) . . . ⟨fm⟩Q(ω).

Of course, such a set Q(ω) need not be unique: to avoid ambiguity, we take Q(ω)
belonging to T n with n as small as possible. Now, for any Q ∈ T , we de�ne
E(Q) = {ω ∈ X : Q(ω) = Q} and let

aQ =

m∏
j=1

⟨σj⟩pQ · vw⃗(E(Q)).

By the very de�nition, we have E(Q) ⊆ Q and the sets E(Q) corresponding to
di�erent Q's are disjoint. Furthermore, we have aQ ≤ (M(σ⃗χQ)(ω))

pvw⃗(E(Q)) for
ω ∈ Q. Consequently, for any R ∈ T we get∑

Q⊆R

aR ≤
∫
R

(M(σ⃗χQ))
pvw⃗dµ ≤ C

∫
R

m∏
j=1

σ
p/pj

j dµ,

where the second inequality is due to (2.4). Thus, by the Carleson embedding

theorem applied to the vector
−−−→
fσ−1 = (f1σ

−1
1 , f2σ

−1
2 , . . . , fmσ−1

m ), we obtain∑
Q∈T

aQ

m∏
j=1

⟨fjσ−1
j ⟩pQ,σj

1/p

≤ C1/p
m∏
j=1

p′j∥fjσ−1
j ∥Lpj (σj) = C1/p

m∏
j=1

p′j∥fj∥Lpj (wj).

Now, by the de�nition of aQ and the identity ⟨fjσ−1
j ⟩Q,σj

= ⟨fj⟩Q⟨σj⟩−1
Q , we get

∑
Q∈T

aQ

m∏
j=1

⟨fjσ−1
j ⟩pQ,σj

=
∑
Q∈T

vw⃗(E(Q))

m∏
j=1

⟨fj⟩pQ ≥ (1 + ε)−1

∫
X

(Mf⃗)pvw⃗dµ.

Since ε was arbitrary, the desired estimates follow. Let us remark that in the
symmetric case p1 = p2 = . . . = pm, the obtained constant is

C1/p
m∏
j=1

p′j = (c(1 + d(mp, c)))m/(mp−1) ·
(

mp

mp− 1

)m

=

(
mp− 1

mp− 1− d(mp, c)

)m

·
(

mp

mp− 1

)m

=

(
mp

mp− 1− d(mp, c)

)m

,

as we have announced in the statement of Theorem 1.3. □

3. On the lower bound for the constant

3.1. Sharpness for p1 = p2 = . . . = pm. First we will show that in the symmetric
case the constant we have obtained is the best possible. Fix an integer m, an
exponent p ∈ (m−1,∞) and a constant c ∈ [1,∞). By the result of [9], for any
ε > 0 there is a weight w ∈ Amp with [w]Amp = c and a function f ∈ Lmp(w) such
that the (one-dimensional) maximal function M satis�es

∥Mf∥Lmp(w) >

(
mp

mp− 1− d(mp, c)
− ε

)
∥f∥Lmp(w).
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We consider the vectors f⃗ = (f, f, . . . , f) and w⃗ = (w,w, . . . , w), each consisting of
m coordinates. Then vw⃗ =

∏m
j=1 w

p/mp = w, so for any Q ∈ T ,

⟨vw⃗⟩Q
m∏
j=1

⟨w1−p′
j

j ⟩p/p
′
j

Q = ⟨w⟩Q⟨w1−(mp)′⟩mp−1
Q .

In particular, this implies [w⃗]AP⃗
= [w]Amp = c. Furthermore,

∥Mf⃗∥Lp(vw⃗) = ∥Mf∥mLmp(w) >

(
mp

mp− 1− d(mp, c)
− ε

)m

∥f∥mLmp(w)

=

(
mp

mp− 1− d(mp, c)
− ε

)m m∏
j=1

∥f∥Lmp(w),

which establishes the desired sharpness.

3.2. The lower bound in the asymmetric case. Here the calculations will be
more involved. It is convenient to split the construction into a few parts. We may
and do assume that c > 1: when c = 1, then the vector w⃗ consists of constant
weights and the claim follows easily from the unweighted theory.

Step 1. Auxiliary geometrical facts and parameters. Pick c̃ ∈ (1, c) and set
q = p/p′1+1. There are two lines passing through the point K = (1, c̃1/(q−1)) which
are tangent to the curve xyp−1 = c; we take the line ℓ for which the x-coordinate
of the tangency point is smaller than 1. This line intersects the curve xyq−1 = 1 at
two points: pick the point L with bigger x-coordinate and denote this coordinate by
1+d(c̃). Furthermore, the line ℓ intersects the curve xyq−1 = c̃ at two points: one of
them is K, while the second, denoted by M , is of the form

(
1− δ, (c̃(1− δ))1/(1−q)

)
.

See Figure 2 below.

Figure 2. The crucial three points K = (1, c̃1/(q−1)), L =
(
1 +

d(c̃), (1 + d(c̃))1/(1−q)
)
and M =

(
1− δ, (c̃(1− δ))1/(1−q)

)
.
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The points K, L, M are colinear: some simple algebra transforms this into the
equality

(3.1) (c̃(1 + d(c̃)))1/(q−1)
(
d(c̃) + δ − d(c̃)(1− δ)1/(1−q)

)
= δ,

which will be useful later.

Step 2. Construction. Now, recall the following simple measure-theoretic fact,
which can be found in [7].

Lemma 3.1. For every Q ∈ T and every β ∈ (0, 1) there is a subfamily F (Q) ⊂ T
consisting of pairwise disjoint subsets of Q such that

µ

 ⋃
R∈F (Q)

R

 =
∑

R∈F (Q)

µ(R) = βµ(Q).

We use this fact recursively and construct an appropriate sequence A0 ⊃ A1 ⊃
A2 ⊃ . . . of subsets of X. The starting point is the choice A0 = X. To describe the
inductive step, assume we have constructed An, which is a union of pairwise almost
disjoint elements of T , called the atoms of An. Of course, this condition is satis�ed
for n = 0: we have A0 = X ∈ T . Then, for each atom Q of An, we apply the above
lemma with β = d(c̃)/(d(c̃) + δ) and get the corresponding subfamily F (Q). Put
An+1 =

⋃
Q

⋃
Q′∈F (Q) Q

′, the �rst union taken over all atoms Q of An. Directly

from the de�nition, this set is a union of the family {F (Q) : Q an atom of An},
which consists of pairwise disjoint elements of T . We call these elements the atoms
of An+1 and conclude the description of the induction step.

As an immediate consequence of the above construction, we see that if Q is an
atom of Ak, then for any n ≥ k we have

µ(Q ∩An) = µ(Q)

(
d(c̃)

d(c̃) + δ

)n−k

and hence

(3.2) µ(Q ∩ (An \An+1)) = µ(Q)

(
d(c̃)

d(c̃) + δ

)n−k
δ

d(c̃) + δ
.

Now, introduce the weights w1, w2, . . . , wm on X by the formula

w
p/p1

1 =

∞∑
n=0

χAn\An+1
(1− δ)n

and w2 = w3 = . . . = wm ≡ 1. Furthermore, for j = 1, 2, . . . , m, we let

fj =

∞∑
n=0

χAn\An+1
(1 + ajδ)

n,

where a1 = (p1d(c̃))
−1 + p−1 − ε/p1 and, for j ≥ 2, aj = (pjd(c̃))

−1 − ε/pj . Here ε
is a �xed positive parameter (which will be sent to zero at the end of the proof).

Step 3. We have [w]AP⃗
≤ c. The equality w2 = w3 = . . . = wm = 1 implies that

vw⃗ = w
p/p1

1 and v
−p′

1/p
w⃗ = w

1−p′
1

1 . Hence [w]AP⃗
≤ c is equivalent to showing that

vw⃗ ∈ Aq. This in turn amounts to saying that for any Q ∈ T ,

⟨vw⃗⟩Q
〈
v
1/(1−q)
w⃗

〉q−1

Q
≤ c.
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To prove this, we use (3.2) to obtain that for each atom Q of Ak we have

(3.3) ⟨vw⃗⟩Q =

∞∑
n=k

(
d(c̃)

d(c̃) + δ

)n−k

(1− δ)n · δ

d(c̃) + δ
=

(1− δ)k

1 + d(c̃)

and 〈
v
1/(1−q)
w⃗

〉
Q
=

∞∑
n=k

(
d(c̃)

d(c̃) + δ

)n−k

(1− δ)n/(1−q) · δ

d(c̃) + δ

=
δ

d(c̃) + δ
(1− δ)k/(1−q) ·

(
1− d(c̃)

d(c̃) + δ
(1− δ)1/(1−q)

)−1

=
c1/(q−1)(1− δ)k/(1−q)

(1 + d(c̃))1/(1−q)
,

where in the last line we have used (3.1). Suppose that R is an arbitrary element
of T . Then there is an integer k such that R ⊆ Ak−1 and R ̸⊆ Ak. We have

⟨vw⃗⟩R =
1

µ(R)

∫
R\Ak

vw⃗dµ+
1

µ(R)

∫
R∩Ak

vw⃗dµ

=
1

µ(R)

∫
R\Ak

(1− δ)k−1dµ+
1

µ(R)

∫
R∩Ak

vw⃗dµ.

By (3.3), applied to each atom Q of Ak contained in R, we get∫
R∩Ak

vw⃗dµ =
µ(R ∩Ak)(1− δ)k

1 + d(c̃)

and hence, setting η := µ(R ∩Ak)/µ(R), we rewrite the preceding equality as

⟨vw⃗⟩R = (1− η)(1− δ)k−1 + η · (1− δ)k

1 + d(c̃)
.

Similarly, we obtain

⟨v1/(1−q)
w⃗ ⟩R = (1− η)(1− δ)(k−1)/(1−q) + η · c

1/(q−1)(1− δ)k/(1−q)

(1 + d(c̃))1/(1−q)
,

which implies

⟨vw⃗⟩R⟨v1/(1−q)
w⃗ ⟩q−1

R

=

(
η(1− δ) + (1− η)(1 + d(c̃))

)(
η(1− δ)

1
1−q + (1− η)(1 + d(c̃))

1
1−q

)q−1

.

This number does not exceed c. Indeed, the right-hand side can be rewritten as

(ηMx + (1− η)Lx)(ηMy + (1− η)Ly)
q−1,

whereMx, My and Lx, Ly are the coordinates of the pointsM and L (see Figure 2).
As η ranges from 0 to 1, the point ηM + (1− η)L runs over the line segment ML
which is entirely contained in {(x, y) : xyq−1 ≤ c}. Since R was arbitrary, we obtain
the desired AP⃗ condition: [w]AP⃗

≤ c.

Step 4. Completion of the proof. In the same manner as above, one veri�es that
if Q is an atom of Ak, then

⟨fj⟩Q =
∑
n≥k

(1 + ajδ)
n

(
d(c̃)

d(c̃) + δ

)n−k
δ

d(c̃) + δ
=

(1 + ajδ)
k

1− ajd(c̃)
.
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Note that the ratio of the above geometric series, is equal to

(1 + ajδ)d(c̃)

d(c̃) + δ
= 1 +

(ajd(c̃)− 1)δ

d(c̃) + δ
< 1 +

(p−1
j − 1)δ

d(c̃) + δ
< 1,

so the series is convergent. Hence, on Ak (and hence also on Ak \Ak−1) we have

Mf⃗ ≥
m∏
j=1

⟨fj⟩Q =

m∏
j=1

(1 + ajδ)
k

1− ajd(c̃)

and therefore

∥Mf⃗∥Lp(vw⃗) ≥

∑
n≥0

 m∏
j=1

(1 + ajδ)
n

1− ajd(c̃)

p

(1− δ)n
(

d(c̃)

d(c̃) + δ

)n
δ

d(c̃) + δ

1/p

.

The ratio of the geometric series in the parentheses is given by

m∏
j=1

(1 + ajδ)
p(1− δ)

(
d(c̃)

d(c̃) + δ

)
= 1 +

[
p(a1 + a2 + . . .+ am)− 1− (d(c̃))−1

]
δ + o(δ)

= 1− εδ + o(δ)

as δ → 0. Thus the series is convergent and we obtain

∥Mf⃗∥Lp(vw⃗) ≥ (d(c̃)ε)−1/p
m∏
j=1

(1− ajd(c̃))
−1 +O(δ).

On the other hand, an analogous computation shows that

∥f1∥Lp1 (w1) =

∑
n≥0

(1 + a1δ)
np1(1− δ)np1/p

(
d(c̃)

d(c̃) + δ

)n
δ

d(c̃) + δ

1/p1

=
(
p1d(c̃)

(
(p1d(c̃))

−1 + p−1 − a1
))−1/p1

+O(δ) = (d(c̃)ε)−1/p1 +O(δ)

and for j ≥ 2,

∥fj∥Lpj (wj) =

∑
n≥0

(1 + ajδ)
npj

(
d(c̃)

d(c̃) + δ

)n
δ

d(c̃) + δ

1/pj

= (1− ajpjd(c̃))
−1/pj +O(δ) = (d(c̃)ε)−1/pj +O(δ).

Putting the above facts together (and noting that d(c̃) → d(q, c) as δ → 0), we get

lim sup
δ→0

∥Mf⃗∥Lp(vw⃗)∏m
j=1 ∥fj∥Lpj (wj)

≥
m∏
j=1

(1− ajd(q, c))
−1.

Finally, we check that the constant on the right converges, as ε → 0, to(
1− p′1d(q, c)

p

)−1 m∏
j=1

p′j = (c(1 + d(q, c)))p
′
1/p

m∏
j=1

p′j .

This yields the desired lower bound for the optimal constant.
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