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Abstract. We consider the Brownian �spider process�, also known as Walsh
Brownian motion, �rst introduced in the epilogue of Walsh ([18]). The paper
provides the best constant Cn for the inequality

EDτ ≤ Cn

√
Eτ ,

where τ is the class of all adapted and integrable stopping times and D denotes
the diameter of the spider process measured in terms of the British rail metric.
This solves a variant of the longstanding open �spider problem� due to L.E.
Dubins ([6, p.487]). The proof relies on the explicit identi�cation of the value
function for the associated optimal stopping problem.
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1. Introduction

We consider the Brownian �spider process,� also known as Walsh Brownian mo-
tion, as �rst introduced in the epilogue of Walsh ([18]). Early constructions of
Walsh's Brownian motion were given by Rogers ([16]) using resolvents, by Bax-
ter and Chacon ([3]) using in�nitesimal generators, and by Salisbury ([17]) using
excursion theory. Barlow, Pitman, and Yor ([2]) considered the construction of
Walsh Brownian motion as a process living on n ≥ 1 rays meeting at a common
point (reminiscent of a spider). An explicit connection between Walsh Brownian
motion and queueing theory was recently established by Atar and Cohen ([1]), who
considered queue length processes in the form of Walsh Brownian motion.

It is the construction of Walsh Brownian motion by Barlow, Pitman, and Yor
([2]) that we shall employ in the present paper. Our main purpose shall be to solve
an optimal stopping problem for the spider process, to be formulated in equation
(1.8) below. Before revealing this optimal stopping problem, we begin with some
background and necessary de�nitions. The construction of the spider process is mo-
tivated by the fundamental observation that standard one-dimensional Brownian
motion can be viewed as an absolute value of itself, each of whose excursions is as-
signed a random sign. Following the construction in [2, 5], the spider process, with
n ≥ 3 rays emanating from the origin, may be viewed as the extension of the above
observation to an n-valued sign. More precisely, for a given positive integer n, con-
sider the collection of n rays Rk = {e2πik/nt : t ≥ 0}, k = 1, 2, . . . , n, on the plane.
Let θ = (θm)m≥0 be the sequence of independent �complex signs,� i.e., the family

of random variables with the uniform distribution on {e2πik/n : k = 1, 2, . . . , n}.
Assume further that B = (Bt)t≥0 is a Brownian motion independent of θ and let
e = (et)t≥0 be the associated excursion process (see Chapter XII in [13]). The set of
excursions is countable and hence it can be ordered by the set of natural numbers.
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The spider process S is then given by St = θm(t)|Bt|, where m(t) is the number of
the excursion of B which straddles t (see [13], p. 488). From this de�nition, we see
that for the case n = 1, the spider process reduces to re�ecting Brownian motion
|B|; the case n = 2 corresponds to standard Brownian motion.

The optimal stopping problem in (1.8) is motivated by the development of op-

Figure 1. A depiction of the spider process with n = 5. The bold
segments indicate the points already visited by S up to time t. The
longest rib lies on the ray R5. The the second longest rib lies on
R3.

timal bounds for the expected �size� (as de�ned in equations (1.4) and (1.5) below)
of the stopped spider process. For a given t ≥ 0 and ω ∈ Ω, let Tt(ω) denote the
trajectory up to time t:

(1.1) Tt(ω) = {Ss(ω) : 0 ≤ s ≤ t}.

Moreover, let dt(ω) stand for the sum of the deviations of Tt(ω) along the rays, i.e.,

(1.2) dt(ω) =

n∑
k=1

|Tt(ω) ∩Rk|.

We shall sometimes refer to these deviations as the �ribs� of S.
L.E. Dubins wished to design a stopping time to maximize the coverage of Brow-

nian motion on the spider for a given expected time (see [6, p.487]). That is, Dubins
sought to �nd the best constant cn such that

(1.3) Edτ ≤ cn
√
Eτ

for any integrable stopping time τ of S (i.e., measurable with respect to the �ltration
generated by the spider process). We refer to this problem as the Dubins' �spider
problem.� This problem been solved only in the cases n = 1 and n = 2. When
n = 1, S = |B| and hence (1.3) becomes

E sup
0≤t≤τ

|Bt| ≤ c1
√
Eτ .
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Dubins and Schwarz [5] proved that the value c1 =
√
2 is optimal; one may also

consult Dubins, Gilat and Meilijson [4] for an alternative approach. Other related
literature includes [7, 8, 11]. For n = 2, the spider process reduces to the Brownian
motion and we de�ne d to be the di�erence of the running maximum and the
running minimum, namely

dt = sup
0≤s≤t

Bs − inf
0≤s≤t

Bs.

In [4], the authors proved that the optimal choice for c2 is equal to
√
3. For n ≥ 3,

a tempting conjecture is that cn =
√
n+ 1, but this appears to not be so, at least

for n = 3 (cf. [6]).
In this work, we solve a version of Dubins' spider problem in which the coverage

or size of the spider process is measured di�erently. In this formulation, we shall
replace dt by the diameter Dt with respect to the British rail metric: that is, for
n = 1, we have

(1.4) Dt(ω) = |Tt(ω) ∩R1|.

For n ≥ 2, we have

(1.5) Dt(ω) = max
{(

|Tt(ω) ∩Rj |+ |Tt(ω) ∩Rk|
)
: j, k ∈ {1, 2, . . . , n}, j ̸= k

}
.

In other words, Dt(ω) is given as in (1.2), but only one or two largest summands
are taken into account (depending, respectively, on whether n = 1 or n ≥ 2). In
the simpler case that n ∈ {1, 2}, then dt = Dt, and so the optimal constant Cn in
the inequality

(1.6) EDτ ≤ Cn

√
Eτ

equals
√
2 for n = 1 and equals

√
3 for n = 2. The key purpose of the present paper

is to identify the optimal value of Cn for n ≥ 3. We preview our main result as
Theorem 1.1 below, which shall be proved in Section 4.

Theorem 1.1. For n ≥ 3, the best constant in (1.6) is given by

Cn = 2
√
U(0, 0, 0),

where U(0, 0, 0) is de�ned in Corollary 3.6 below.

A few remarks concerning the general strategy for proving our main result are
now in order. By a straightforward time-homogeneity argument, it su�ces to �nd
the optimal constant κn in the inequality

(1.7) EDτ − Eτ ≤ κn.

Indeed, it follows from the scaling properties of Brownian motion that for any �xed
λ > 0, (S̃λ

t )t≥0 = (λSt/λ2)t≥0 is a spider process and for any integrable stopping

time of S, τ̃λ = τλ2 is a stopping time of S̃. Consequently, applying the above
inequality to S̃λ with the corresponding diameter D̃, we obtain

EDτ = λ−1ED̃λ
τ̃λ ≤ λ−1κn + λ−1Eτ̃λ = λ−1κn + λEτ.

Optimizing over λ, we obtain

EDτ ≤ 2
√

κnEτ ,
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which is the desired inequality. To see that the constant is optimal, we will construct
an integrable stopping time for which equality holds in (1.7); since Eτ + κn ≥
2
√
κnEτ , this will immediately show that τ is also optimal for (1.6).
The estimate (1.7) leads directly to the optimal stopping problem

(1.8) U = supE(Dτ − τ),

where the supremum is taken over all integrable stopping times τ of S. Given an
optimal stopping problem, we may generalize the problem to the case in which
the underlying Markov process is allowed to start from an arbitrary point in the
associated state space. As a result, the corresponding value U extends to the value
(or �reward�) function on the entire state space. This object has many structural
properties which in many cases enables its explicit identi�cation (and which, in
turn, yields the solution to the initial optimal stopping problem). To �nd the
reward function, we typically exploit one of the following two strategies:

(A) Using Markovian arguments, we write a system of di�erential equations
that the value function should satisfy. Then, applying analytic arguments and
exploiting homogeneity in the problem structure (if there is any), we attempt to
solve the system and guess the �right� function.

(B)We attempt to guess the the optimal strategy. To do so, we compute the value
function by specifying for each starting point the corresponding optimal stopping
time.

Sometimes, a successful solution requires a clever combination of both (A) and
(B). It should be emphasized that both these approaches typically only yield the
candidate for the reward function (during the search and the construction for the
reward function, one usually exploits a number of guesses and/or some additional
assumptions, which are not a priori guaranteed). Next, having found the candidate,
one proceeds to rigorous proof and checks the excessiveness and optimality of the
constructed function. If both excessiveness and optimality hold, then the candidate
coincides with the value function and the optimal stopping problem is solved.

In solving the optimal stopping problem in (1.8), we shall exploit both strategies
(A) and (B). We shall also rely on the theory of martingale inequalities, which
have proven essential to many areas of operations research (see, for example, [10,
14, 15]). We will also need a number of novel arguments; in particular, in order
to reduce dimensionality and represent the spider process in terms of a relatively
simple Markovian structure, we shall employ a skew Brownian motion with jumps.
Furthermore, by a certain translation property and an appropriate reduction trick
(both to be revealed in Section 2), we shall see that the analysis of the optimal
stopping problem in (1.8) shall heavily depend on the solution of a related auxiliary
two-dimensional optimal stopping problem in (2.1) for a standard Brownian motion.

The remainder of this paper is organized as follows. Section 2 is concerned with
the analysis of the aforementioned auxiliary stopping problem in (2.1). For the sake
of completeness, we also present the solution to the optimal stopping problem in
(1.8) for the cases n = 1 and n = 2. Although the solution for both these cases
has already appeared in the literature, we �nd that their analyses provide helpful
intuition about the optimal strategy for the general case. Section 3 is devoted to
the construction of the candidate for the value function for n ≥ 3. It is the most
technically innovative part of the paper; our e�orts shall include the aforementioned
reduction as well as a combination of arguments from methods (A) and (B) above.
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Section 4 proves that the constructed candidate coincides with the desired value
function and then shows how the optimal stopping problem in (1.8) leads to the
proof of our main result in Theorem 1.1.

2. Preparation

2.1. A related optimal stopping problem. We begin with a problem, which
itself is not new (see, for example, [6]), but whose analysis will be quite helpful in
for the present paper. For the sake of convenience and clarity, we split the reasoning
into several intermediate steps.

Step 1. Suppose that X = (Xt)t≥0 is a standard, one-dimensional Brownian
motion and denote by Y = (Yt)t≥0 the associated one-sided maximal function, i.e.,
Yt = sup0≤s≤t Xs for t ≥ 0. Consider the optimal stopping problem

(2.1) V = supE (Yτ − τ) ,

where the supremum is taken over all integrable stopping times τ of X. By
Wald's identity, the time variable can be removed: the above supremum equals
V = supE

(
Yτ −X2

τ

)
, thus giving rise to the optimal stopping problem for the

Markov process (X,Y ). We de�ne the associated state space as

D = {(x, y) : y ≥ x ∨ 0},

and introduce the gain function G : D → R given by G(x, y) = y − x2. We then
have the identity

(2.2) V = supEG (Xτ , Yτ ) ,

which �ts into the general framework of the theory of optimal stopping (see, for
example, [12]). As mentioned in the previous section, a successful treatment of
(2.2) requires the generalization of the problem to the case in which the process
(X,Y ) starts from an arbitrary point in the state space D. This is standard: one
�rst extends the process (X,Y ) to a Markov family on D, introducing the family of
initial distributions (Px,y)(x,y)∈D, given by the requirement that, for all (x, y) ∈ D,

Px,y(X0 = x, Y0 = y) = 1.

Next, one de�nes the associated value function

(2.3) V(x, y) = supEx,yG(Xτ , Yτ ), (x, y) ∈ D,

where the supremum is taken over all Px,y-integrable stopping times τ of X. Al-
ternatively, one can de�ne V(x, y) using a single probability measure P0,0 by

(2.4) V(x, y) = supE0,0G

(
x+Xτ ,

(
x+ sup

0≤s≤τ
Xs

)
∨ y

)
,

where the supremum is taken over all P0,0-integrable stopping times τ of X.

Step 2. Following the usual approach from general optimal stopping theory (see,
for example, [12]), we split the state space D into two sets, the continuation region
C and the instantaneous stopping region D. They are given, respectively, by

C =
{
(x, y) ∈ D : V(x, y) > G(x, y)

}
, D =

{
(x, y) ∈ D : V(x, y) = G(x, y)

}
.
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Thus, to solve (2.3) (and hence also (2.2)), one needs to identify the shape of the
continuation region and the formula for V on this set. Having done that, the optimal
stopping time is given by

(2.5) τ = inf{t ≥ 0 : (Xt, Yt) ∈ D}.
Standard Markovian arguments (see Chapter 3 in [12]) indicate that V should be
in C1 and should satisfy the following requirements

Vxx(x, y) = 0 if (x, y) ∈ C, x < y,(2.6)

Vy(x, x+) = 0 for all x,(2.7)

Vx(x, y) = Gx(x, y) for all (x, y) ∈ ∂C.(2.8)

Note that equations (2.6) and (2.7) arise from the application of the generator of the
Markov process (X,Y ) to the function V; (2.8) is the consequence of the principle
of smooth �t.

Step 3. The key geometric properties of the continuation and stopping sets arises
from the following arguments. Firstly, we observe that by (2.4),

V(x, y) = sup
τ

E0,0

[(
x+ sup

0≤s≤τ
Xs

)
∨ y − (x+Xτ )

2

]
= x− x2 + sup

τ
E0,0

[(
sup

0≤s≤τ
Xs

)
∨ (y − x)−X2

τ

]
= x− x2 + V(0, y − x),

(2.9)

where in the second line we have used the identity E0,0Xτ = 0. This yields the
following translation property of C: if (x, y) ∈ C and λ ≥ −y, then (x+λ, y+λ) ∈ C.
Indeed, if V(x, y) > G(x, y), we have

V(x+ λ, y + λ) = x+ λ− (x+ λ)2 + V(0, y − x)

= λ− 2xλ− λ2 + V(x, y)
> λ− 2xλ− λ2 +G(x, y) = G(x+ λ, y + λ).

By passing to the complement, D enjoys the same translation property. The second
observation is that if (x, y) ∈ D and y′ > y, then (x, y′) also lies in the stopping
region. Indeed, if a, b, c ∈ R satisfy the inequality b < c, then

a ∨ b− b ≥ a ∨ c− c,

and so for any stopping time τ we have the inequality

E0,0

[(
x+ sup

0≤s≤τ
Xs

)
∨ y′ − (x+Xτ )

2

]
−G(x, y′)

≤ E0,0

[(
x+ sup

0≤s≤τ
Xs

)
∨ y − (x+Xτ )

2

]
−G(x, y) ≤ V(x, y)−G(x, y) = 0.

Taking the supremum over all τ , we obtain that V(x, y′) ≤ G(x, y′), which implies
that (x, y′) ∈ D. Combining the above two observations, we see that there is a
constant a > 0 such that

C = {(x, y) : 0 ≤ y − x < a},
and

D = {(x, y) : y − x ≥ a}.
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Note that the use of strict/non-strict inequalities comes from the fact that C is
open and D is closed. This is due to the continuity of V and G.

Step 4. Now, based on (2.6)-(2.8), we provide the formula for the candidate for
the value function, which will be denoted by V . By (2.6) and (2.8), we see that if
(x, y) lies in the continuation set, then

V (x, y) = G(y − a, y) +Gx(y − a, y)(x− y + a) = y + (y − a)2 − 2(y − a)x.

Applying the condition in (2.7) yields a = 1
2 . We have thus obtained that

V (x, y) =

{
y − x2 if y − x ≥ 1

2 ,

y2 + 1
4 − (2y − 1)x if y − x < 1

2 .

Step 5. It is straightforward to see that the function V obtained above is excessive
(that is, it satis�es (2.6)-(2.8)). Hence, by applying Itô's formula, we have that
V ≥ V. The reverse inequality is obtained by considering the stopping time given
in (2.5). This stopping time is integrable, even exponentially (see, for example,
[19]). Furthermore, for any (x, y) ∈ D, the stopped process (Xτ , Y τ ) evolves along
the continuation region and Itô's formula gives

V (x, y) = Ex,yV (Xτ , Yτ ) ≤ V(x, y).

This proves that V = V. We pause to note that the optimal stopping time in (2.5)
has the following interpretation: if the distance between X and Y is less than 1

2 ,
it is bene�cial to wait; otherwise we should stop. This strategy makes intuitive
sense as well: if X is near its running maximum, then there is a high probability
that the maximum will increase at any given moment (thus increasing the value
V), and the cost of waiting, expressed in terms of time or the increase of EX2, is
relatively small. However, when the distance is large, it may take longer for X to
return to Y , so the expected cost of waiting is too high and hence it is optimal to
stop immediately. These heuristics shall prove helpful in the sequel.

2.2. On (1.8) for n = 1. We now proceed with the study of the spider process. In
the case n = 1, the process coincides with the re�ecting Brownian motion |X| =
(|Xt|)t≥0. Let Y denote the corresponding two-sided maximal function

Y = (Yt)t≥0 = ( sup
0≤s≤t

|Xs|)t≥0.

Recalling (1.8) and invoking Wald's identity leads us to the optimal stopping prob-
lem

(2.10) U = supE(Yτ −X2
τ ),

where the supremum is taken over all integrable stopping times τ of |X|. The
analysis essentially proceeds along the same lines as in the previous subsection.
Since the maximal function Y above is two-sided, we modify the domain to D =
{(x, y) : |x| ≤ y}, introduce the value function

U(x, y) = supEx,y(Yτ − |Xτ |2), (x, y) ∈ D,

and de�ne the continuation and stopping regions C and D by the same formulas
as before. Note that G(x, y) = G(−x, y) and that the distribution of (X,Y ) under
Px,y is the same as that of (−X,Y ) under P−x,y. We thus conclude that

(2.11) U(x, y) = U(−x, y) for all (x, y) ∈ D.
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The key here di�erence is that the presence of two-sided maximal function disables
equation (2.9), which had proved to be fundamental in the previous analysis.

To overcome this di�culty, we present the following reduction argument which
shows that U and V coincide on a large part of the domain. Firstly, since Y is not
smaller than the one-sided maximal function, the direct comparison of the formulas
for U and V gives that U ≥ V on D. Next, suppose that y0 is a nonnegative number
such that (0, y0) ∈ D. Repeating the reasoning from Step 3 above, we see that the
entire half-line

ℓ = {0} × [y0,∞)

is contained within D. Thus, for any x ≥ 0, in the de�nition of U(x, y0) one can
restrict oneself to those stopping times τ for which the process Xτ does not go
below zero: indeed, for other stopping times the process (Xτ , Y τ ) crosses the line
ℓ, which is not optimal (see (2.5)). However, for such τ , the process Y coincides
with the one-sided maximal function and hence by the very de�nition of U and V
we have the desired reverse bound U(x, y0) ≤ V(x, y0). This in particular implies
that y0 ≥ 1

2 , since otherwise we would obtain

G(0, y0) = U(0, y0) = V(0, y0) > G(0, y0),

a contradiction. Denoting by b the in�mum of all y0's as above, we have that for
y ≥ b,

U(x, y) = V(|x|, y).
We now apply Markovian arguments to obtain Uxx = 0 on C; one also may note

that by the symmetry condition in (2.11), we have that, for y < b,

Ux(0, y) = 0.

These two observations imply that the function U must be constant on D∩{y < b}
and, by continuity, V must be constant on the line segment [0, b]×{b}. This implies
that b = 1

2 , leading us to the construction of the candidate function

U(x, y) =


y − x2 if y ≥ x+ 1

2 ,

y2 + 1
4 − (2y − 1)x if x+ 1

2 > y ≥ 1
2 ,

1
2 if y < 1

2 .

It is straightforward to check that U is excessive and hence that U ≥ U; the reverse
bound is obtained by considering the stopping time in (2.5). The optimal strategy
is to wait until the distance between |X| and its running maximum is at least
1
2 . Intuitively, this remains perfectly consistent with the strategy for the previous
problem.

2.3. The case n = 2. Here the analysis will be a more involved, but again the
special function V will play a prominent role.

Step 1. The spider process S coincides with the standard one-dimensional Brow-
nian motion, which we shall denote again by X. Let Y = (Yt)t≥0 and Z = (Zt)t≥0

be the running maximum and the running in�mum of X; that is, for t ≥ 0,

Yt = sup
0≤s≤t

Xs,

and

Zt = inf
0≤s≤t

Xs.
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Motivated by (1.8) and Wald's identity, we introduce the optimal stopping problem

(2.12) U = supE(Yτ − Zτ −X2
τ ),

where the supremum is taken over all integrable stopping times τ of X. It is
important to note that, in contrast to the previous considerations, there are now
three variables involved.

To apply the general theory of optimal stopping, we extend the triple (X,Y, Z)
to a Markov family on the state space

D = {(x, y, z) : 0, x ∈ [z, y]}.
Let the corresponding family of initial distributions be denoted by (Px,y,z)(x,y,z)∈D.

Having done that, we introduce the gain function G(x, y, z) = y − z − x2 and the
value function

(2.13) U(x, y, z) = supEx,y,zG(Xτ , Yτ , Zτ ).

Here the supremum is taken over all Px,y,z-integrable stopping times τ of X. The
associated continuation and the instantaneous stopping regions are given by

C =
{
(x, y, z) ∈ D : U(x, y, z) > G(x, y, z)

}
,

D =
{
(x, y, z) ∈ D : U(x, y, z) = G(x, y, z)

}
,

(2.14)

and the optimal stopping time in (2.13) is

(2.15) τ = inf{t ≥ 0 : (Xt, Yt, Zt) ∈ D}.

Step 2. We now provide an initial comparison of the functions U and V, exploiting
a similar argument as in the case n = 1. We begin with the observation that both
the inequalities Yτ ≥ y and Zτ ≤ z hold Px,y,z-almost surely. This implies that

(2.16) Ex,y,z(Yτ − Zτ −X2
τ ) ≥ Ex,y,z(Yτ −X2

τ )− z,

and

(2.17) Ex,y,z(Yτ − Zτ −X2
τ ) ≥ Ex,y,z(−Zτ −X2

τ ) + y.

By the de�nition of U and V, (2.16) gives
(2.18) U(x, y, z) ≥ V(x, y)− z.

To see the consequence of (2.17), note that, under Px′,y,z, (X,−Z) has the same
distribution as (X,Y ) under P−x,−z,−y. We therefore obtain

(2.19) U(x, y, z) ≥ V(x,−z) + y.

Indeed, both (2.18) and (2.19) can be reversed on a large part of the domain.
Let z < 0 < y be �xed numbers and suppose that there is x ∈ (z, y) such that the
state (x, y, z) belongs to the stopping domain. Then the whole half-line

ℓ = {x} × [y,∞)× {z}
is entirely contained within D (repeating the argument from Step 3 in Subsection
2.1). Next, suppose that x′ > x. Then in the de�nition of U(x′, y, z) it is enough
to consider only those stopping times τ for which the process (Xτ )t≥0 does not go
below x. Indeed, for other stopping times the process (Xτ , Y τ , Zτ ) crosses the line
ℓ, which is not optimal (see (2.15)). However, for such τ the running in�mum Zτ

will not change, so

U(x′, y, z) = supEx′,y,z(Yτ −X2
τ )− z ≤ V(x′, y)− z.
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An analogous argument works for x′ < x: in this case, when studying (2.13), one
may restrict oneself to stopping times τ for which Xτ does not go above x, which
keeps Y τ �xed and yields the desired reverse identity

U(x′, y, z) = supEx′,y,z(−Zτ −X2
τ ) + y ≤ V(x′,−z) + y.

Step 3. Note that (2.18) and (2.19) imply that if y − z < 1, then (x, y, z) ∈ C
for all x ∈ [z, y]. Indeed, for any such x we have x− z < 1

2 or y− x < 1
2 , and hence

V(x, y) > y − x2 or V(x,−z) ≥ −z − x2. This gives

U(x, y, z) > G(x, y, z).

It is useful to note that this in perfect consistence with the optimal strategies
described at the end of the previous two subsections: if y−z < 1, then the distance
between x and y or the distance between x and z is less than 1

2 , and hence it is
bene�cial to wait. This observation also suggests what to do if y − z ≥ 1. If both
x− z and y− x are at least 1

2 , one should stop; otherwise, wait. In other words, by
the analysis carried out in the previous step, we obtain that the candidate U for
the value function satis�es, if y − z ≥ 1,

U(x, y, z) =

{
V(x, y)− z if y − x < x− z,

V(x,−z) + y if y − x ≥ x− z.

For y−z < 1, one exploits Markovian arguments and obtains the system of equations

Uxx(x, y, z) = 0 if z < x < y,

Uy(x, x+, z) = 0 for all z < 0 < x,

Uz(x, y, x−) = 0 for all x < 0 < y.

This system can be solved explicitly (cf. [4, 6], see also Section 3 below): we obtain

U(x, y, z) = y − z − x(y + z) +
(y − 1)2 + (z + 1)2

2
− 1

4
.

Step 4. The analysis is completed by showing that U = U. This is done as
we have done so previously: one checks that U is excessive and hence U ≥ U.
The reverse bound follows from the construction, since U is obtained by exercising
the optimal strategy described above. We omit the details, instead referring the
interested reader to [4, 6].

3. On the search for the value function for n ≥ 3

Equipped with the above machinery and intuition, we proceed to the analysis
of the case n = 3. The purpose of this section is to obtain a candidate U for
the value function associated with the appropriate optimal stopping problem. The
reasoning rests on a number of guesses and assumptions that may (at least at �rst
glance) seem imprecise. However, the reader should keep in mind that our purpose
in this part of the manuscript is only to guess an appropriate special function. The
necessary rigorous analysis will be presented in Section 4. Again, for purposes of
clarity, we split the reasoning into intermediate steps.

Step 1. Firstly, we need to specify the underlying Markov process which will
be subject to the optimal stopping procedure. Of course, we could consider the
process

(X,Y (1), Y (2), . . . , Y (n)),
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where X takes the values in

R1 ∪R2 ∪ . . . ∪Rn,

and Y
(j)
t measures the length of j-th rib up to time t, but this process has a rather

complicated structure. Fortunately, there is an alternative for which the state
space is simpler: a three-dimensional structure. As a starting point, note that the
diameter of the spider process depends only on the behavior of two longest ribs and
hence, as it was for n = 2, it is natural to attempt to �nd some representation of S
on the real line. For t ≥ 0, let us distinguish the longest rib by

Yt = max
1≤j≤n

|Tt(ω) ∩Rj |,

(where Tt(ω) was de�ned in (1.1)) and let −Zt (note the minus sign) be the corre-
sponding second longest rib, so that Dt = Yt − Zt. Now, to de�ne X, we �rst set
|Xt| to be the distance of the spider process St from the origin. Furthermore, if St

belongs to the �running longest rib,� we assume that Xt ≥ 0; otherwise, we assume
that X is negative. In other words, we copy the running longest rib on the positive
half-line, while all the remaining ribs are glued together and copied on (−∞, 0].
For a graphical illustration of the above arguments, see Figure 2 below.

The process X can be interpreted in the language of skew Brownian motion (see,
for example, [9]). Given α ∈ [0, 1], the α-skew Wiener process can be obtained from
re�ecting Brownian motion by changing (independently) the sign of each excursion
with probability α. Thus, 0-skew Wiener process is re�ecting Brownian motion,
while 1

2 -skew Wiener process is the usual Brownian motion. The α-skew Wiener
process behaves like a usual Wiener process except for the asymmetry at the origin:
if located at zero, then for any s > 0 the process has probability α of reaching −s
before s.

Note that the process X de�ned above is a 1−n−1-skew Brownian motion, which
possesses the additional jump part: if for a given t > 0, its left limitXt− equals −Yt,
then Xt changes its sign, moving to Yt. This discontinuity (or �phase-transition�)
corresponds to the scenario in which the second longest rib becomes the longest.

Step 2. We now gather some basic information about the behavior of the triple
(X,Y, Z). It is straightforward to check that this is a time-homogeneous, right-
continuous strong Markov process on the state space

D = {(x, y, z) : z ≤ 0 ≤ y, z ≤ x ≤ y, y + z ≥ 0}.
As usual, we shall denote by (Px,y,z)(x,y,z)∈D the corresponding family of initial
distributions such that

Px,y,z((X0, Y0, Z0) = (x, y, z)) = 1.

Let us discuss the action of the associated in�nitesimal generator L. Let f be a
bounded su�ciently regular function on E. If x > 0, then up to time τ = inf{t :
Xt = 0} the process Z is constant and the pair (X,Y ) behaves as the Brownian
motion along with its maximal function. Consequently, we have Lf(x, y, z) =
1
2fxx(x, y, z); furthermore, the maximal function component enforces the condition
fy(y, y+, z) = 0 (see [12, p. 134] for a related calculation). Similarly, if x < 0 and
z > −y, then Lf(x, y, z) = 1

2fxx(x, y, z) and one has to impose the requirement

fz(z, y, z−) = 0. If x = 0, then X behaves locally like the 1− n−1-skew Brownian
motion, so Lf(0, y, z) = 1

2fxx(0+, y, z) and we need to assume fxx(0−, y, z) =

fxx(0+, y, z) and (1−n−1)fx(0−, y, z) = n−1fx(0+, y, z) (see [13, p. 292]). Finally,
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Figure 2. The spider process (n = 5) and its transformation to
the skew Brownian motion X with jumps. The ray R5 containing
the longest rib has been copied onto the positive half-line; the
remaining rays R1-R4 have been glued together and copied onto
the negative half-line. If X reaches −Yt before Yt, it then jumps
to Yt.

if x = z = −y, then X changes its sign instantly: we have Xt > 0 almost surely for
any t > 0, with limt→0 Xt = −x. Therefore, we may write

Ex,y,zf(Xt, Yt, Zt)− f(x, y, z)

t
=

Ex,y,zf(Xt, Yt, Zt)− f(−x, y, z)

t

+
f(−x, y, z)− f(x, y, z)

t
.

Now, by the above analysis, the �rst ratio on the right converges to Lf(−x, y, z)
as t → 0, and hence the existence of the limit de�ning Lf(x, y, z) enforces the
additional condition f(−y, y,−y) = f(y, y,−y) for all y. Summarizing, we have

shown that the generator of (X,Y, Z) acts via 1
2

∂2

∂x2 , on the space of bounded
continuous functions f on E, such that fxx exists for x ̸= 0 and we have

fxx(0−, y, z) = fxx(0+, y, z),

(1− n−1)fx(0−, y, z) = n−1fx(0+, y, z),

fy(y, y+, z) = fz(z, y, z−) = 0

for all y, z, and f(−y, y,−y) = f(y, y,−y) for all y.

Step 3. We continue with the properties of (X,Y, Z). It is immediate that the
process enjoys the following Brownian scaling.

Lemma 3.1. For any λ > 0, the process

t 7→ (λXtλ−1/2 , λYtλ−1/2 , λZtλ−1/2)

has the same law under Px,y,z as does (X,Y, Z) under Pλx,λy,λz.

We will also need the following property.
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Lemma 3.2. Let y < 1/2 and σ = inf{t > 0 : Yt ≥ 1/2}. Then the distribution of

Zσ under Px,y,z is determined by

Px,y,z(Zσ ≤ s) =



0 if s < − 1
2 ,

(n− 1)(1− 2x)

n− 1− 2s
if x ≥ 0, −y ≤ s < z,

n− 1− 2x

n− 1− 2s
if x < 0, −y ≤ s < z,

(n− 1)(1 + 2s)

n− 1− 2s
if − 1

2 ≤ s < −y,

1 if s ≥ z.

Proof. It su�ces to prove the formula for − 1
2 ≤ s < z, since for the remaining s

the claim is obvious. We consider three separate cases.

Case I: Suppose that x ≥ 0 and y ≥ −s. By the law of total probability,

(3.1) Px,y,z(Zσ > s) = 2x+ (1− 2x)P0,y,z(Zσ > s).

The above equation contains two disjoint scenarios. The process X may visit 1/2
before it visits 0: this occurs with probability 2x and automatically implies that
Zσ > s. The second possibility is that X drops to zero before it reaches 1/2. Then,
no matter how much Y has increased, the set {Zσ > s} has conditional probability
P0,y,z(Zσ > s); indeed, the latter does not depend on the value of y ∈ [−s, 1/2).
To compute this probability, note that since y ≥ −s, we have

(3.2) P0,y,z(Zσ > s) = P−s,y,z(Zσ > s)/n.

The inequality Zσ > s means that when X reaches −s, the spider process is on the
longest rib: by symmetry, the probability of this scenario is 1/n. After that, no
matter how much Z has dropped, the event {Zσ > s} occurs with the conditional
probability equal to P−s,y,z(Zσ > s). Now, applying (3.1) with x = −s, we obtain
that

P0,y,z(Zσ > s) = −2s/(n− 1− 2s),

or

P0,y,z(Zσ ≤ s) =
n− 1

n− 1− 2s
.

Plugging this into (3.1) yields

Px,y,z(Zσ ≤ s) =
(n− 1)(1− 2x)

n− 1− 2s
.

Case II: Next, assume that x < 0 and y ≥ −s. The inequality Zσ > s implies that
X must rise to 0 before it drops to s. The change in Z is irrelevant, so

Px,y,z(Zσ > s) =
(
1− x

s

)
P0,y,z(Zσ > s) =

2(x− s)

n− 1− 2s
.

Case III: Finally, suppose that y < −s. Then conditioning on the time at which X
�rst visits −s, we obtain

Px,y,z(Zσ > s) = P−s,−s,z(Zσ > s).

Again, the drop in Z is not important and we may write z in the lower index on
the right. Hence

Px,y,z(Zσ ≤ s) = P−s,−s,z(Zσ ≤ s) =
(n− 1)(1 + 2s)

n− 1− 2s
,
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where the latter equality follows from the analysis in Case I. □

Step 4. We proceed to the study of the optimal stopping problem in (1.8). As
before, we extend it to an arbitrary starting point (x, y, z) ∈ D, setting

(3.3) U(x, y, z) = supEx,y,zG(Xτ , Yτ , Zτ ),

where
G(x, y, z) = y − z − x2,

and the supremum is taken over all integrable stopping times τ of X (indeed, the
Wald identity EX2

τ = Eτ remains valid, since (|Xt|)t≥0, describing the distance of S
from the origin, is the re�ected Brownian motion). Markovian arguments and the
discussion in Step 2 above show that U satis�es the following system of equations

Uxx(x, y, z) = 0 if (x, y, z) ∈ C, z < x < y, x ̸= 0,(3.4)

Uy(y, y+, z) = 0 for all y > 0,(3.5)

Uz(z, y, z−) = 0 for all z < 0,(3.6)

(n− 1)Ux(0−, y, z) = Ux(0+, y, z) if (0, y, z) ∈ C.(3.7)

As a direct consequence of (3.4), the stopping set has the property that if it contains
two points of the form (x, y, z) and (x′, y, z), then it also automatically contains
the entire line segment which joins these two points. Otherwise, by the concavity
of the function x 7→ G(x, y, z), this would violate the inequality U ≥ G.

Step 5. Our construction for the candidate U for the value function will be based
on the guess of the optimal stopping strategy. Equipped with the analysis in the
case n = 2, a naive idea is to try to proceed analogously, i.e., consider the optimal
stopping times τ which consists of two stages:

Stage 1. Wait until the di�erence between Y and Z is equal to 1;
Stage 2. Wait until Y −X and X − Z are both larger than 1

2 .

Some thought reveals that this cannot be the optimal strategy. To see this,
suppose that the �rst stage is over and then, after some time, we have X = 0 and
Z ∈ (− 1

2 , 0). Because of the asymmetry of the skew Brownian at zero (which in
our case �pushes� the process on the negative side), the cost of waiting for X to
reach Z is lower than in the symmetric case, so the margin 1

2 should be increased,
at least if at the end of Stage 1 we have X = Z.

On the other hand, it is natural to expect that the above strategy is not far from
optimal. It seems plausible to try the following general two-step procedure:

Stage 1. Wait until Y and Z become �distant�;
Stage 2. Wait until f(Y, Z) ≤ X ≤ g(Y, Z) for some functions f and g.

Note that in the light of the above arguments, we must have Y −Z > 1 and hence
Y > 1

2 at the end of the �rst stage (we have Y ≥ −Z almost surely).

Step 6. We now turn to the study of some basic properties of f and g. First,
note that f depends only on z and g depends only on y. The idea behind this is
as follows. Suppose that (x, y, z) ∈ D; then (x, y′, z) and (x, y, z′) also lie in the
stopping set, provided y′ > y and z′ < z (the argument is the same as in the case
n = 2). So, when computing U(z, y, z) we may restrict ourselves to those stopping
times τ for which X does not cross f(y, z); for such τ the process Y τ is constant
and hence for x < f(y, z) we have

U(x, y, z) = supEx,y,z(−Zτ −X2
τ ) + y.
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The problem thus reduces to the optimal stopping of X and Z. The stopping
boundary cannot depend on y and hence f(Y,Z) = f(Z). We can now go one step
further: if f(z) ≤ 0, then for τ as above −Zτ is the one-sided maximal function of
−Xτ and hence

U(x, y, z) = V(−x,−z) + y,

so in particular f(z) = z + 1
2 . A similar argument shows that g(Y, Z) = g(Y );

however, since y > 1
2 (see the end of the previous step), we obtain g(y) = y− 1

2 for
all y.

Step 7. Now we will �nd the formula for f for z close to zero (so that f(z) >
0). To this end, we will show that f satis�es an appropriate ordinary di�erential
equation. We thus �x such a z. By (3.4), (3.7) and the principle of smooth �t

Ux(f(z)−, y, z) = Gx(f(z)+, y, z) = −2f(z),

we obtain the identity

U(x, y, z) =

y − z + f(z)2 − 2f(z)x for x ∈ (0, f(z)),

y − z + f(z)2 − 2f(z)x

n− 1
for x ∈ (z, 0).

Applying (3.6), we have that

2f ′(z)

[
f(z)− z

n− 1

]
= 1.

Note the initial condition f(− 1
2 ) = 0, which comes from the case z ≤ − 1

2 considered
above. This di�erential equation can be easily solved: the substitution z = φ(s) =
f−1(s) transforms it into the linear equation

2

(
s− φ(s)

n− 1

)
= φ′(s), φ(0) = −1

2
,

whose explicit solution is

(3.8) φ(s) = (n− 1)s− (n− 1)2

2
+

n(n− 2)

2
exp

(
− 2s

n− 1

)
.

Hence, for z > − 1
2 , f is the inverse to the above function. It is not di�cult to show

that φ(1) > 0, applying the estimate e−x ≥ 1 − x + x2/3, valid for x ∈ [0, 1], to
x = 2/(n− 1). This implies that f(0) < 1, and hence

(3.9) f(z) < 1 for all z ≤ 0.

Step 8. We are now ready to guess the �nal form of the optimal strategy. We
have already constructed an appropriate lower and upper boundary functions f and
g. Taking the above discussion into account, we formulate the procedure as follows.

Stage 1. Wait until the equality f(Z) ≤ g(Y ) is observed for the �rst time.
Stage 2. Wait until f(Z) ≤ X ≤ g(Y ).

The remaining part of the analysis is devoted to the explicit evaluation of the
value function associated with this strategy. In other words, we shall henceforth
set

U(x, y, z) = Ex,y,zG(Xτ , Yτ , Zτ ),

where τ is given as the combination of Stage 1 and Stage 2 above. The discussion
we have already carried out gives the following (partial) formula for U .
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Corollary 3.3. If y ≥ 1/2 and z ≤ φ(y − 1
2 ), then

(3.10) U(x, y, z) =



y − z − 2
(
z + 1

2

)
x+

(
z + 1

2

)2
if x ≤ φ−1(z) ≤ 0,

y − z − 2φ−1(z)
n−1 x+

(
φ−1(z)

)2
if x ≤ 0 ≤ φ−1(z),

y − z − 2φ−1(z)x+
(
φ−1(z)

)2
if 0 ≤ x ≤ φ−1(z),

y − z − x2 if φ−1(z) ≤ x ≤ y − 1
2 ,

y − z − 2
(
y − 1

2

)
x+

(
y − 1

2

)2
if x ≥ y − 1

2 .

It remains to �nd the formula for U for z > φ(y − 1
2 ). We consider the cases

y ≥ 1
2 and y < 1

2 separately.

Step 9. First we study the case y ≥ 1
2 ; this is the most di�cult part. We begin

with a formula for Uy.

Lemma 3.4. Let y ≥ 1/2 and z > φ(y − 1
2 ). The function U satis�es

(3.11) Uy(x, y, z) =


(n− 1)(y − x)

(n− 1)y − φ(y − 1
2 )

if x ≥ 0,

(n− 1)y − x

(n− 1)y − φ(y − 1
2 )

if x ≤ 0.

Proof. It su�ces to prove the formula for x ≥ 0: indeed, by Markovian arguments
we see that U satis�es (3.4) and (3.7) (with U replaced by U), so

U(x, y, z) =

{
U(0, y, z) + Ux(0−, y, z)x if x ≤ 0,

U(0, y, z) + (n− 1)Ux(0−, y, z)x if x ≥ 0

and

Uy(x, y, z) =

{
Uy(0, y, z) + Uxy(0−, y, z)x if x ≤ 0,

Uy(0, y, z) + (n− 1)Uxy(0−, y, z)x if x ≥ 0.

Hence if (3.11) is valid for x ≥ 0, it automatically holds for x < 0 as well.
Therefore, we shall henceforth assume that x ≥ 0. Our plan is to write

(3.12) Uy(x, y+, z) = lim
δ↓0

U(x, y + δ, z)− U(x, y, z)

δ

and to analyze the expectations de�ning U(x, y, z) and U(x, y + δ, z). To this end,
we �x a small δ > 0 (so that z ≥ φ(y + δ − 1

2 )) and consider the events

A1 = {the trajectory of X reaches y + δ before φ(y + δ − 1/2)},
A2 = {the trajectory of X reaches φ(y + δ − 1/2) before y},
A3 =

{
the trajectory of X reaches y before φ(y + δ − 1/2),

but after that reaches φ(y + δ − 1/2) before y + δ
}
.

Of course A1, A2, A3 are pairwise disjoint and their union has probability 1. Now,
we write

U(x, y + δ, z) = Ex,y+δ,z(Yτ − Zτ −X2
τ ) = I1 + I2,

where

I1 = Ex,y+δ,z

(
(Yτ − Zτ −X2

τ )1A1

)
, I2 = Ex,y+δ,z

(
(Yτ − Zτ −X2

τ )1Ac
1

)
,
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and Ac
1 = Ω \A1 is the complement of A1. By the Markov property, we see that

I2 = Ex,y+δ,z

(
(Yτ − Zτ −X2

τ )|Ac
1

)
Px,y+δ,z(A

c
1)

= U
(
φ(y + δ − 1

2 ), y + δ, φ(y + δ − 1
2 )
)
· (n− 1)(y + δ − x)

(n− 1)(y + δ)− φ(y + δ − 1
2 )

.
(3.13)

We write down a similar splitting for U as U(x, y, z) = J1 + J2 + J3, with

Jk = Ex,y,z

(
(Yτ − Zτ −X2

τ )1Ak

)
, k = 1, 2, 3.

A crucial observation is that

I1 = Ex,y+δ,z

(
(Yτ − Zτ −X2

τ )1A1

)
= Ex,y,z

(
(Yτ ∨ (y + δ)− Zτ −X2

τ )1A1

)
= Ex,y,z

(
(Yτ − Zτ −X2

τ )1A1

)
= J1,

since Yτ ≥ y+ δ on A1 (by the very de�nition of this event). Furthermore, arguing
as in (3.13), we obtain

J2 = U
(
φ(y + δ − 1

2 ), y, φ(y + δ − 1
2 )
)
· (n− 1)(y − x)

(n− 1)y − φ(y + δ − 1
2 )

.

Finally, in order to more easily work with J3, we rewrite A3 as the intersection of
the following two events

A1
3 =

{
the trajectory of X reaches y before reaching φ(y + δ − 1/2)

}
,

A2
3 =

{
having visited y, the trajectory of X reaches φ(y + δ − 1

2 ) before reaching y + δ
}
.

Then, using the Markov property, we compute that

Ex,y,z

(
(Yτ − Zτ −X2

τ )1A3

)
= Ex,y,φ(y+δ−1/2)

(
(Yτ − Zτ −X2

τ )1A1
3∩A2

3

)
= Ey,y,φ(y+δ−1/2)

(
(Yτ − Zτ −X2

τ )1A2
3

)
Px,y,z(A

1
3)

= Ey,y,φ(y+δ−1/2)

(
(Yτ − Zτ −X2

τ )1A2
3

)[
1− (n− 1)(y − x)

(n− 1)y − φ(y + δ − 1/2)

]
.

To analyze the latter expectation, note that on the set A2
3, when X gets to φ(y +

δ − 1
2 ), that the value of Y lies between y and y + δ. Consequently,

Ey,y,φ(y+δ−1/2)

(
(Yτ − Zτ −X2

τ )1A2
3

)
= U

(
φ(y + δ − 1

2 ), y, φ(y + δ − 1
2 )
)
· (n− 1)δ

(n− 1)(y + δ)− φ(y + δ − 1
2 )

+ o(δ).

Plugging all the above into (3.12), we obtain

Uy(x, y+, z) = lim
δ↓0

I1 + I2 − (J1 + J2 + J3)

δ
= lim

δ↓0

(
I2 − J2

δ
− J3

δ

)
.
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We also have the identity

lim
δ↓0

I2 − J2
δ

=
∂

∂w

[
U
(
φ(y − 1

2 ), w, φ(y −
1
2 )
) (n− 1)(w − x)

(n− 1)w − φ(y − 1
2 )

] ∣∣∣∣∣
w=y

= Uy

(
φ(y − 1

2 ), y, φ(y −
1
2 )
) (n− 1)(y − x)

(n− 1)y − φ(y − 1
2 )

+ U
(
φ(y − 1

2 ), y, φ(y −
1
2 )
) ∂

∂w

[
(n− 1)(w − x)

(n− 1)w − φ(y − 1
2 )

] ∣∣∣∣∣
w=y

.

We have already computed above (see (3.10)) that

Uy

(
φ(y − 1

2 ), y, φ(y −
1
2 )
)
= 1.

Furthermore, it is straightforward to check that the term

U
(
φ(y − 1

2 ), y, φ(y −
1
2 )
) ∂

∂w

[
(n− 1)(w − x)

(n− 1)w − φ(y − 1
2 )

] ∣∣∣∣∣
w=y

is precisely limδ↓0 J3/δ. Combining all of the above arguments, we obtain the
desired claim. This concludes the proof. □

Lemma 3.4 allows us to extend the formula for U to the domain

{(x, y, z) : y ≥ 1/2, z > φ(y − 1

2
)},

which shall be done in Corollary 3.5 below.

Corollary 3.5. If y ≥ 1/2 and z > φ(y − 1
2 ), then

U(x, y, z) =


U(x, f(z) + 1

2 , z)−
∫ f(z)+1/2

y

(n− 1)(s− x)ds

(n− 1)s− φ(y − 1
2 )

if x ≥ 0,

U(x, f(z) + 1
2 , z)−

∫ f(z)+1/2

y

((n− 1)s− x)ds

(n− 1)s− φ(y − 1
2 )

if x ≤ 0.

Step 10. This is the �nal part, concerning the case y < 1/2, and it is much
simpler. If we denote σ = inf{t ≥ 0 : Yt =

1
2}, then the Markov property gives

U(x, y, z) = Ex,y,zU(Xσ, Yσ, Zσ) = Ex,y,zU( 12 ,
1
2 , Zσ).

To compute the latter expectation, we apply Lemma 3.2 and immediately obtain
the following.

Corollary 3.6. If x < 0 and y < 1/2, then we have

U(x, y, z) = U( 12 ,
1
2 ,−y) · 2((n− 1)y − x)

n− 1 + 2y
+ U( 12 ,

1
2 , z) ·

2(x− z)

n− 1− 2z

+

∫ −y

−1/2

U( 12 ,
1
2 , s) ·

2n(n− 1)

(n− 1− 2s)2
ds+

∫ z

−y

U( 12 ,
1
2 , s) ·

2(n− 1− 2x)

(n− 1− 2s)2
ds.

(3.14)
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For x ≥ 0 and y < 1/2, we compute that

U(x, y, z)

= U( 12 ,
1
2 ,−y) · 2(n− 1)(y − x)

n− 1 + 2y
+ U( 12 ,

1
2 , z) ·

2((n− 1)x− z)

n− 1− 2z

+

∫ −y

−1/2

U( 12 ,
1
2 , s) ·

2n(n− 1)

(n− 1− 2s)2
ds+

∫ z

−y

U( 12 ,
1
2 , s) ·

2(n− 1)(1− 2x)

(n− 1− 2s)2
ds.

(3.15)

The values of U( 12 ,
1
2 , s) can be extracted from Corollary 3.5. In particular, the

formula (3.15) can be applied for x = y = z = 0, resulting in quite an involved, yet
nonetheless explicit expression:

U(0, 0, 0)

=

∫ 0

−1/2

U( 12 ,
1
2 , s) ·

2n(n− 1)

(n− 1− 2s)2
ds

=

∫ 0

−1/2

[
1

2
− s+ f(s)2 −

∫ f(s)+1/2

1/2

(n− 1)(r − 1
2 )dr

(n− 1)r + 1
2

]
· 2n(n− 1)

(n− 1− 2s)2
ds.

(3.16)

It turns out that 3/4 ≤ U(0, 0, 0) ≤ 2 for all n. The more precise asymptotics of
this constant will be discussed in Theorem 4.5 below.

Remark 3.7. It is straightforward to check that, for all y > 0, the function U
satis�es the symmetry condition U(−y, y,−y) = U(y, y,−y): compare the �rst and
the �fth line in (3.10), and see also (3.14) and (3.15). This is in perfect consistence
with the jump property of X described at the end of Step 1. Indeed, as we noted
there, when the left limit Xt− is equal to −Yt, then at time t the process X jumps
from −Yt to Yt. In other words, the points (−y, y,−y) and (y, y,−y) in the state
space correspond to the same value of U .

4. Proof of Theorem 1.1

We now will prove that the function U constructed in the previous section is
indeed the value function of the optimal stopping problem in (1.8). We begin with
the majorization property.

Lemma 4.1. For all (x, y, z), we have that

U(x, y, z) ≥ y − z − x2.

Proof. Suppose �rst that y ≥ 1
2 and z ≤ φ(y − 1

2 ). According to (3.10), we need

to consider �ve cases. For x ≤ φ−1(z) ≤ 0, the desired estimate is equivalent to
(2x− z − 1)2 ≥ 0. If x ≤ 0 ≤ φ−1(z), then

U(x, y, z) = y − z − 2φ−1(z)

n− 1
x+

(
φ−1(z)

)2 ≥ y − z ≥ y − z − x2.

For 0 ≤ x ≤ φ−1(z), the claim reads (x − φ−1(z))2 ≥ 0. If φ−1(z) ≤ x ≤ y − 1
2 ,

then the majorization is actually an equality. Finally, for x ≥ y − 1
2 , the desired

bound becomes
(
x− y + 1

2

)2 ≥ 0, which is also trivial.
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Now, suppose that y < 1
2 or z > φ(y− 1

2 ). It follows directly from (3.11), (3.14)
and (3.15) that Uy(x, y+, z) ≤ 1, that is,

∂

∂y+

(
U(x, y, z)− (y − z − x2)

)
≤ 0.

The majorization follows at once from the above analysis: we have

U(x, y, z)− (y − z − x2) ≥ U(x, φ−1(z) + 1
2 , z)− (φ−1(z) + 1

2 − z − x2) ≥ 0. □

Lemma 4.2. For any (x, y, z) and any bounded stopping time τ , we have

(4.1) Ex,y,z(Yτ − Zτ −X2
τ ) ≤ U(x, y, z).

Proof. Roughly speaking, the argument rests on Itô's formula and the majorization
established in the previous section. However, since the function U is not in C2, there
are some technical obstacles, which will be handled by an appropriate stopping
procedure. For sake of clarity, we shall split the reasoning into intermediate parts.

Part 1. By continuity, we may assume that y > 0 and −y < z < 0. We introduce
the increasing sequences (τn)n≥0, (σn)n≥0 of stopping times given inductively as
follows. Put τ0 ≡ 0 and, for n ≥ 0,

τ2n+1 = inf{t ≥ τ2n : Xt = 0 or Yt ≥ 1
2}, τ2n+2 = inf{t ≥ τ2n+1 : Xt ∈ {Yt, Zt}}.

Furthermore, let

σ0 = inf{t ≥ 0 : Yt ≥ 1
2},

and, for n ≥ 0,

σ2n+1 = inf{t ≥ σ2n : Xt = 0}, σ2n+2 = inf{t ≥ σ2n+1 : Xt ∈ {Yt, Zt}}.
Here we use the convention inf ∅ = +∞. It is straightforward to see that limn→∞ τn =
σ0 and limn→∞ σn = ∞ almost surely. The function U is of class C∞ on

D ∩ {(x, y, z) : x ̸= 0 and y < 1/2},
and satis�es Uxx(x, y, z) = 0 on this set. We may easily check that for all values of
y and z,

Uy(y, y, z) = Uz(z, y, z) = 0.

Further, for all values of y,

U(−y, y,−y) = U(y, y,−y).

Consequently, by Itô's formula, we have

Ex,y,zU(Xτ∧τ1 , Yτ∧τ1 , Zτ∧τ1) = U(x, y, z)

(note that the symmetry condition U(−y, y,−y) = U(y, y,−y) guarantees that the
jumps of X do not contribute). Next, on the time interval [τ1, τ2], the processes
Y and Z remain unchanged, so X behaves like an 1− n−1-skew Brownian motion
there. But the function U(·, y0, z0) satis�es

Ux(0−, y0, z0) = (n− 1)Ux(0+, y0, z0)

and is linear on the intervals [z0, 0] and [0, y0]. This implies

Ex,y,zU(Xτ∧τ2 , Yτ∧τ2 , Zτ∧τ2) = Ex,y,zU(Xτ∧τ1 , Yτ∧τ1 , Zτ∧τ1) = U(x, y, z).

Iterating the above procedure, we obtain that for any n,

Ex,y,zU(Xτ∧τn , Yτ∧τn , Zτ∧τn) = U(x, y, z).
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Hence, letting n → ∞ and applying Lebesgue's dominated convergence theorem,
we get

Ex,y,zU(Xτ∧σ0 , Yτ∧σ0 , Zτ∧σ0) = U(x, y, z).

Part 2. If Xτ∧σ0 > 0, then we consider the restriction U+ = U |D+ , where
D+ = D ∩ {x ≥ 0}. Then U+(·, y0, z0) is concave for any y0, z0 and satis�es
U+
y (y0, y0, z0) = 0. Itô's formula then gives

Ex,y,z

[
U(Xτ∧σ1 , Yτ∧σ1 , Zτ∧σ1)|Fτ∧σ0

]
= Ex,y,z

[
U+(Xτ∧σ1 , Yτ∧σ1 , Zτ∧σ1)|Fτ∧σ0

]
≤ U+(Xτ∧σ0

, Yτ∧σ0
, Zτ∧σ0

)

= U(Xτ∧σ0
, Yτ∧σ0

, Zτ∧σ0
).

If Xτ∧σ0
< 0 (which happens only if y ≥ 1/2 and x ≤ 0), we may proceed

similarly. Consider the restriction U− = U |D− , where D− = D ∩ {x ≤ 0}. Then
U−(·, y0, z0) is concave for any y0, z0, satis�es U

−
y (z0, y0, z0) = 0 and

U−(−y0, y0,−y0) = U+(y0, y0, y0).

Therefore, applying Itô's formula (and noting that the latter identity allows us to
ignore the jumps of X), we obtain again that

Ex,y,z

[
U(Xτ∧σ1

, Yτ∧σ1
, Zτ∧σ1

)|Fτ∧σ0

]
≤ U(Xτ∧σ0

, Yτ∧σ0
, Zτ∧σ0

).

Consequently, we have shown that

Ex,y,zU(Xτ∧σ1
, Yτ∧σ1

, Zτ∧σ1
) = Ex,y,zU(Xτ∧σ0

, Yτ∧σ0
, Zτ∧σ0

).

Part 3. Now we essentially repeat the reasoning used at the end of Part 1. On
the time interval [σ1, σ2], the processes Y and Z remain unchanged. The function
U(·, y0, z0) is concave and satis�es

Ux(0−, y0, z0) = (n− 1)Ux(0+, y0, z0).

Consequently, we obtain

Ex,y,zU(Xτ∧σ2
, Yτ∧σ2

, Zτ∧σ2
) ≤ Ex,y,zU(Xτ∧σ1

, Yτ∧σ1
, Zτ∧σ1

).

Iterating the above arguments, we see that the sequence(
Ex,y,zU(Xτ∧σn

, Yτ∧σn
, Zτ∧σn

)
)
n≥0

is nonincreasing and hence in particular Ex,y,zU(Xτ∧σn
, Yτ∧σn

, Zτ∧σn
) ≤ U(x, y, z).

By Lemma 4.2, this implies

Ex,y,z(Yτ∧σn − Zτ∧σn) ≤ U(x, y, z) + Ex,y,zX
2
τ∧σn

≤ U(x, y, z) + Ex,y,zX
2
τ ,

where in the �nal inequality we have exploited the submartingale property of X2.
Letting n → ∞, we see that the left-hand side tends to Ex,y,z(Yτ−Zτ ) by Lebesgue's
monotone convergence theorem. This yields the desired claim. □

Together with the reasoning from the previous section, Lemma 4.2 identi�es the
explicit formula for the value function U of the optimal stopping process (3.3).
Corollary 4.3 below thus immediately follows.

Corollary 4.3. We have U = U on D.

We now present the proof of our main result.
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Proof of Theorem 1.1. Let us write P instead of P0,0,0. By Lemma 4.2, for any
stopping time τ we have

E(Yτ − Zτ ) ≤ U(0, 0, 0) + EX2
τ = U(0, 0, 0) + Eτ.

Therefore, a scaling argument discussed in the introductory section yields

E(Yτ − Zτ ) ≤ 2
√
U(0, 0, 0)Eτ ,

which is the desired inequality. The equality is attained for the special stopping
time τ considered in the previous section. Let us �rst prove that τ is integrable.
Consider the auxiliary stopping time

σ = inf

{
t : sup

0≤s≤t
|Xs| ≥ 3

2 and |Xt| = sup
0≤s≤t

|Xs| − 1
2

}
,

which describes the following strategy: we wait until the re�ecting Brownian motion
reaches the level 3/2 and then experiences a drop of size 1/2, when compared to
its (current) maximal function. Such stopping times are integrable: this follows at
once from the results of [4]. However, it follows directly from the analysis in the
previous section that τ ≤ σ almost surely. Indeed, suppose that at the end of Stage
1 we have Xt = Yt; then the estimate (3.9) implies that

Xt = Yt = Yt −
1

2
+

1

2
= f(Zt) +

1

2
< 1 +

1

2
=

3

2
.

Then, at the remaining part of the time interval [0, τ ] we wait until Y − X = 1
2 ,

and hence τ ≤ σ follows. On the other hand, if Xt = Zt at the end of Stage 1, then
we have two possibilities: either X − f(Z) reaches zero before |X| visits 3/2 (then
the estimate τ ≤ σ is trivial), or |X| reaches 3/2 �rst, and then at the remaining
part of the time interval [0, τ ] we wait until X − Z gets to 1/2, in which case the
estimate τ ≤ σ also holds true.

Now, since τ is integrable, we have

E(Yτ − Zτ − τ) = E(Yτ − Zτ −X2
τ ) = U(0, 0, 0),

which implies E(Yτ − Zτ ) = U(0, 0, 0) + Eτ ≥ 2
√
U(0, 0, 0)Eτ . This completes the

proof. □

Remark 4.4. The above reasoning works for more general stopping times. Namely,
suppose that (Ft)t≥0 is a given �ltration, with respect to which S is adapted. Then
for any τ relative to (Ft)t≥0, the inequality (1.6) holds (and, of course, remains
sharp).

Finally, we address the asymptotics of the constants (Cn)n≥2. We will establish
the following result.

Theorem 4.5. We have

1.732 . . . =
√
3 = C2 ≤ C3 ≤ C4 ≤ . . . → 1.84661 . . . .

Proof. We start with the monotonicity of (Cn)n≥2. To prove that Cn ≤ Cn+1,
consider the following transformation of the spider process S on n+ 1 rays, which,
in a sense, removes one of the ribs and distributes it uniformly over the remaining
n rays. More precisely, recall the representation St = θm(t)|Bt| discussed in the
introductory section: here B is a Brownian motion, θ1, θ2, . . . is a sequence of i.i.d.
random variables, independent of B, distributed uniformly on {e2πik/(n+1) : k =
1, 2, . . . , n+1}, and m(t) is the number of the excursion of the Brownian motion B



ON THE DIAMETER OF THE STOPPED SPIDER PROCESS 23

which straddles t (under a �xed ordering of the excursions). Consider the modi�ed
sequence θ′1, θ

′
2, . . . of independent random variables

θ′n =

{
θn if θn = e2πik/(n+1) for some k = 1, 2, . . . , n,

ηn if θn = 1,

where (ηn)n≥0 is another sequence of independent random variables (indepen-

dent also from θ1, θ2, . . . and B), uniformly distributed on {e2πik/(n+1) : k =
1, 2, . . . , n}. Then the modi�ed process S′

t = θ′m(t)|Bt| is a spider process on n

rays and any stopping time τ of S′ is automatically a stopping time with respect
to the �ltration generated by S and (ηn)n≥0. In addition, the diameter of S′ does
not exceed the diameter of S (it may happen that the longest and second-longest
ribs of S will be copied into one rib of S′). Thus, by the previous remark, we have

ED′
τ ≤ EDτ ≤ Cn+1

√
Eτ ,

which implies Cn ≤ Cn+1.
Now we will study the limit behavior of (Cn)n≥2. Rewrite (3.8) in the form

φ(s) =
(n− 1)2

2

[
2s

n− 1
− 1 +

n(n− 2)

(n− 1)2
exp

(
− 2s

n− 1

)]
.

It is straightforward to check that if n → ∞, then φ converges to φ̃(s) = s2 − 1
2

uniformly on [0, 1] and f = φ−1 converges uniformly to f̃(s) =
√

s+ 1
2 on [− 1

2 , 0].

Therefore, passing to the limit in (3.16), we obtain

lim
n→∞

U(0, 0, 0) =

∫ 0

−1/2

(
1−

∫ f̃(s)+1/2

1/2

r − 1
2

r
dr

)
· 2ds

=
3

4
−

√
2

12
+

ln(
√
2 + 1)

4
= 0.8524923 . . .

and hence Cn = 2
√
U(0, 0, 0) → 1.84661 . . . . This proves the claim. □
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