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Abstract. Let X1, X2, . . ., Xn be a sequence of coherent random variables, i.e., satisfying the
equalities

Xj = P(A|Gj), j = 1, 2, . . . , n,

almost surely for some event A. This paper contains the proof of the estimate

P
(

max
1≤i<j≤n

|Xi −Xj | ≥ δ
)
≤ n(1− δ)

2− δ
∧ 1,

where δ ∈ (12 , 1] is a given parameter. The inequality is sharp: for any δ, the constant on the right
cannot be replaced by any smaller number. The argument rests on several novel combinatorial
and symmetrization arguments, combined with dynamic programming. Our result generalizes the
two-variate inequality of K. Burdzy and S. Pal and in particular provides an alternative derivation.

1. Introduction

To begin, let us recall the following celebrated de�nition due to Dawid et al. (1995). Henceforth,
let n be a positive integer.

De�nition 1.1. Let µ be a probability measure on [0, 1]n. We say that µ is coherent, if it is the joint
distribution of an n-variate random vector (X1, X2, . . . , Xn) de�ned on some arbitrary probability
space (Ω,F ,P), such that

Xi = P(A|Gi) for all i = 1, 2, . . . n, almost surely, (1.1)

for some measurable event A ∈ F and some sequence G1, G2, . . . , Gn of sub-σ-�elds of F . In such
a case, a vector (X1, X2, . . . , Xn) is also called coherent.

The class of all coherent distributions on [0, 1]n will be denoted as Cn. For the sake of convenience
(and with a slight abuse of notation), we will also write (X1, X2, . . . , Xn) ∈ Cn to indicate that
the distribution of the random vector (X1, X2, . . . , Xn) is coherent. Finally, we will use one more
helpful convention: in case a vector (X1, X2, . . . , Xn) ∈ Cn is given and �xed, the corresponding
measurable event and the sequence of sub-σ-�elds satisfying (1.1) will automatically be denoted
with the same letters A and G1, G2, . . . , Gn.

The above setup has a nice and transparent interpretation, which is important for many ap-
plications. Namely, suppose that a group of n experts provides their personal estimates on the
likelihood of some random event A, and assume that the knowledge of j-th expert is represented by
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the σ-algebra Gj , j = 1, 2, . . . , n. Of course, there are many possible mechanisms leading to more
or less e�ective predictions; one of the simplest approaches is to use the conditional expectation -
then the predictions X1, X2, . . ., Xn of the experts are precisely given by (1.1).

In general, there are three basic categories of problems which are studied in the above context,
stemming from applications in statistics, decision theory, economics and game theory as well as
probability and information theory.

· Optimal combining � depending on auxiliary distributional assumptions of the model, to �nd an
optimal procedure that combines multiple coherent opinions in order to produce a better forecast;
see Dawid et al. (1995); DeGroot (1988); Ranjan and Gneiting (2010); Satopää et al. (2016).

· Bayesian persuasion � to compute, given a speci�c payo� function, how much one of the agents
can bene�t by selectively revealing parts of his information to other players, thus changing their
beliefs and reactions; see Arieli and Babichenko (2022); Arieli et al. (2022, 2021); He et al. (2021).

· Maximal discrepancy � to provide sharp bounds on the maximal possible spread of coherent
opinions. For instance, for a �xed function Φ : [0, 1]n → R+, evaluate

supEΦ(X1, X2, . . . , Xn), (1.2)

where the supremum is taken over all probability models as described above; see Burdzy and Pal
(2021); Burdzy and Pitman (2020); Cichomski and Os¦kowski (2021); Cichomski and Petrov (2022).

The contribution of this paper concerns the last category. Our motivation comes from the fol-
lowing foundational result of Burdzy and Pal (2021).

Theorem 1.2. For any threshold δ ∈ (12 , 1], we have

sup
(X,Y )∈C2

P(|X − Y | ≥ δ) =
2(1− δ)

2− δ
. (1.3)

In the language of applications, Theorem 1.2 establishes a sharp upper bound for the probability
that two experts, with access to di�erent information sources, will deliver highly incongruent (or
contradictory) opinions. The original proof of equality (1.3) is remarkably complex and rather
di�cult: an explicit optimizer is obtained by a series of consecutive reductions and simpli�cations.
As pointed out in Burdzy and Pitman (2020), �nding a simpler proof of this result would be highly
desirable. Another natural and important question concerns the extension of the threshold bound
(1.3) to n > 2 coherent opinions. Our main result in this paper is as follows, we use the notation
a ∧ b for the minimum of the numbers a and b.

Theorem 1.3. For any threshold δ ∈ (12 , 1] and every integer n ≥ 2, we have

sup
(X1,X2,...,Xn)∈Cn

P
(

max
1≤i<j≤n

|Xi −Xj | ≥ δ
)
=

n(1− δ)

2− δ
∧ 1. (1.4)

Correspondingly, Theorem 1.3 expands the range of applications from two experts to multiple
agents scenario. Quite unexpectedly (at least to the authors), the threshold bound (1.4) reveals
an almost linear dependence between the examined quantities and the number of coherent random
variables. The proof of (1.4) that we present below is completely independent from the reasoning
in Burdzy and Pal (2021) and hence can be regarded as an alternative demonstration of (1.3).
Moreover, our approach does not refer in any signi�cant way to the particular choice of integer n.

The above statement should also be compared to its version concerning the maximal spread of
expectations. For any pair (X,Y ) of coherent random variables we have the sharp estimate

E|X − Y | ≤ 1

2

(see e.g. Burdzy and Pitman (2020)). The paper by Cichomski and Os¦kowski (2021) contains the
following extension of this result to the case of an arbitrary number of variables.
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Theorem 1.4. Under the above notation, we have

sup
(X1,X2,...,Xn)∈Cn

E max
1≤i<j≤n

|Xi −Xj | =



1
2 if n = 2,

2−
√
2 if n = 3,

7
2 − 2

√
2 if n = 4,

n− 2

n− 1
if n ≥ 5.

(1.5)

It might be a little unexpected that the above upper bound involves four di�erent formulas
depending on the value of n, while (1.4) is formulated with a single expression. We would also like
to mention that the linearity of the expectation makes the proof of (1.5) a bit simpler; the successful
treatment of the tail inequality will require a broader class of arguments.

Let us say a few words about our approach and the organization of the remaining part of the
paper. In the next section we apply a special symmetrization technique, which reduces the prob-
lem of calculating the left-hand side of (1.4) to the combinatorial optimization over speci�c objects
of geometrical nature. This approach seems to be especially bene�cial due to certain convenient
symmetry constraints it enforces. Then, in Section 3, using dynamic programming arguments, we
solve the previously obtained optimization problem. This boils down to the derivation of a suitable
Bellman function and some further reductions of the problem. This appearance of dynamic pro-
gramming is not surprising: as evidenced in numerous papers, the Bellman function method is a
powerful tool used widely in martingale theory and harmonic analysis to obtain sharp inequalities
� see e.g. Os¦kowski (2012); Pinelis et al. (2017); Vasyunin and Volberg (2020) and consult the
references therein. We strongly believe that our argumentation can be pushed further and success-
fully applied in the subsequent study of problem (1.2) for other multidimensional functionals. For
example, the sharp Lp-extension of (1.5), 1 < p < ∞, seems to be a natural and a challenging
question. One could also study the weighted versions of (1.4) and (1.5), in which the expression
max1≤i<j≤n |Xi −Xj | is replaced by max1≤i<j≤n αij |Xi −Xj |, for some given family (αij)1≤i<j≤n

of nonnegative coe�cients.

2. Basic reductions and symmetrizations

Throughout, we assume that n ≥ 2 is a �xed integer and δ ∈ (12 , 1] is a given threshold. We
begin with the standard discretization, which will later allow us to pass to various combinatorial
and optimization arguments. Let C(n,m) be the family of all vectors X = (X1, X2, . . . , Xn) ∈ Cn
such that each Xj takes at most m di�erent values, j = 1, 2, . . . , n.

Proposition 2.1. To prove the threshold bound (1.4), it is enough to verify that

sup
m∈{1,2,... }
X∈C(n,m)

P
(

max
1≤i<j≤n

|Xi −Xj | ≥ δ
)

=
n(1− δ)

2− δ
∧ 1. (2.1)

Proof : Assume that (2.1) holds and �x any n-variate vector X ∈ Cn. Let m be a positive integer
with δ > 2

m + 1
2 . As shown in Burdzy and Pal (2021); Cichomski (2020), there exists a vector

X(m) ∈ C(n,m) such that |Xj −X
(m)
j | ≤ 1

m almost surely for all indices j = 1, 2, . . . , n. Thus, by
the triangle inequality, we have

P
(

max
1≤i<j≤n

|Xi −Xj | ≥ δ
)

≤ P
(

max
1≤i<j≤n

|X(m)
i −X

(m)
j | ≥ δ − 2

m

)
≤

n
(
1− (δ − 2

m)
)

2− (δ − 2
m)

,

where the second inequality follows from (2.1). Taking m → ∞ ends the proof. □

Later on, we will need the following structural fact.
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Lemma 2.2. Assume that {G1, G2, . . . , Gm} is a �nite partition of Ω, let A ∈ F be an arbitrary
event and put Y = E(1A|σ(G1, G2, . . . , Gm)). Then for any y ∈ (0, 1] such that P(Y = y) > 0, we
have

P({Y = y} ∩Ac) = P({Y = y} ∩A) · 1− y

y
.

Proof : This is straightforward. For any G ∈ σ(G1, G2, . . . , Gm) such that E(1A|G) = y, we write

y =
P(A ∩G)

P(G)
=

P(A ∩G)

P(A ∩G) + P(Ac ∩G)
.

This is equivalent to y ·
(
P(A ∩ G) + P(Ac ∩ G)

)
= P(A ∩ G), or P(Ac ∩ G) = 1−y

y · P(A ∩ G). It

remains to take G = {Y = y}; we have G ∈ σ(G1, G2, . . . , Gm), since Y is measurable with respect
to the latter σ-algebra. □

Now we will describe a useful symmetrization procedure, which allow us to replace the left-hand
side of (2.1) with a more regular expression (see Corollary 2.4 below). We need some additional
notation. Fix a positive integer m and let X ∈ C(n,m) be a coherent vector with Xi = E(1A|Gi),
i = 1, 2, . . . , n. Let U be a random variable independent of G1, G2, . . . , Gn and A, having the

two-point distribution P(U = 0) = P(U = 1) = 1/2. Then X̃, the mixture of vectors X and 1−X,
is given by

(X̃1, X̃2, . . . , X̃n) = U · (X1, X2, . . . , Xn) + (1− U) · (1−X1, 1−X2, . . . , 1−Xn).

Furthermore, we de�ne the mixture Ã of A and Ac by the requirement 1
Ã
= 1̃A, or more explicitly,

Ã = (A∩{U = 1})∪(Ac∩{U = 0}). Let us distinguish the σ-algebras G̃i = σ(Gi, U), i = 1, 2, . . . , n.
The key properties of these objects are summarized in a statement below.

Proposition 2.3. With the above notation, the following holds true.

(i) We have P(Ã) = 1
2 , X̃ ∈ C(n, 2m) and X̃i = E(1

Ã
|G̃i) for all i.

(ii) For any sequence (xi)
n
i=1 ⊂ [0, 1] we have the identity

P
( n⋂

i=1

{X̃i = xi} ∩ Ã
)

= P
( n⋂

i=1

{X̃i = 1− xi} ∩ Ãc
)
.

(iii) For any x ∈ (0, 1],

1− x

x
·

n∑
i=1

P
(
{X̃i = x} ∩ Ã

)
=

n∑
i=1

P
(
{X̃i = 1− x} ∩ Ã

)
.

(iv) We have the equality

P
(

max
1≤i<j≤n

|Xi −Xj | ≥ δ
)

= 2 · P
({

max
1≤i<j≤n

|X̃i − X̃j | ≥ δ
}
∩ Ã

)
.

Proof : Since U is measurable with respect to G̃i and independent of A, we obtain

E
(
1
Ã
|G̃i

)
= 1{U=1}E

(
1A|G̃i

)
+ 1{U=0}E

(
1Ac |G̃i

)
= UXi + (1− U)(1−Xi)

and

P(Ã) = E
[
E
(
1
Ã
|G̃i

)]
= E

[
UXi + (1− U)(1−Xi)

]
=

1

2
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for all i. It remains to note that since U ∈ {0, 1}, the set of all values attained by X̃i has at most
2m elements; this gives (i). To show (ii), observe that

P
( n⋂

i=1

{X̃i = xi} ∩ Ã
)
= P

( n⋂
i=1

{X̃i = xi} ∩ Ã ∩ {U = 0}
)
+ P

( n⋂
i=1

{X̃i = xi} ∩ Ã ∩ {U = 1}
)

= P
( n⋂

i=1

{Xi = 1− xi} ∩Ac ∩ {U = 0}
)
+ P

( n⋂
i=1

{Xi = xi} ∩A ∩ {U = 1}
)
.

Since U is independent of Xi's and A, and satis�es P(U = 0) = P(U = 1) = 1/2, the above
expression is equal to

P
( n⋂

i=1

{Xi = 1− xi} ∩Ac ∩ {U = 1}
)
+ P

( n⋂
i=1

{Xi = xi} ∩A ∩ {U = 0}
)

= P
( n⋂

i=1

{X̃i = 1− xi} ∩ Ãc ∩ {U = 1}
)
+ P

( n⋂
i=1

{X̃i = 1− xi} ∩ Ãc ∩ {U = 0}
)

= P
( n⋂

i=1

{X̃i = 1− xi} ∩ Ãc
)
,

so (ii) is established. To prove the third part, �x x ∈ (0, 1] and write

1− x

x
·

n∑
i=1

P
(
{X̃i = x} ∩ Ã

)
=

n∑
i=1

P
(
{X̃i = x} ∩ Ãc

)
=

n∑
i=1

P
(
{X̃i = 1− x} ∩ Ã

)
,

where the �rst equality is due to the Lemma 2.2 and the second is a consequence of (ii). Finally,
�x m ∈ {1, 2, . . . }, X ∈ C(n,m) and notice that

max
1≤i<j≤n

|Xi −Xj | = max
1≤i<j≤n

|(1−Xi)− (1−Xj)|

almost surely. Hence we deduce (iv) from

P
(

max
1≤i<j≤n

|Xi −Xj | ≥ δ
)
= P

(
max

1≤i<j≤n
|X̃i − X̃j | ≥ δ

)
= 2 · P

({
max

1≤i<j≤n
|X̃i − X̃j | ≥ δ

}
∩ Ã

)
,

as desired. □

As a direct consequence, we have the following crucial reduction.

Corollary 2.4. We have the inequality

sup
m∈{1,2,... }
X∈C(n,m)

P
(

max
1≤i<j≤n

|Xi −Xj | ≥ δ
)

≤ 2 · sup
m∈{1,2,... }
X∈C′(n,m)

P
({

max
1≤i<j≤n

|Xi −Xj | ≥ δ
}
∩A

)
, (2.2)

where C′(n,m) is the subset of all those X ∈ C(n,m) that satisfy P(A) = 1
2 and

1− x

x
·

n∑
i=1

P
(
{Xi = x} ∩A

)
=

n∑
i=1

P
(
{Xi = 1− x} ∩A

)
for all x ∈ (0, 1]. (2.3)

Proof : By Proposition 2.3 (iii) and (iv), the left-hand side of (2.2) does not exceed the right-hand
side. □

It will later become clear that (2.2) is in fact an equality. As for now, the above argumentation
allows us to reduce our main problem to the identi�cation of

sup
m∈{1,2,... }
X∈C′(n,m)

P
({

max
1≤i<j≤n

|Xi −Xj | ≥ δ
}
∩A

)
. (2.4)
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The advantage over the original formulation (appearing on the left-hand side of (2.2)) lies in the
fact that we study the behavior of X restricted to the set A. As we will see, the analysis of this
expression can be performed in a purely analytic setup, with the use of combinatorial arguments.
Accordingly, consider the measure space (R+,B(R+), λ), where λ stands for the Lebesgue measure.

De�nition 2.5. For k ∈ N \ {0}, let Λ(k) be the family of all those functions (H,L) : R+ → [0, 1]2,
which satisfy the following four requirements:

(Λ.1) L(x) ≤ 1
2 ≤ H(x) for all x ∈ R+,

(Λ.2) H and L are right-continuous step functions with a �nite number of steps,
(Λ.3) λ({H > 1

2}) + λ({L < 1
2}) ≤

k
2 ,

(Λ.4) for any y ∈ (0, 1] we have

1− y

y
·
(
λ({H = y}) + λ({L = y})

)
= λ({H = 1− y}) + λ({L = 1− y}).

Here is a key statement, which links the above probabilistic considerations with the analytic
context we have just introduced.

Proposition 2.6. The value of (2.4) is not bigger than

sup
(H,L)∈Λ(n)

λ
(
{H ≥ L+ δ}

)
. (2.5)

Proof : Fix m ∈ {1, 2, . . . }, X ∈ C′(n,m) and the corresponding event A. We will construct
(HX , LX) ∈ Λ(n) such that

P
({

max
1≤i<j≤n

|Xi −Xj | ≥ δ
}
∩A

)
= λ({HX ≥ LX + δ}). (2.6)

As X ∈ C′(n,m), there exists a natural number l ≤ mn such that X takes exactly l di�erent values.
It follows that A can be partitioned into disjoint family {Ak}lk=1 of events of positive probability,

so that X is constant on every element of this partition; let (X1, . . . , Xn) ≡ (x
(k)
1 , x

(k)
2 , . . . , x

(k)
n ) on

Ak. For 1 ≤ k ≤ l, we set

pk =

{
nP(Ak) if max1≤i<j≤n |Xi −Xj | < δ on Ak,
(n− 1)P(Ak) if max1≤i<j≤n |Xi −Xj | ≥ δ on Ak,

and introduce a disjoint partition I = {Ik}l+1
k=1 of R+ by

Ik =

{
[p1 + · · ·+ pk−1, p1 + · · ·+ pk) for 1 ≤ k ≤ l,
[p1 + · · ·+ pl,∞) for k = l + 1.

Now we are ready to de�ne (HX , LX), setting its values on each element of I separately. Assume
that k ∈ {1, 2, . . . , l + 1} and distinguish three major cases.

· If k = l + 1, we put HX(x) = LX(x) = 1
2 for all x ∈ Il+1.

· If k ≤ l and pk = nP(Ak), we split Ik into n consecutive intervals {Ik,s}ns=1 (left-closed, right-
open) of equal length and set

HX(x) = max
(
x(k)s ,

1

2

)
, LX(x) = min

(
x(k)s ,

1

2

)
(2.7)

whenever x ∈ Ik,s and s = 1, 2, . . . , n.

· Finally, suppose that k ≤ l and pk = (n− 1)P(Ak). Then there are two indices 1 ≤ i1 < i2 ≤ n
such that Xi1 ≥ Xi2 + δ on Ak (the choice of i1, i2 may not be unique; in such a case, we pick
any pair with this property). We divide Ik into n − 1 consecutive intervals Ik,s of equal length,
s ∈ {1, 2, . . . , n} \ {i2}, and put

HX(x) = x
(k)
i1

, LX(x) = x
(k)
i2

if x ∈ Ik,i1 ,
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while for x ∈ Ik,s and s ∈ {1, 2, . . . , n} \ {i1, i2}, we use (2.7). In other words, we proceed as in the
previous case, but the intervals Ik,i1 and Ik,i2 are now �glued� into one.

Let us check that the function (H,L) we have just obtained does belong to Λ(n), i.e., it satis�es
the four requirements (Λ.1)-(Λ.4). The �rst two conditions hold directly by the construction. To
verify the point (Λ.3), we inspect carefully the three cases considered above. Note that H = L = 1/2
on Il+1, so

λ({H > 1/2} ∩ Il+1) + λ({L < 1/2} ∩ Il+1) = 0.

If k ≤ l and pk = nP(Ak), then the restrictions of H and L to Ik are given by (2.7); directly by this
formula, we see that the sets {H > 1/2} ∩ Ik and {L < 1/2} ∩ Ik are disjoint and hence

λ({H > 1/2} ∩ Ik) + λ({L < 1/2} ∩ Ik) ≤ λ(Ik) = pk = nP(Ak).

Finally, if k ≤ l and pk = (n − 1)P(Ak), then the above construction implies that the intersection
of {H > 1/2} ∩ Ik and {L < 1/2} ∩ Ik is precisely the interval Ik,i1 . Consequently,

λ({H > 1/2} ∩ Ik) + λ({L < 1/2} ∩ Ik) ≤ λ(Ik,i1) + λ(Ik) = nP(Ak).

Summing the above inequalities/equalities over k and noting that P(A1) + P(A2) + . . . + P(Al) =
P(A) = 1/2, we obtain (Λ.3). It remains to note that the last property is a direct consequence of
(2.3). □

The next step is the following reduction.

Proposition 2.7. The quantity (2.5) can be rewritten as

sup
(H,L)∈Λδ(n)

λ({H ≥ L+ δ}), (2.8)

where Λδ(n) is the subset of all (H,L) ∈ Λ(n) satisfying{
H ∈

(1
2
, δ
)}

∪
{
L ∈

(
1− δ,

1

2

)}
= ∅ (2.9)

and

{H ≥ L+ δ} =
{
L <

1

2

}
. (2.10)

Proof : Fix (H,L) ∈ Λ(n) and assume that the condition (2.9) or (2.10) is not satis�ed. If (2.9) fails,
we modify H and/or L on the �bad� sets, changing their values to 1

2 there. After this modi�cation,
the points (Λ.1)-(Λ.4) are still satis�ed and the value of λ({H ≥ L+ δ}) remains unchanged. Now
suppose that (2.10) does not hold. Because of the trivial inclusion {H ≥ L+ δ} ⊆ {L < 1/2} and
the equality {L < 1/2} = {L ≤ 1 − δ} we have just guaranteed, there must exist 0 ≤ a < b and
0 < γ ≤ 1 − δ such that L = γ and H < γ + δ on [a, b). By the point (Λ.4), we can �nd pairwise
disjoint intervals [aj , bj), j = 1, . . . ,m, satisfying

m⋃
j=1

[aj , bj) ⊂ {H = 1− γ} and
m∑
j=1

(bj − aj) =
1− γ

γ
· (b− a).

Therefore, we can perform the following rearrangement:

(1) change L on [a, b) from γ to 1
2 ,

(2) change H on
⋃m

j=1[aj , bj) from 1− γ to 1.

This �corrects� the behavior of (H,L) on the troublesome interval [a, b). Note that the obtained
function belongs to Λ(n) and the value of λ({H ≥ L+δ}) is not decreased. It remains to observe that
we may guarantee the validity of (2.10), by performing su�ciently many such transformations. □

The central part of the proof is the following estimate.
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Lemma 2.8. We have the identity

ϕ := sup
λ({L < 1

2})
λ({H > 1

2})− λ({L < 1
2})

=
1− δ

δ
,

where the supremum is taken over all k ∈ {1, 2, . . .} and all (H,L) ∈ Λδ(k) satisfying λ({H >
1/2}) > 0.

We postpone the proof of this lemma to the next section, and proceed with our main result.

Proof of Theorem 1.3: By Propositions 2.1, 2.3 (iv), 2.6 and 2.7, we can write

sup
(X1,X2,...,Xn)∈Cn

P
(

max
1≤i<j≤n

|Xi −Xj | ≥ δ
)

≤ 2 · sup
(H,L)∈Λ(n)

λ({H ≥ L+ δ})

= 2 · sup
(H,L)∈Λδ(n)

λ
({

L <
1

2

})
.

Fix (H,L) ∈ Λδ(n). By Lemma 2.8, we have λ({L < 1/2}) ≤ (1− δ)λ({H > 1/2}), while the point
(Λ.3) gives λ({L < 1/2}) + λ({H > 1/2}) ≤ n/2. Combining these two estimates, we immediately
obtain

P
(

max
1≤i<j≤n

|Xi −Xj | ≥ δ
)
≤ n(1− δ)

2− δ
.

It remains to prove the sharpness of (1.4). Observe that the function δ 7→ (1−δ)/(2−δ) is decreasing
on [0, 1], so the claim will follow if we construct an appropriate coherent vector (Zi)

n
i=1 for every δ

with n(1 − δ)/(2 − δ) ≤ 1. To this end, let {A0, A1, . . . , An} ∪ {B0, B1, . . . , Bn} be a measurable
partition of Ω satisfying

P(A0) = P(B0) =
1

2
·
(
1− n(1− δ)

2− δ

)
and

P(Ai) = P(Bi) =
1

2
· 1− δ

2− δ
for 1 ≤ i ≤ n.

Put A =
⋃n

i=0Ai, B =
⋃n

i=0Bi and consider the σ-algebras

Fi = σ
(
Ai, Bi, (A ∪Bi+1) \Ai+1, (B ∪Ai+1) \Bi+1

)
, i = 1, 2, . . . , n

(with the cyclic convention An+1 = A1, Bn+1 = B1). It is straightforward to check that the variables
Zi = E(1A|Fi), i = 1, 2, . . . , n, satisfy

Zi =


1 on Ai,

0 on Bi,

δ on (A ∪Bi+1) \ (Ai ∪Ai+1),

1− δ on (B ∪Ai+1) \ (Bi ∪Bi+1).

Consequently, we have max1≤i<j≤n |Zi − Zj | ≥ δ on each Ak and each Bk; this proves the estimate

P
(

max
1≤i<j≤n

|Zi − Zj | ≥ δ

)
≥ P(Ω \ (A0 ∪B0)) =

n(1− δ)

2− δ
,

which is the desired lower bound. □
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3. Proof of Lemma 2.8

For the sake of clarity, let us �rst describe the rough idea behind the proof. We have the identity

ϕ = sup
λ({L < 1

2})
λ({H > 1

2})− λ({L < 1
2})

= sup
λ({L < 1

2})
λ({H > 1

2 , L = 1
2})

,

where both suprema are as in the statement of Lemma 2.8. Our approach rests on expressing the

set {H > 1
2 , L = 1

2} as the �nite union of appropriate pairwise disjoint intervals I
(1)
1 , I

(1)
2 , . . ., I

(1)
k1

,

and splitting {L < 1
2} into the union of k1 families A1, A2, . . ., Ak1 , each of which consists of

pairwise disjoint intervals. Then we may write

λ({L < 1
2})

λ({H > 1
2 , L = 1

2})
=

∑k1
j=1

∑
J∈Aj

λ(J)∑k1
j=1 λ(I

(1)
j )

. (3.1)

While the choice of I
(1)
j is simple (the intervals correspond to di�erent values taken by the function

H), the construction of Aj is more complex: for each j, we will use a recursive procedure, starting

from I
(1)
j , which will arrange the elements of Aj ∪ {I(1)j } into a directed tree structure. Now, the

obvious inequality ∑k1
j=1

∑
J∈Aj

λ(J)∑k1
j=1 λ(Ij)

≤ max
1≤j≤k1

∑
J∈Aj

λ(J)

λ(Ij)

will enable us to restrict the analysis of (3.1) to the case k1 = 1, i.e., to the case of a single tree.
Actually, this inequality leads to a much more signi�cant reduction: as we will see below, it allows
us to assume that the tree is a path. This very special case will be successfully treated by arguments
coming from dynamic programming.

We turn our attention to the rigorous veri�cation of the above plan. It is convenient to split
the remaining part of this section into three separate parts, devoted to the construction of the tree
structure, the veri�cation of its properties and the dynamic programming argument.

3.1. Tree structure. We will use some basic terminology from the theory of graphs. Recall that a
simple (directed) graph G is an ordered pair (VG, EG), where VG is the set of vertices and EG ⊂
VG × VG is the collection of all edges. A simple graph is called a tree, if any two vertices are
connected by exactly one path; a forest is a disjoint union of trees.

From now on, we will use a shorter notation and write Λδ(N) instead of
⋃∞

k=1 Λ
δ(k). We start

with an arbitrary (H,L) ∈ Λδ(N) satisfying λ({H > 1/2}) > 0 and describe how such a function
gives rise to a (directed) forest graph T(H,L) = (V(H,L), E(H,L)). We will proceed by induction, the
intervals under consideration will always be left-closed and right-open:

(1) Induction base. By (Λ.4), we have λ({L < 1/2}) < λ({H > 1/2}) and hence λ({H > 1
2 , L =

1
2}) > 0. Therefore, we can �nd a �nite family V1 = {I(1)1 , I

(1)
2 , . . . , I

(1)
k1

} of disjoint intervals,
such that

k1⋃
j=1

I
(1)
j =

{
H >

1

2
, L =

1

2

}
and such that H is constant on each interval, say, H = x

(1)
j on I

(1)
j for 1 ≤ j ≤ k1. Set

E1 = ∅.
(2) Induction step. Suppose that we have successfully constructed Vj and Ej for j ≤ i − 1.

Moreover, assume that Vi−1 = {I(i−1)
1 , I

(i−1)
2 , . . . , I

(i−1)
ki−1

} and H = x
(i−1)
j on I

(i−1)
j for 1 ≤
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j ≤ ki−1. By the point (Λ.4), there exists a �nite family
⋃ki−1

j=1 {J
j
1 , J

j
2 , . . . , J

j
mj} of disjoint

intervals, such that
mj⋃
l=1

J j
l ⊂ {L = 1− x

(i−1)
j } \

i−1⋃
n=1

⋃
Vn,

mj∑
l=1

λ(J j
l ) =

1− x
(i−1)
j

x
(i−1)
j

· λ(I(i−1)
j )

for j = 1, 2, . . . , ki−1, and such that H is constant on each J j
l . Set

Vi =

ki−1⋃
j=1

{J j
1 , J

j
2 , . . . , J

j
mj

} and Ei = Ei−1 ∪
ki−1⋃
j=1

{I(i−1)
j } × {J j

1 , J
j
2 , . . . , J

j
mj

},

and put V(H,L) =
⋃∞

i=1 Vi, E(H,L) =
⋃∞

i=1 Ei.
To gain more intuition about the above construction, let us carry out an explicit calculation.

Example 3.1. Let δ = 0.7 and consider a pair (H,L) given by

H = χ[1,3) +
7

8

(
χ[0,1) + χ[3,5) + χ[8,12)

)
+

3

4

(
χ[5,8) + χ[12,15)

)
+

1

2
χ[15,∞),

L =
1

8
χ[0,1) +

1

4
χ[1,3) +

1

2
χ[3,∞).

It is not di�cult to check that (H,L) ∈ Λδ(36). Let us now explain the construction of the forest

Figure 3.1. The graphs of the function H (green) and L (red).

T(H,L). The starting point is to look at the set {H > 1/2, L = 1/2} = [3, 15). In our case, this
set splits into four intervals on which H is constant: [3, 5), [5, 8), [8, 12) and [12, 15). These four
intervals are the roots of four trees which will form the forest T(H,L). Next, for each root we describe
its descendants; it is best to explain the procedure on a given root, say, [5, 8). The length of the
interval is equal to 3 and the function H is equal to 3/4 there. The application of the property
(Λ.4) with y = 3/4 gives

λ({H = 3/4}) = 3λ({L = 1/4}), (3.2)

i.e., the set {L = 1/4} is three times smaller than {H = 3/4}. The children of [5, 8) are the
pairwise disjoint subintervals J1

1 , J
1
2 , . . . , J

1
m1

of {L = 1/4} for which the measure constraint (3.2)
is preserved:

λ([5, 8)) = 3λ
( m1⋃

j=1

J1
j

)
,
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and such that H is constant on each J1
j . There is a lot of ambiguity with the choice of J j 's, we may

actually take a single child J1
1 = [1, 2). We carry out a similar procedure with each root, making

sure that all the children obtained in the process are pairwise disjoint. For example, at the end we
may obtain the following (partial) forest:

Figure 3.2. Partial forest: roots and their children.

Note that the intervals [27 ,
3
7) and [37 ,

6
7) could as well be merged into one [27 ,

6
7): then the root

[8, 12) would have just one descendant. Next, we continue the procedure, but now the role of the
roots is played by the children of the �rst generation which have been just constructed. It is clear
that the procedure is well-de�ned: by property (Λ.4), at each step there are no problems with the
existence of intervals satisfying appropriate measure and disjointness requirements. We would just
like to mention that any interval, on which H is equal to 1, does not have any descendants (the tree
is cut at such a vertex).

3.2. Properties of T(H,L). We start with the following important fact.

Proposition 3.2. The family V(H,L) is disjoint and⋃
V(H,L) =

{
H >

1

2

}
,

up to a set of measure zero.

Proof : The �rst part follows from the very construction. To prove the second part, we will �rst
show inductively that

H >
1

2
for every J ∈ V(H,L). (3.3)

Indeed, we obviously have H > 1
2 on

⋃
V1. So, �x i ∈ {2, 3, . . . } and assume that H > 1

2 on⋃i−1
n=1

⋃
Vn. Let J ∈ Vi be an arbitrary interval and let I ∈ Vi−1 be the father of J (relative to the

structure of the tree T(H,L)). Then there exists x > 1
2 such that H ≡ x on I and L ≡ 1− x < 1

2 on

J . By the de�nition of Λδ(N), we have
{
L < 1/2

}
= {H ≥ L+ δ} and hence H ≥ 1−x+ δ ≥ δ > 1

2
on J . This completes the proof of (3.3). To show the reverse inclusion (up to a set of measure zero),
put U =

{
H > 1/2

}
\
⋃
V(H,L) and assume that λ(U) > 0. Recall that, again by the de�nition of

Λδ(N), we have {
H ∈

(1
2
, δ
)}

=
{
L ∈

(
1− δ,

1

2

)}
= ∅.

Fix y ∈ [δ, 1] and note that by the construction of the sets Vi above, we may write

1− y

y
·
i−1∑
n=1

∑
{I∈Vn: H≡y on I}

λ(I) =
i∑

n=2

∑
{J∈Vn: L≡1−y on J}

λ(J),

for all i = 2, 3, . . . . Hence, passing with i to in�nity yields

1− y

y
·

∑
{I∈V(H,L): H≡y on I}

λ(I) =
∑

{J∈V(H,L): L≡1−y on J}

λ(J). (3.4)
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On the other hand, just by the property (Λ.4), we have

1− y

y
· λ({H = y}) = λ({L = 1− y}). (3.5)

Subtracting (3.4) from (3.5), we get

1− y

y
· λ
(
{H = y} ∩ U

)
= λ

(
{L = 1− y} ∩ U

)
, (3.6)

for y ∈ [δ, 1]. Next, by point (Λ.2), there exists a �nite sequence y1, y2, . . . , yk ∈ [δ, 1], satisfying

λ
({

H ̸∈ {y1, y2, . . . , yk}
}
∩ U

)
= λ

({
L ̸∈ {1− y1, 1− y2, . . . , 1− yk}

}
∩ U

)
= 0.

Therefore, summing (3.6) for y1, y2, . . . , yk, we obtain the inequality

k∑
i=1

λ
(
{L = 1− yi} ∩ U

)
=

k∑
i=1

1− yi
yi

· λ
(
{H = yi} ∩ U

)
≤ 1− δ

δ
·

k∑
i=1

λ
(
{H = yi} ∩ U

)
,

and hence

λ
({

L <
1

2

}
∩ U

)
< λ

({
H >

1

2

}
∩ U

)
(3.7)

if only the right-hand side of (3.7) is positive. At the same time, we have

U ∩
{
H >

1

2
, L =

1

2

}
= ∅,

since the set {H > 1
2 , L = 1

2} has been already covered by V1. Consequently, we get{
H >

1

2

}
∩ U =

{
L <

1

2

}
∩ U = U

and thus

λ
({

L <
1

2

}
∩ U

)
= λ

({
H >

1

2

}
∩ U

)
,

which contradicts (3.7). □

As we explained in the beginning of this section, the above graph structure can be exploited in
the study of Lemma 2.8. Under the notation we have just introduced, the expression for ϕ can be
rewritten in the form

ϕ = sup
(H,L)∈Λδ(N)

∑
J∈V(H,L)\V1

λ(J)∑
I∈V1

λ(I)
. (3.8)

We split the forest T(H,L) into the disjoint trees: for 1 ≤ j ≤ k1, let T j
(H,L) denote the directed tree

with root I
(1)
j . Then we have∑

J∈V(H,L)\V1
λ(J)∑

I∈V1
λ(I)

=

∑k1
j=1

[
λ
(⋃

T j
(H,L)

)
− λ

(
I
(1)
j

)]
∑k1

j=1 λ(I
(1)
j )

≤ max
1≤j≤k1

λ
(⋃

T j
(H,L)

)
− λ

(
I
(1)
j

)
λ(I

(1)
j )

.

Hence, as we have already mentioned above, in the problem (3.8) it is enough to consider (H,L)
with T(H,L) = T 1

(H,L), i.e. in the context when the underlying forest structure consists of a single

tree. Let us discuss some further simpli�cations. With no loss of generality, we may assume that

λ(I
(1)
1 ) = 1. Indeed, scaling I

(1)
1 by c > 0 results in scaling all intervals in V2 by the same factor,

which, in turn, leads to the same scaling of all intervals generated by V2 (i.e., V3), and so on.
Summarizing, we have obtained

ϕ = sup
Ξδ(N)

[
λ
(⋃

V2

)
+ λ

(⋃
V3

)
+ . . .

]
, (3.9)



Coherent distributions 13

where supremum is taken over

Ξδ(N) :=
{
(H,L) ∈ Λδ(N) : T(H,L) = T 1

(H,L) and λ(I
(1)
1 ) = 1

}
.

Note that the series under supremum in (3.9) is uniformly convergent: by the construction, we have

λ
(⋃

Vm+1

)
≤ 1− δ

δ
· λ
(⋃

Vm

)
,

for all m = 1, 2, . . . Therefore, we can reformulate (3.9) as

ϕ = lim
m→∞

(
sup
Ξδ(N)

m∑
j=2

λ
(⋃

Vj

))
. (3.10)

3.3. Dynamic programming. To compute the above supremum, it is convenient to apply dynamic
programming techniques. Let Φ : [δ, 1] → R+ be given by

Φ(x) = sup
x

∞∑
n=0

n∏
i=0

1− xi
xi

, (3.11)

where the supremum is taken over all sequences x = (x0, x1, x2, . . . ) satisfying

x0 = x, xn ∈ [δ, 1] and xn+1 ≥ 1− xn + δ for n = 0, 1, 2, . . .

We may call Φ the Bellman function associated with (3.10). Its connection to the problem is
described in the following statement.

Proposition 3.3. We have the identity

ϕ = sup
x∈[δ,1]

Φ(x).

Proof : Fix m ∈ {1, 2, . . . }. Analogously to the reduction T(H,L) = T 1
(H,L), we easily verify that it is

enough to handle (H,L) with Vj = {I(j)1 } for 1 ≤ j ≤ m. Taking m → ∞, just as in (3.10), we get

ϕ = sup
Ξδ(N)

∞∑
j=2

λ(I
(j)
1 ), (3.12)

where I
(n+1)
1 is generated by I

(n)
1 for each n ≥ 1. Recall from construction that H is constant on

such intervals: denote H = xn−1 on I
(n)
1 , n = 1, 2, . . . Note that inequality xn+1 ≥ 1 − xn + δ is

a straightforward consequence of (H,L) ∈ Λδ(N). Lastly, let Φ(x) denote the right-hand side of
(3.12) with an additional restriction to x0 = x. This yields the claim. □

We turn our attention to the identi�cation of the formula for Φ. We start with a structural
property of the Bellman function.

Proposition 3.4. For any x ∈ [δ, 1] we have the recurrence relation

Φ(x) =
1− x

x

(
1 + sup

y≥1−x+δ
Φ(y)

)
. (3.13)

Proof : The argument rests on the so-called optimality principle. By (3.11), we simply have

Φ(x) =
1− x

x
·
(
1 + sup

x̃

∞∑
n=1

n∏
i=1

1− xi
xi

)
,

where supremum is taken over all sequences x̃ = (x1, x2, . . . ) such that

x1 ≥ 1− x+ δ, xn ∈ [δ, 1] and xn+1 ≥ 1− xn + δ for n = 1, 2, 3, . . . . □



14 Stanisªaw Cichomski and Adam Os¦kowski

Now we will make use of the following procedure, which is often successful in the treatment of
various problems in dynamic programming. Namely, based on some experimentation, we will guess
for which choice of x the supremum de�ning Φ(x) is attained, thus obtaining �a candidate� Ψ for the
Bellman function. By the very de�nition, this candidate must satisfy Ψ ≤ Φ. The reverse estimate
will be obtained by the veri�cation that the candidate also satis�es the structural requirement
(3.13), and exploiting this condition appropriately.

We proceed to the choice of x. A little thought and a closer inspection suggests that problem
(3.11) should be maximized by an alternating sequence

x̂ = (x, 1− x+ δ, x, 1− x+ δ, x, . . . ).

Indeed, this is quite a natural guess: we come up with x̂ simply by assuming equalities in the
contraints for the coordinates x0, x1, x2, . . .. Plugging this sequence into (3.11), we compute the
corresponding candidate for Φ(x), obtaining

Ψ(x) :=
1− x

x
+

1− x

x
· x− δ

1− x+ δ
+

1− x

x
· x− δ

1− x+ δ
· 1− x

x
+ . . . =

1− x

δ
,

for all x ∈ [δ, 1]. Then Ψ ≤ Φ, as we have already commented above, so the proof will be complete
if we manage to check that Ψ ≥ Φ.

Proof of Lemma 2.8: First, we show that Ψ ful�lls the recurrence (3.13). Indeed, for x ∈ [δ, 1], we
have

1− x

x

(
1 + sup

y≥1−x+δ
Ψ(y)

)
=

1− x

x

(
1 + Ψ(1− x+ δ)

)
=

1− x

x

(
1 +

x− δ

δ

)
= Ψ(x).

Pick any x ∈ [δ, 1] and ε > 0. By (3.11), we can choose an admissible sequence xε = (x0, x1, . . . )
(i.e., satisfying x0 = x and xn+1 ≥ 1− xn + δ, n = 0, 1, 2, . . . ) such that

Φ(x) ≤ ε +

∞∑
n=0

n∏
i=0

1− xi
xi

.

Since 1−xi
xi

≤ 1−δ
δ , i = 1, 2, . . . , there is a natural number m for which

Φ(x) ≤ 2ε +
m∑

n=0

n∏
i=0

1− xi
xi

. (3.14)

On the other hand, by recurrence relation (3.13), we can write

Ψ(x) = Ψ(x0) ≥
1− x0
x0

(
1 + Ψ(x1)

)
=

1− x0
x0

+
1− x0
x0

Ψ(x1)

≥ 1− x0
x0

+
1− x0
x0

1− x1
x1

(
1 + Ψ(x2)

)
=

1− x0
x0

+
1− x0
x0

1− x1
x1

+
1− x0
x0

1− x1
x1

Ψ(x2)

and so on. After m steps, we obtain

Ψ(x) ≥
m∑

n=0

n∏
i=0

1− xi
xi

+

(
m∏
i=0

1− xi
xi

)
Ψ(xm+1) ≥

m∑
n=0

n∏
i=0

1− xi
xi

.

Hence, by (3.14), we get Ψ(x) + 2ε ≥ Φ(x), and since ε > 0 was chosen arbitrarily, the reverse
bound Ψ ≥ Φ follows. This proves the claim and completes the proof of (1.4): ϕ = supx∈[δ,1]Φ(x) =

(1− δ)/δ. □
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