
1

How Good is Random Linear Coding Based
Distributed Networked Storage?
Szymon Acedánski, Supratim Deb, Muriel Ḿedard, Ralf Koetter

Abstract— We consider the problem of storing a large
file or multiple large files in a distributed manner over
a network. In the framework we consider, there are
multiple storage locations, each of which only have very
limited storage space for each file. Each storage location
chooses a part (or a coded version of the parts) of the
file without the knowledge of what is stored in the other
locations. We want a file-downloader to connect to as few
storage locations as possible and retrieve the entire file.
We compare the performance of three strategies: uncoded
storage, traditional erasure coding based storage, random
linear coding based storage motivated by network coding.

We demonstrate that, in principle, a traditional erasure
coding based storage (eg: Reed-Solomon Codes) strategy
can almost do as well as one can ask for with appropriate
choice of parameters. However, the cost is a large amount
of additional storage space required at the centralized
server before distribution among multiple locations. The
random linear coding based strategy performs as well
without suffering from any such disadvantage. Further,
with a probability close to one, the minimum number of
storage location a downloader needs to connect to (for
reconstructing the entire file), can be very close to the
case where there is complete coordination between the
storage locations and the downloader. We also argue that
an uncoded strategy performs poorly.

I. I NTRODUCTION

In this paper, we concern ourselves with a key question
that may arise in designing efficient distributed file
systems. The question we ask is: how to store files in
a large distributed system in an efficient manner? The
problem has the constraint that, even though the total
memory of all the nodes combined may be sufficient,
the memory available at any particular node is limited.
Suitably designed file-distribution strategies can find
application in content-distribution networks, peer-to-peer
networks, and also distributed libraries.

The most common method by which files are trans-
ferred on the Internet is the client-server model. A central
server sends the entire file to each client that requests it.
The clients only speak to the server, and not to each

S. Acedánski is with the Warsaw University, Poland; e-
mail:accek@mimuw.edu.pl. S. Deb and M. Médard are with the
Massachusetts Institute of Technology, Cambridge, MA, USA; e-
mail:{supratim,medard}@mit.edu. R. Koetter is with the University
of Illinois at Urbana-Champaign, IL, USA; e-mail:koetter@uiuc.edu

other. The main advantages of this method are that it’s
simple to set up, and the files are usually always available
since the servers tend to be dedicated to the task of
serving, and therefore are always on and connected to
the Internet. The client-server model has a significant
problem with files that are large or very popular. Namely,
it takes a great deal of bandwidth and server resources to
distribute such a file, since the server must transmit the
entire file to each client. This may result in very slow
download speed.

The concept of mirrors partially addresses this short-
coming by distributing the load across multiple servers.
However, a great deal of coordination and effort are
required to set up an efficient network of mirrors.

Another method of transferring files utilizes a peer-
to-peer network. Systems such as Kazaa[9], Gnutella[5],
e-Donkey, Direct Connect, etc. are examples of peer-
to-peer networks. In most of these networks, Internet
users trade files by directly connecting one-to-one. The
advantage of this method is that files can be shared
without having access to a server. Bit-torrent [12] is a
protocol designed for transferring files in such manner.
The users connect to each other directly to send and
receive portions of the file. There is a central server
(called a tracker) which coordinates the action of all such
peers. The tracker manages connections, but does not
have any knowledge of the contents of the files being
distributed, and therefore a large number of users can be
supported with relatively limited tracker bandwidth. In
bit-torrent, selecting the pieces to download in a good
order is very important for good performance. Several
adhoc strategies are described in [12]. In general, the
idea is to ensure that, the different pieces should be more
or equally spread in the system as the system evolves.

The model (which we describe later) we have in mind
is depicted in Figure I. While the dynamic behavior of a
system can vary depending on the application one has in
mind, our goal in this paper to study efficient strategies
for distributing a large file (or multiple large files) into
various storage locations. By efficient strategies, we
mean, strategies that have the following properties:
• Stateless: The centralized server does not have to

maintain any states of the storage locations, in
terms of what they are storing. Such a property is
highly desirable in environments where the number

2

Centralized Server
Storing Multiple
 Large Files

Multiple Storage Locations (geographically separated).
 Each storing small fraction of some/all of the files

Fig. 1. Network with Distributed Storage Elements

of distinct storage location is quite large. The file-
distribution protocol of bit-torrent is notstateless.

• Independence: What a storage location stores is
independent of what might be stored in any other
location. The key point is, there is absolutely no
coordination between the storage locations, either
direct or indirect (through the centralized server).
This property clearly goes hand in hand with the
previous one.

• Performance guarantee: While the above proper-
ties are highly desirable, if possible, the system
should provide strong performance guarantee to a
downloader. Since we are considering randomized
strategies, probabilistic performance guarantees are
more appropriate for the system we are studying.
In other words, with a probability close to one,
the downloader should complete the download after
connecting to as few storage locations as possible.
While the exact performance measure of a system
may depend on the specific application (peer-to-
peer, content distribution etc) in mind, we believe
such a notion of performance should translate into
the very good performance of the system.

The question we ask is: is it possible to attain all the
above in a system? We demonstrate that, certain simple
and easy to implement coding strategies can indeed
satisfy all the properties with appropriate tradeoffs. The
tradeoff is either in terms of complexity of decoding
algorithms required at the downloader or additional
storage space required at the centralized server.

Independent of our work, the authors in [4] have also
proposed and compared strategies very similar to ours
and have reported detailed simulation experiments for
content distribution network. We differ from them in car-
rying out detailed mathematical analysis and simulations

of a generic model (see Figure I) that might have wider
applicability.

We primarily analyze and compare three strategies for
storing: anuncoded random storage, traditionalerasure
coding based storage, and random linear coding based
storage. The random linear codingbased storage we
discuss in this paper is motivated by the utility ofrandom
linear codesin the emerging area of network coding.
Network coding can be viewed as a vast generalization
routing where packets (which are nothing but a collection
of bits) are treated as algebraic elements, rather than
mere transportation or storage elements. Thus, packets,
just like any other algebraic entity, can be operated upon.
It was shown in [11] that, linear network coding can
achieve the min-cut bound in networks with multicast
flows. There is a significant recent work on network
coding [8], especially on the algorithmic aspects of
construction of linear network codes [1], [10]. In [6],
[7], the authors proposed the novel idea ofrandom
network coding. A common theme running across most
of this work is to demonstrate that alinear codingbased
approach can improve the capacity of various networks.
In this paper, we will argue thatrandom linear coding
based schemes motivated by network coding can have
wider applicability in uncoordinated distributed storage.

II. M ODEL, PERFORMANCEMEASURES, AND

STORAGE STRATEGIES

A. Model and performance measures

We consider a large file which is broken intom pieces.
Suppose there are multiple nodes or distributed memory
elements each of which can storek of them pieces (see
Figure I). We refer to the distributed memory elements
as peershenceforth.We assume that no peer has any
knowledge about what the other peers have stored.This
is a key assumption in our model. An implication of this
assumption is that, even if there is a central controller to
distribute the pieces, the controller does not differentiate
between the peers, and does not need to maintain a state
of the contents of all the peers. Thus the peers do not
coordinate for storing pieces of the file. In fact, we will
demonstrate that a coding based storage makes redundant
any need for coordination between the peers for storing
different pieces. A downloader completes its download
once it gathers each of them elements or has enough
information to recover them pieces that constitute the
entire file. The downloader can connect to a fixed number
of peers at a time.

Before we describe the three strategies we describe
the performance measures we are interested in. Suppose,
the downloader got opportunities to connect tor of the
peers after spending some time in the system (this can
be over single or multiple connection instants depending

3

on the value ofr and the maximum number of peers the
downloader can connect to). The questions we ask are
the following:
• For any given fractionx, what is the probability

that r peers can provide sufficient information for
the downloader to complete at leastx fraction of
the download? This is clearly a function ofm, k,
andr.

• What is the mean fraction of overall download that
can be availed fromr different peers for different
values ofr?

We will also address a few other closely related
performance measures in our results.

B. Strategies for Distributed Networked Storage

We consider the following strategies for storing parts
of the file in the various locations:

Uncoded Random Storage:This is a simple scheme
where each peer storesk different pieces out of the
m pieces at random. Thus there are

(
m
k

)
ways of

storing data elements in a peer. If the peers choose their
contents without the knowledge of what other peers
have, this strategy is a natural one if coding is not
allowed.

Traditional Erasure Coding Based Random Storage:
In this scheme, them distinct blocks are encoded at
the source using appropriate erasure codes. Them
original blocks are encoded to generatem(1 + β)
encoded blocks so that anymγ out of the m(1 + β)
blocks are sufficient to decode the entire file. Here,
1/(1 + β) is the code-rate and the relation betweenγ
andβ depends on the specific code. Now, each storage
location storesk out of them(1 + β) encoded blocks
at random. Two popular examples of erasure-codes are
Reed-Solomon codes and Tornado codes. The entire file
can be decoded once a downloader has access to any
different mγ number of chunks.

Random Linear Coding based Storage:In this scheme,
we view them pieces of the file as elements inFs

q, i.e.,
vectors of sizes in a field of sizeq. Thus, if we denote
the chunks byci, i = 1, 2, . . . m, then each peer stores
k random linear combinations ofci’s. More specifically,
if the elements with a particular peer aref1, f2, . . . fk,
then a typical elementfi can be represented as

fi =
m∑

j=1

βj cj , Pr(βj = β) =
1
q
∀β ∈ Fq .

Further each peer also stores the associated vector
(β1, β2, . . . , βm) for each of thek pieces. We also
call this the associatedcode vector. This will take an

additional storage space ofkm log2(q) bits. This is
typically a small number compared to each piece of
the broken file. For example, bit-torrent breaks up a file
into pieces of size256 KB. Suppose we have a file of
size 25 MB and also let us supposeq = 16 (typically
a smaller value may yield good results as we will see
later). The file can thus be broken up into around 100
pieces, each of size256 KB. Each randomly mixed piece
in this scheme will require an overhead (to store the
βi’s) of m log2(q) = 400 bits or 50 bytes/piece. Thus
the additional storage space required in percentage is
100 × 50 bytes/256 KB ≈ 0.02%. This is indeed a
negligible overhead, especially when we consider the
benefits discussed in the result section. For reconstruct-
ing the entire file, it is sufficient that the dimension of
the code-vectors with the downloader ism.

We now proceed to analyze the different strategies.
We skip many of the proofs for want of space. In the
following, we use the notation “f(m) ∼ g(m)” to mean
limm→∞ f(m)/g(m) = 1 wheref and g are functions
of m, the number of pieces the file is broken into.

III. U NCODED RANDOM STORAGE

A. Exact Analysis of the Scheme

We first show some simple calculation for theUn-
coded Random Storagemechanism. Fixr, the number
of peers. LetS be a given set of pieces. We also denote
by M the set of all the pieces. We first note that,

g(S; |S| = j)
4
= Pr(no element of the setS features in the

r peers| |S| = j)
= (Pr(a particular peer has pieces only fromM \ S))r

=

((
m−j

k

)(
m
k

))r

.

Note that,g(S) = 0 for |S| > m − k since there are
at leastk distinct pieces with the peers. LetY be the
random variable denoting the exact number of pieces
of the file missing in ther peers. Using an inclusion-
exclusion argument [3], it follows that

Pr(Y = y) =
m−k∑
j=y

(−1)j−y

(
j

y

) ∑
S:|S|=j

g(S)

=
m−k∑
j=y

(−1)j−y

(
j

y

)(
m

j

)((m−j
k

)(
m
k

))r

(1)

The preceding completely characterizes the distribution
of Y . Denoting byX the random variable the fraction of
overall file available from ther peers, we can calculate
all relevant statistics aboutX by noting thatPr(X ≥
x) = Pr(Y ≤ m(1− x)).

4

B. Asymptotic Analysis and Approximate Performance
Measures

We first derive a key proposition which sheds more
light into the performance of the scheme.

Proposition 3.1: LetZm(r) be the number of addi-
tional pieces required to be downloaded after connecting
to r peers, and letXm(r) be the number of available
chunks after connecting tor peers. We, then have,

E[Xm(r)] ∼ m[1− (1− 1
m)kr]

Let r(s) be the minimumr such thatE[Zm(r)] = s.
Then, we have

kr(s) ∼ m ln(m
s)

The proof of this is a special case of the proof of
Proposition 4.1.

We now present approximation for the different per-
formance measures based on the insight gained from
Proposition 3.1.

Let r(x) andf(r) denote the following.

r(x) = Number of peers to be connected so that the

average fraction of download completed isx

f(r) = The mean fraction of download completed after

connecting tor peers.

Under the approximation that the mean number of miss-
ing chunks is roughlym(1 − 1/m)kr, we obtain the
following approximation forr(x).

r(x) ≈ m ln(1
1−x)

We also have the following approximation forf(r).

f(r) = 1− (1− 1
m)kr

Furthermore, the mean number of peers that need to be
connected so that the entire download is completed can
be easily seen to be at leastm ln(m)/k.

IV. T RADITIONAL ERASURE-CODING BASED

RANDOM STORAGE

A. Exact Analysis of the Scheme

The starting point of the analysis of this is quite
similar to the one for uncoded random storage except for
a few differences. However, we shall soon see that the
asymptotic behavior (whenm is large) is very different
which clearly brings out the advantages compared to an
uncoded random storage.

Recall, that erasure coding on them blocks would
convert the chunks of the file into an encoded set of
m(1 + β) blocks so that anymγ out of them(1 + β)
blocks are sufficient to decode the entire file.

In the following, fix r the number of peers a down-
loader has connected to. LetZ be the number of chunks
that remain to be downloaded.

Let Z denote the number of additional chunks a
downloader needs for completing the download after
having connected tor peers. We can now readily give
an expression for the distribution of ofZ from (1)
substitutingm(1 + β) for m and m(1 + β − γ) + Z
for Y . In the following, we letθ = 1 + β − γ.

Pr(Z = z) =

∑m(1+β)−k
j=mθ+z (−1)j−mθ−z

(
j

mθ+z

)(
m(1+β)

j

)((m(1+β)−j

k)
(m(1+β)

k)

)r

if z > 0,∑mθ
y=0

∑m(1+β)−k
j=y (−1)j−y

(
j
y

)(
m(1+β)

j

)((m(1+β)−j

k)
(m(1+β)

k)

)r

if z = 0.

(2)

The preceding completely characterizes the distribution
of Z. Denoting byX the random variable the fraction of
overall file available from ther peers, we can calculate
all relevant statistics aboutX using Pr(X ≥ x) =
Pr(Z ≤ mγ(1− x)).

B. Asymptotic Performance Measures

In this section we analyze the performance of a
traditional erasure coding based storage policy in more
detail. Our analysis will also shed light on the right
choice of the coding rate1/(1 + β).

We start by presenting the following proposition.
Proposition 4.1: LetZm(r) be the number of addi-

tional pieces required to be downloaded after connecting
to r peers, and letXm(r) be the number of available
chunks after connecting tor peers. We, then have,

E[Xm(r)] ∼ m(1 + β)[1− (1− 1
m(1+β))

kr]

Let rc be the minimumr such thatE[Zm(rc)] = 0 (we
hide the dependence ofrc on m). Then, we have

krc ∼ m(1 + β) ln(1+β
1+β−γ)

Remark 1:Suppose we haveγ = 1 as with Reed-
Solomon codes. Note that, withγ = 1, we have

krc ∼ m(1 + 1
2β + o(1

β)) ,

and thus, by choosingβ large enough we can make
krc/m arbitrarily close to one which is the best one
can hope for. There are a couple of tradeoffs associated
with this. First of all, a very largeβ comes at the cost of
(1 + β) factor of additional storage space at the central-
ized server, where the file is stored before distributing
it among the different locations. Secondly, the decoding
complexity for decoding the encoded blocks goes up by
a factor of(1 + β). �

We can infact provide a stronger probabilistic guaran-
tee if the donloader connects to a few additional storage
locations. It is captured in the following proposition.

5

Proposition 4.2: Letk (number of chunks each loca-
tion stores) andr (number of locations a downloader
has connected to) be jointly scaled withm so that
kr/m = α. Let Zm be the random variable denoting
the additional chunks required for the download to be
completed.

Supposeα > (1 + β)(1 + ln(1+β
1+β−γ)). Then,

lim
m→∞

Pr(Zm = 0) = 1 .

In other words, the entire file can be decoded with
probability approaching one asm → ∞ if α is in the
given range.

V. RANDOM L INEAR CODING BASED STORAGE

We next analyze therandom linear codingbased
storage scheme. In this scheme, withr peers, there
are a total ofkr m-dimensional code-vectors available
for the downloader. Recall that each of the code-vector
represents a random mixture of the pieces. We can view
the collection of these vectors as akr × m matrix
over Fq. The complete file can be recovered once the
dimension of this matrix ism. As the downloader gathers
information from more and more peers, it gathers more
and more independent code-vectors.

A. Exact Analysis

Let D be the random variable denoting the dimension
of the subspace spanned by all thekr code-vectors with
ther peers. Then, it can be shown that (see any standard
reference on random matrix over finite fields),

Pr(D = d) =
∏d−1

i=0 (qkr − qi)
∏d−1

i=0 (qm − qi)

qmkr
∏d−1

i=0 (qd − qi)
(3)

The preceding expression, though complicated, can be
used to numerically derive all the performance measures.
To gain more insight into the performance, we next show
some very simple performance lower bounds.

B. Performance Lower Bound

We use the notation “X �st Y ” to imply Pr(X >
a) ≥ Pr(Y > a) for all real a. We have the following.

Proposition 5.1: We have,

D �st min(m, Binomial(kr, 1− 1
q)) .

The proof is straightforward and follows immediately
from Lemma 2.1 in [2].

The following corollary is immediate using standard
applications of Chernoff bounds.

Corollary 5.1: Let Z(r) = m − D be the residual
degrees of freedom after connecting tor peers. If,

kr

m
≥ 1

1− 1/q

(
1 + 2

√
ln(m)

m

)
,

then,

Z(r) = 0 with probability at least 1− 1
m .

In other words, the download is complete almost cer-
tainly.

Remark 2:Let rc be the minimum number of storage
locations a downloader needs to connect to. Note that,
by choosing a field size large enough,krc/m can be
made arbitrarily close to one, which is the minimum
one can hope for. In that sense, a largeq has the same
effect as the largeβ with traditional erasure coding.
However, in this case we do not need any additional
storage at the centralized location, where the file is
stored before distribution. Further, in this case, we have
a strong guarantee, i.e.,krc/m is close to one with a
very high probability. The tradeoff for a large field size
is the minimally additional overhead with each chunk,
and the complexity of the inversion of a matrix over
a larger field size at the downloader. However, for all
practical purposes the complexity is no more than than
the inversion of a real matrix.

VI. SIMULATION RESULTS

We next show some simulations results to illustrate
the performance of various strategies. The purpose of
the simulation is to provide a more detailed evaluation of
the various strategies, and to demonstrate that the mean
and lower bound based analysis are truly reflective of the
performances of the various schemes. Simulation results
for traditional erasure codes are withγ = 1, i.e., anym
out of m(1+β) encoded blocks are sufficient to decode
the entire file. Reed-Solomon code is one such code.

The results are representative of simulations done with
a wide range of parameters. In the results we show,
we use the following parameters. We consider a single
file broken into 50 chunks and each individual storage
location can store 5 chunks, so thatm = 50 andk = 5.
This can be viewed as, say for example, any1 GB file
broken into chunks of size20 MB and each storage
location has a space worth100 MB for each such file.

We show two kinds of plots in our results.
In our first set of plots in Figure 2, we show the prob-

ability that a given fraction of download is completed
after a downloader has connected tor = 10 different
storage locations. As we have 50 chunks and space of
5 chunks/location, the downloader needs to connect to
a minimum of 10 locations in any event. We show the
plots for uncoded random storage, erasure coding based
strategy withβ = 4 andβ = 8, and random linear coding
based strategy with field sizesq = 3 and q = 7. Note
from the plots that, with arandom linear codingbased
storage, more than 90% of the download is complete
almost certainly even for a moderate field size ofq = 3,

6

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r(

at
 le

as
t s

pe
ci

fie
d

fr
ac

tio
n

is
 a

va
ila

bl
e)

Fraction of the file

50 chunks/file, 10 machines, 5 chunks/machine

Uncoded
Traditional erasure codes, b=4
Traditional erasure codes, b=8

Random linear codes, q=3
Random linear codes, q=7

Fig. 2. Plots showing probability that a given fractionx of the file
is available for downloaded for different values ofx. The plots are
shown forr = 10

and it is close to 95% for a field size ofq = 7. The
erasure codingbased strategy also completes close to
90% of the download forβ = 8. However, a field size of
q = 3 requires an additional storage space around10−4%
at the storage locations for an original file size of 1 GB,
whereas, an erasure coding based strategy withβ = 8
requires an additional eight times, i.e., 9 GB storage
space at the centralized file server. Also, note from the
plots that an uncoded random storage performs very
poorly and only completes around 55% of the download
with a reasonable amount of certainty.

In Figure 3, we compare the probability that the entire
download is complete for different values ofr, i.e.,
the number of staorage locations a downloader connects
to. The points in the plot for non-integer values ofr
correspond to collecting only some fraction of the chunks
from a storage-location or peer. Note that, withrandom
linear coding based storage, and for the values of the
parameters considered, the entire download is complete
almost certainly once a downloader connects to just11
storage locations, which is one more than the minimum
of 10 storage locations required in any event. For an
erasure codingbased strategy withβ = 8, we almost
see a comparable performance, i.e., 12 storage-locations
are sufficient for decoding the entire file.

VII. C ONCLUSIONS

We have demonstrated that, arandom linear coding
based storage, motivated by random network coding,
makes the system behave as if the different storage-
locations, which a downloader connects to, had complete
coordination for storing the different chunks of the file.
Thus the efficiency of the system is as close to the

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 11 12 13 14 15

P
r(

en
tir

e
fil

e
is

 a
va

ila
bl

e)

Number of machines

50 chunks/file, 5 chunk/machine

Traditional erasure codes, b=4
Traditional erasure codes, b=8

Random linear codes, q=3
Random linear codes, q=7

Fig. 3. Plots showing probability that the complete file is down-
loaded for different values of the number of peers contacted

best one can ask for. Any traditional erasure coding
based scheme can also perform almost as well, but
requires a huge amount of additional storage space at
the centralized file server. In this sense, a random linear
coding based strategy can be callederasure coding on
the fly.

REFERENCES

[1] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung. Network
information flow. IEEE Transactions on Information Theory,
46:1024–1016, 2000.

[2] S. Deb and M. Ḿedard. Algebraic gossip: A network coding
approach to optimal multiple rumor mongering.M.I.T. LIDS
Technical Report, Also submitted to IEEE Transactions on
Information Theory, April 2004.

[3] W. Feller. An Introduction to Probability Theory and Its
Applications, volume 1. J. Wiley & Sons, New York, 1964.

[4] C. Gkantsidis and P. Rodriguez. Network coding for large
scale content distribution. Technical Report MSR-TR-2004-80,
Microsoft Research, 2004.

[5] Gnutella. http://gnutella.wego.com.
[6] T. Ho, M. Médard, M. Effros, and D. Karger. The benefits of

coding over routing in a randomized setting. InProc. IEEE
Symposium on Information Theory, 2003.

[7] T. Ho, M. Médard, M. Effros, and D. Karger. On randomized
network coding. InProc. 41st Allerton Annual Conference on
Communication, Control and Computing, October 2003.

[8] Network Coding Homepage.
http://www.comm.csl.uiuc.edu/koetter/nwc/.

[9] KaZaA. http://www.kazaa.com.
[10] R. Koetter and M. Ḿedard. An algebraic approach to network

coding.IEEE/ACM Transactions on Networking, October 2003.
[11] S.-Y. R. Li, R. W. Yeung, and N. Cai. Linear network coding.

IEEE Transactions on Information Theory, Februray 2003.
[12] Bit torrent file sharing protocol. http://bitconjurer.org/bittorrent/.

