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Abstract—We consider the problem of storing a large other. The main advantages of this method are that it’s
file or multiple large files in a distributed manner over simple to set up, and the files are usually always available
a network. In the framework we consider, there are since the servers tend to be dedicated to the task of
multiple storage locations, each of which only have very geping, and therefore are always on and connected to
limited storage space for each file. Each storage location e hternet. The client-server model has a significant
chooses a part (or a coded version of the parts) of the L
file without the knowledge of what is stored in the other problem with files that are Iarg.e or very popular. Namely,
locations. We want a file-downloader to connect to as few it takes a great deal of bandwidth and server resources to
storage locations as possible and retrieve the entire file. distribute such a file, since the server must transmit the
We compare the performance of three strategies: uncoded entire file to each client. This may result in very slow
storage, traditional erasure coding based storage, random download speed.
linear coding based storage motivated by network coding.  The concept of mirrors partially addresses this short-

We demonstrate that, in principle, a traditional erasure coming by distributing the load across multiple servers.
coding based storage (eg: Reed-Solomon Codes) strategy,ever, a great deal of coordination and effort are
can almost do as well as one can ask for with appropriate required to set up an efficient network of mirrors.

choice of parameters. However, the cost is a large amount Another method of transferring files utilizes a peer-
of additional storage space required at the centralized 9 P

server before distribution among multiple locations. The [O-P€er network. Systems such as Kazaa[9], Gnutella[3],
random linear coding based strategy performs as well €-Donkey, Direct Connect, etc. are examples of peer-
without suffering from any such disadvantage. Further, to-peer networks. In most of these networks, Internet
with a probability close to one, the minimum number of users trade files by directly connecting one-to-one. The
storage location a downloader needs to connect to (for advantage of this method is that files can be shared
reconstructing the entire file), can be very close to the wjthout having access to a server. Bit-torrent [12] is a
case where there is complete coordination between the,.,iqco| designed for transferring files in such manner.
storage locations and the downloader. We also argue that The users connect to each other directly to send and
an uncoded strategy performs poorly. . . . .
receive portions of the file. There is a central server
(called a tracker) which coordinates the action of all such
|. INTRODUCTION peers. The tracker manages connections, but does not
In this paper, we concern ourselves with a key questif@ve any knowledge of the contents of the files being
that may arise in designing efficient distributed fildistributed, and therefore a large number of users can be
systems. The question we ask is: how to store files §yPPorted with relatively limited tracker bandwidth. In
a large distributed system in an efficient manner? Th&-torrent, selecting the pieces to download in a good
problem has the constraint that, even though the tof4f€r is very important for good performance. Several
memory of all the nodes combined may be sufficierRdhoc strategies are described in [12]. In general, the
the memory available at any particular node is limitedd€@ is to ensure that, the different pieces should be more
Suitably designed file-distribution strategies can firfef €qually spread in the system as the system evolves.
application in content-distribution networks, peer-to-peer The model (which we describe later) we have in mind
networks, and also distributed libraries. is depicted in Figure 1. While the dynamic behavior of a
The most common method by which files are tran§YStem can vary depending on the application one has in
ferred on the Internet is the client-server model. A centrd)ind, our goal in this paper to study efficient strategies
server sends the entire file to each client that requestd9f, distributing a large file (or multiple large files) into
The clients only speak to the server, and not to ea¥frious storage locations. By efficient strategies, we
mean, strategies that have the following properties:
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of a generic model (see Figure I) that might have wider
Centralized Server licabilit
Storing Multiple applica .I iy. ) )
Large Files We primarily analyze and compare three strategies for
storing: anuncoded random storagéraditional erasure
coding based storageandrandom linear coding based

-
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_;;,W .................... NM\W:&: storage The random linear codingbased storage we
— ~ discuss in this paper is motivated by the utilityrahdom
,// @ O linear codesin the emerging area of network coding.
Network coding can be viewed as a vast generalization

\ Multiple Storage Locations (geographically separated). | routing where packets (which are nothing but a collection
f Each storing small fraction of some/all of the files | . .
of bits) are treated as algebraic elements, rather than

\ | e @ mere transportation or storage elements. Thus, packets,
\l} @ just like any other algebraic entity, can be operated upon.
..... It was shown in [11] that, linear network coding can
— tcN~—— I ,/W [ ] g

achieve the min-cut bound in networks with multicast
flows. There is a significant recent work on network
coding [8], especially on the algorithmic aspects of
construction of linear network codes [1], [10]. In [6],
- o . . [7], the authors proposed the novel idea maindom

of distinct storage location is quite large. The f'leﬁetwork coding A common theme running across most

distribution protocol of bit-torrent is n.cﬂtateless . of this work is to demonstrate thatliaear codingbased
« IndependenceWhat a storage location stores IS,

ind q ¢ wh oht b di h II{)proach can improve the capacity of various networks.
Independent of what might be stored in any Othef ,;q paper, we will argue thandom linear coding
location. The key point is, there is absolutely ng

S _ .. based schemes motivated by network coding can have
coordination between the storage locations, eit

her icability i ‘ e
direct or indirect (through the centralized server) der applicability in uncoordinated distributed storage.

This property clearly goes hand in hand with the
previous one. Il. MODEL, PERFORMANCEMEASURES AND

« Performance guaranteeWhile the above proper- STORAGE STRATEGIES
ties are highly desirable, if possible, the system. Model and performance measures

should provide strong performance guarantee to A\e consider a large file which is broken intopieces.

downlo_ader. Smcg we are considering randomiz uppose there are multiple nodes or distributed memory
strategies, probabilistic performance guarantees are : ;
: ._elements each of which can stdtref the m pieces (see
more appropriate for the system we are studylng. f he distributed |
In other words, with a probability close to one lgure 1). We refer to the distributed memory elements
' as peershenceforth.We assume that no peer has any
the downloader should complete the download after :
: . . Knowledge about what the other peers have stoféis
connecting to as few storage locations as possible. K L del imolicati f thi
While the exact performance measure of a syste'?na ey gssgmpnon N our modet. An implication of this
o O assumption is that, even if there is a central controller to
may depend on the specific application (peer-to- . . : . :
T . : ._distribute the pieces, the controller does not differentiate
peer, content distribution etc) in mind, we believ h dd d .
such a notion of performance should translate in?)etween the peers, and does not need to maintain a state
Gt the contents of all the peers. Thus the peers do not
the very good performance of the system. . , . : ,
_ o _ _ coordinate for storing pieces of the file. In fact, we will

The question we ask is: is it possible to attain all th¢emonstrate that a coding based storage makes redundant
above in a system? We demonstrate that, certain simpi®/ need for coordination between the peers for storing
and easy to implement coding strategies can indegifferent pieces. A downloader completes its download
satisfy all the properties with appropriate tradeoffs. Thence it gathers each of the elements or has enough
tradeoff is either in terms of complexity of decodingnformationto recover them pieces that constitute the
algorithms required at the downloader or additionantire file. The downloader can connect to a fixed number
storage space required at the centralized server. of peers at a time.

Independent of our work, the authors in [4] have also Before we describe the three strategies we describe
proposed and compared strategies very similar to odlhe performance measures we are interested in. Suppose,
and have reported detailed simulation experiments fitre downloader got opportunities to connectrtof the
content distribution network. We differ from them in carpeers after spending some time in the system (this can

rying out detailed mathematical analysis and simulatiobg over single or multiple connection instants depending

Fig. 1. Network with Distributed Storage Elements



on the value of- and the maximum number of peers thadditional storage space dfmlog,(q) bits. This is
downloader can connect to). The questions we ask #ypically a small number compared to each piece of
the following: the broken file. For example, bit-torrent breaks up a file
« For any given fractionz, what is the probability into pieces of size56 KB. Suppose we have a file of
that » peers can provide sufficient information fosize 25 MB and also let us supposg= 16 (typically
the downloader to complete at leastfraction of a smaller value may yield good results as we will see
the download? This is clearly a function of, k, later). The file can thus be broken up into around 100
andr. pieces, each of siz&h6 KB. Each randomly mixed piece
« What is the mean fraction of overall download thdf this scheme will require an overhead (to store the
can be availed fromr different peers for different (;'s) of mlog,(¢q) = 400 bits or 50 bytes/piece. Thus

values ofr? the additional storage space required in percentage is
We will also address a few other closely related00 x 50 bytes/256 KB ~ 0.02%. This is indeed a
performance measures in our results. negligible overhead, especially when we consider the

benefits discussed in the result section. For reconstruct-

B. Strategies for Distributed Networked Storage ing the entire file, it is sufficient that the dimension of
' the code-vectors with the downloaderris

We consider the following strategies for storing parts \we now proceed to analyze the different strategies.
of the file in the various locations: We skip many of the proofs for want of space. In the

o _ following, we use the notationf{m) ~ g(m)” to mean
Uncoded Random Storage:This is a simple schemey;y, () /g(m) = 1 where f and g are functions

where each peer storés different pieces out of the uf ;, the number of pieces the file is broken into.
m pieces at random. Thus there af§') ways of

storing data elements in a peer. If the peers choose their [1l. UNCODED RANDOM STORAGE
contents without the knowledge of what other peeps Exact Analysis of the Scheme
have, this strategy is a natural one if coding is not

We first show some simple calculation for ttn-
allowed.

coded Random Storagmechanism. Fix-, the number

. : _ of peers. LetS be a given set of pieces. We also denote
Traditional Erasure Coding Based Random Storage: tby M the set of all the pieces. We first note that,

In this scheme, then distinct blocks are encoded a
the source using appropriate erasure codes. whe 9(5;|S| =J)
original blocks are encoded to generate(l + ()
encoded blocks so that amyy out of the m(1 + ) ,
blocks are sufficient to decode the entire file. Here, r peers| |S| = j)

1/(1 + B3) is the code-rate and the relation betwegn = (Pr(a particular peer has pieces only fram \ 5))"
and § depends on the specific code. Now, each storage <(m])>7

2 Pr(no element of the sef features in the

location storesk out of them(1 + ) encoded blocks = k

at random. Two popular examples of erasure-codes are (k)

Reed-Solomon codes and Tornado codes. The entire Kigte that,g(S) = 0 for |S| > m — k since there are

can be decoded once a downloader has access to @njeastk distinct pieces with the peers. L&t be the

differentm~ number of chunks. random variable denoting the exact number of pieces
of the file missing in ther peers. Using an inclusion-

Random Linear Coding based Storageln this scheme, exclusion argument [3], it follows that

we view them pieces of the file as eIementsIﬁj, i.e.,

vectors of sizes in a field of sizeq. Thus, if we denote m

B

the chunks by, i = 1,2,...m, then each peer stores Pr(Y =4) =Y (-1)7Y (J> Z q(S)
k random linear combinations @f’'s. More specifically, =y Yy S:|S|=j
if the elements with a particular peer afg fo, ... fx, m—k

then a typical elemenf; can be represented as

— . m—j r
S0 () o
m ) = y) \J (")

fi= Zﬂj ¢j, Pr(f;=7)= q VB EF,. The preceding completely characterizes the distribution

J=1 of Y. Denoting byX the random variable the fraction of

Further each peer also stores the associated vedwerall file available from the peers, we can calculate
(61, P2,...,0m) for each of thek pieces. We also all relevant statistics abouX’ by noting thatPr(X >

call this the associatedode vector This will take an z) = Pr(Y < m(1 — z)).



B. Asymptotic Analysis and Approximate Performancelet Z denote the number of additional chunks a

Measures downloader needs for completing the download after
We first derive a key proposition which sheds mor@aving connected te peers. We can now readily give
light into the performance of the scheme. an expression for the distribution of of from (1)

Proposition 3.1: LetZ,,(r) be the number of addi- Substitutingm(1 + 5) for m and m(1 + 5 — ) + Z
tional pieces required to be downloaded after connectifg’ Y- In the following, we letf =1 + 5 — .
to r peers, and letX,,(r) be the number of available p,(

= Z) =
chunks after connecting to peers. We, then have, )

m(1+08)—k j—mO—z j m(1+3 (m(lzﬂ)ij "
E[Xon(r)] ~ ml1 = (1= )] SR () 5) Gty
Let 7(s) be the minimum- such thatE[Z,,(r)] = s. if 2> 0,
Then, we have m m(1+8)—k i fm masm=)\"
Syt S () () (Gt
kr(s) ~mIn(™) . —0 ’“

The proof of this is a special case of the proof of
Proposition 4.1. (2)

We now present approximation for the different perrhe preceding completely characterizes the distribution
formance measures based on the insight gained frefZ. Denoting byX the random variable the fraction of
Proposition 3.1. overall file available from the peers, we can calculate

Let »(x) and f(r) denote the following. all relevant statistics abouX using Pr(X > z) =
r(z) = Number of peers to be connected so that the *(Z < m7(1 —x)).

average fraction of download completedzis .
) B. Asymptotic Performance Measures
f(r) = The mean fraction of download completed after . :
In this section we analyze the performance of a

connecting tor peers traditional erasure coding based storage policy in more

Under the approximation that the mean number of misgétail. Our analysis will also shed light on the right
ing chunks is roughlym(1 — 1/m)", we obtain the choice of the coding rateé/(1 + 3).

fo”owing approximation forfr(x)' We Sta.rt. by presenting the fOIIOWing pI’OpOSition. .
. Proposition 4.1: LetZ,,(r) be the number of addi-
r(z) = min(;=;) tional pieces required to be downloaded after connecting
We also have the following approximation fgir). to r peers, and letX,,(r) be the number of available
Lk chunks after connecting to peers. We, then have,
flr)=1-(1-73)" .

E[X ()] ~ m(1 + B)[1 — (1 — ——)*"
Furthermore, the mean number of peers that need to be ()] o SREZiE m(1+5)> |
connected so that the entire download is completed da@t 7c be the minimum- such thatE[Z,,(r.)] = 0 (we

be easily seen to be at leastln(m)/k. hide the dependence of onm). Then, we have
~ 145
IV. TRADITIONAL ERASURE-CODING BASED kre ~ m(1+ ) ln(1+ﬁ—v)

Remark 1:Suppose we have = 1 as with Reed-

RANDOM STORAGE Solomon codes. Note that, with= 1, we have

A. Exact Analysis of the Scheme

The starting point of the analysis of this is quite
similar to the one for uncoded random storage except fand thus, by choosing large enough we can make
a few differences. However, we shall soon see that the./m arbitrarily close to one which is the best one
asymptotic behavior (whem is large) is very different can hope for. There are a couple of tradeoffs associated
which clearly brings out the advantages compared to wa#ith this. First of all, a very largey comes at the cost of
uncoded random storage (14 @) factor of additional storage space at the central-

Recall, that erasure coding on the blocks would ized server, where the file is stored before distributing
convert the chunks of the file into an encoded set @famong the different locations. Secondly, the decoding
m(1 + ) blocks so that anyn~y out of them(1 + 3) complexity for decoding the encoded blocks goes up by
blocks are sufficient to decode the entire file. a factor of (1 + ). O

In the following, fix » the number of peers a down- We can infact provide a stronger probabilistic guaran-
loader has connected to. LBtbe the number of chunkstee if the donloader connects to a few additional storage
that remain to be downloaded. locations. It is captured in the following proposition.

kre ~m(1+ % + 0(%)) ,



Proposition 4.2: Letk (number of chunks each loca-then,
tion stores) andr (number of locations a downloader
has connected to) be jointly scaled with so that

kr/m = a. Let Z, be the random variable denotingi, gher words, the download is complete almost cer-
the additional chunks required for the download to bf‘ainly.

Z(r) =0 with probability at least 1 — L .

completed. 148 ) Remark 2:Let r. be the minimum number of storage
Supposex > (1 + §)(1 + In({5=)). Then, locations a downloader needs to connect to. Note that,
lim Pr(Z, =0)=1. by choosing a field size large enougty;./m can be
m—oo made arbitrarily close to one, which is the minimum

In other words, the entire file can be decoded withne can hope for. In that sense, a largbas the same
probability approaching one as» — oo if a is in the effect as the large3 with traditional erasure coding.

given range. However, in this case we do not need any additional
storage at the centralized location, where the file is
V. RANDOM LINEAR CODING BASED STORAGE stored before distribution. Further, in this case, we have

We next analyze theandom linear codingbased a strong guarantee, i.eky./m is close to one with a
storage scheme. In this scheme, withpeers, there Very high probability. The tradeoff for a large field size
are a total ofkr m-dimensional code-vectors availablds the minimally additional overhead with each chunk,
for the downloader. Recall that each of the code-vectdfd the complexity of the inversion of a matrix over
represents a random mixture of the pieces. We can viénarger field size at the downloader. However, for all
the collection of these vectors as fa x m matrix Practical purposes the complexity is no more than than
over F,. The complete file can be recovered once tfiBe inversion of a real matrix.
dimension of this matrix isn. As the downloader gathers
information from more and more peers, it gathers more VI. SIMULATION RESULTS

and more independent code-vectors. . . .
We next show some simulations results to illustrate

_ the performance of various strategies. The purpose of
A. Exact Analysis the simulation is to provide a more detailed evaluation of
Let D be the random variable denoting the dimensiahe various strategies, and to demonstrate that the mean
of the subspace spanned by all thecode-vectors with and lower bound based analysis are truly reflective of the
ther peers. Then, it can be shown that (see any standatformances of the various schemes. Simulation results
reference on random matrix over finite fields), for traditional erasure codes are with=1, i.e., anym
Hd_l( kr _ gi) Hd_l( m_ gi) out of m(1+ ) encoded blocks are sufficient to decode
Pr(D = d) = 11i=0ld %_1 i=012_"9)  (3) the entire file. Reed-Solomon code is one such code.
gk I [i20 (0 — ¢) The results are representative of simulations done with

The preceding expression, though complicated, can ®@ewide range of parameters. In the results we show,
used to numerically derive all the performance measur#¢ use the following parameters. We consider a single
To gain more insight into the performance, we next shoile broken into 50 chunks and each individual storage
some very simple performance lower bounds. location can store 5 chunks, so that= 50 andk = 5.
This can be viewed as, say for example, dngB file
broken into chunks of siz€0 MB and each storage
location has a space worfld0 MB for each such file.

We show two kinds of plots in our results.

In our first set of plots in Figure 2, we show the prob-
ability that a given fraction of download is completed

B. Performance Lower Bound

We use the notationX >, Y” to imply Pr(X >
a) > Pr(Y > a) for all reala. We have the following.
Proposition 5.1: We have,

D =g min(m, Binomialkr,1 — 1)) . after a downloader has connectedsto= 10 different
The proof is straightforward and follows immediatelytorage locations. As we have 50 chunks and space of
from Lemma 2.1 in [2]. 5 chunks/location, the downloader needs to connect to
The following corollary is immediate using standaré& minimum of 10 locations in any event. We show the
applications of Chernoff bounds. plots for uncoded random storage, erasure coding based
Corollary 5.1: Let Z(r) = m — D be the residual strategy with3 = 4 andg = 8, and random linear coding
degrees of freedom after connectingrtpeers. If, based strategy with field sizes= 3 andgq = 7. Note

storage, more than 90% of the download is complete
almost certainly even for a moderate field size;6f 3,

kr < 1 <1+2 In(m)

from the plots that, with aandom linear codingoased
m = 1-1/q m ) ’



50 chunksf/file, 10 machines, 5 chunks/machine 50 chunksffile, 5 chunk/machine
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Fig. 2. Plots showing probability that a given fractiorof the file Fig. 3. Plots showing probability that the complete file is down-
is available for downloaded for different values .of The plots are loaded for different values of the number of peers contacted
shown forr = 10

L 0 _ , best one can ask for. Any traditional erasure coding
and it is close to 95% for a field size @f = 7. The 5504 scheme can also perform almost as well, but

erasure codingbased strategy also completes close {aqires a huge amount of additional storage space at
90% of the download fof = 8. However, a field size of ¢ centralized file server. In this sense, a random linear

g = 3 requires an additional storage space aroLind' % coding based strategy can be callesure coding on
at the storage locations for an original file size of 1 GBy,, fly;

whereas, an erasure coding based strategy With 8

requires an additional eight times, i.e., 9 GB storage
space at the centralized file server. Also, note from the
plots that an uncoded random Storage performs Ve|{9] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung. Network

0 information flow. IEEE Transactions on Information Theory
poorly and only completes around 55% of the download 46:1024-1016, 2000.
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