Wydział Matematyki, Informatyki i Mechaniki Uniwersytetu Warszawskiego
Publikacje
Piotr Rybka
2017
- Adam Kubica, Piotr Rybka i K. Ryszewska, Weak solutions of fractional differential equations in non cylindrical domains, Nonlinear Analysis-real World Applications 36 2017, s. 154–182.zobacz w PBN
- Atsushi Nakayasu i Piotr Rybka, Energy Solutions to One-Dimensional Singular Parabolic Problems with \$\$\ BV\$\$ Data are Viscosity Solutions, w: Mathematics for Nonlinear Phenomena --- Analysis and Computation: In Honor of Yoshikazu Giga's 60th Birthday, Sapporo, Japan, August 2015, 2017, s. 195–213.zobacz w PBN
- Wojciech Górny, Piotr Rybka i Ahmad Sabra, Special cases of the planar least gradient problem, Nonlinear Analysis-theory Methods & Applications 151 2017, s. 66–95.zobacz w PBN
2016
- M. D. Korzec, Piotr Amit Nayar i Piotr Rybka, Global attractors of sixth order PDEs describing the faceting of growing surfaces, Journal Of Dynamics And Differential Equations 28 (1) 2016, s. 49–67.zobacz w PBN
- Milena Matusik i Piotr Rybka, Oscillating facets, Portugaliae Mathematica 73 (1) 2016, s. 1–40.zobacz w PBN
- Adam Kubica i Piotr Rybka, Fine singularity analysis of solutions to the Laplace equation: Berg's effect, Mathematical Methods In The Applied Sciences 39 (5) 2016, s. 1069–1075.zobacz w PBN
2015
- Adam Kubica i Piotr Rybka, Fine singularity analysis of solutions to the Laplace equation, Mathematical Methods In The Applied Sciences 38 (9) 2015, s. 1734–1745.zobacz w PBN
- Yoshikazu Giga, Przemysław Górka i Piotr Rybka, Bent rectangles as viscosity solutions over a circle, Nonlinear Analysis-theory Methods & Applications 125 2015, s. 518–549.zobacz w PBN
- Piotr Mucha, Monika Muszkieta i Piotr Rybka, Two cases of squares evolving by anisotropic diffusion, Advances In Differential Equations 20 2015, s. 773–800.zobacz w PBN
- Luigi Ambrosio, Yoshikazu Giga, Piotr Rybka i Yoshihiro Tonegawa (red.), Variational Methods for Evolving Objects, World Scientific, 2015.zobacz w PBN
- Piotr Mucha i Piotr Rybka, Models of sudden directional diffusion, w: Variational Methods for Evolving Objects, World Scientific, 2015, s. 225–244.zobacz w PBN
- Adam Kubica i Piotr Rybka, Fine singularity analysis of solutions to the Laplace equation., Mathematical Methods In The Applied Sciences 2015.zobacz w PBN
2013
- Piotr Rybka, Przemysław Górka i Yoshikazu Giga, Evolution of regular bent rectangles by the driven crystalline curvature flow in the plane with a non-uniform forcing term, Advances In Differential Equations 18 (3-4) 2013, s. 201–242.zobacz w PBN
- Karolina Kielak, Piotr Mucha i Piotr Rybka, Almost classical solutions to the total variation flow, Journal Of Evolution Equations 13 2013, s. 21–49.zobacz w PBN
- Piotr Bogusław Mucha i Piotr Rybka, Well posedness of sudden directional diffusion equations, Mathematical Methods In The Applied Sciences 36 (17) 2013, s. 2359–2370.zobacz w PBN
- Piotr Mucha i Piotr Rybka, Well-posedness of sudden directional diffusion equations, Mathematical Methods In The Applied Sciences 36 2013, s. 2359–2370.zobacz w PBN
2012
- Piotr Mucha i Piotr Rybka, A Note on a Model System with Sudden Directional Diffusion, Journal Of Statistical Physics 146 2012, s. 975–988.zobacz w PBN
- Piotr Rybka i M. Korzec, On a higher order convective Cahn-Hilliard-type equation, Siam Journal On Applied Mathematics 72 (4) 2012, s. 1343–1360.zobacz w PBN
- Maciej D. Korzec, Piotr Amit Nayar i Piotr Rybka, Global Weak Solutions to a Sixth Order Cahn-Hilliard Type Equation, Siam Journal On Mathematical Analysis 44 (5) 2012, s. 3369–3387.zobacz w PBN
2010
- Piotr Rybka i Przemysław Górka, Existence and uniqueness of solutions to singular ODE's, Archiv Der Mathematik 94 2010, s. 227–233.zobacz w PBN
- Piotr Rybka, Yoshikazu Giga i Przemysław Górka, Nonlocal spatially inhomogeneous Hamilton-Jacobi equation with unusual free boundary, Discrete And Continuous Dynamical Systems 26 (2) 2010, s. 493–519.zobacz w PBN
- Piotr Rybka i Danielle Hilhorst, Stabilization of Solutions to a FitzHugh-Nagumo Type System, Journal Of Statistical Physics 138 2010, s. 291–304.zobacz w PBN
- Piotr Rybka i W. Merz, Strong solutions to the Richards equation in the unsaturated zone, Journal Of Mathematical Analysis And Applications 371 (2) 2010, s. 741–749.zobacz w PBN
2009
- Piotr Mucha, Marek Niezgódka i Piotr Rybka (red.), Nonlocal and Abstract Parabolic Equations and their Applications, Institute of Mathematics, Polish Academy of Science, Warszawa 2009.zobacz w PBN
- Piotr Rybka i Yoshikazu Giga, Facet bending driven by the planar crystalline curvature with a generic nonuniform forcing term, Journal Of Differential Equations 246 (6) 2009, s. 2264–2303.zobacz w PBN
- Piotr Rybka i Piotr Mucha, Almost classical solutions of static Stefan type problems involving crystalline curvature, w: Nonlocal and Abstract Parabolic Equations and their Applications, Institute of Mathematics, Polish Academy of Science, Warszawa 2009, s. 223–234.zobacz w PBN
2008
- Piotr Mucha i Piotr Rybka, A caricature of a singular flow in the plane, Nonlinearity 21 (10) 2008, s. 2281–2316.zobacz w PBN
- Piotr Rybka i Yoshikazu Giga, Facet bending in the driven crystalline curvature flow in the plane, Journal Of Geometric Analysis 18 (1) 2008, s. 109–147.zobacz w PBN
- Etsuro Yokoyama, Yoshikazu Giga i Piotr Rybka, A microscopic time scale approximation to the behavior of the local slope on the faceted surface under a nonuniformity in supersayuration, Physica D-nonlinear Phenomena 237 2008, s. 2845–2855.zobacz w PBN
- Piotr Rybka i Yoshikazu Giga, Faceted crystals grow from solutions - a Stefan type problem with a singular interfacial energy, w: Proceedings of the 4th JSAM-SIAMI seminar on Industrial and Applied Mathematics, Gakkotosho, Tokio 2008.zobacz w PBN