What would the rational Urysohn space and the random graph look like if they were uncountable?

Ziemowit Kostana

University of Warsaw, Poland and Czech Academy of Sciences, Czech Republic

14.04.2021

Generally, \mathcal{K} will be a class of structures in some countable, relational, first-order language. We make the following assumptions on \mathcal{K} .

- \mathcal{K} has the JEP (Joint Embedding Property),
- \mathcal{K} the SP (Splitting Property Property),
- \mathcal{K} is hereditary, so if $A \in \mathcal{K}$, and $B \subseteq A$, then $B \in \mathcal{K}$,
- \mathcal{K} has infinitely many isomorphism types.
- \mathcal{K} is closed under unions of increasing chains

(For a given countable $K \subseteq [0, \infty)$, the class of finite metric spaces with distances in *K* has the SP, but usually not the AP.)

A (10) A (10) A (10) A

Let λ be an infinite cardinal number, and *S* be any infinite set. Denote by Fn(*S*, \mathcal{K} , λ) the set

$$\{A \in \mathcal{K} | A \in [S]^{<\lambda}\},\$$

ordered by the (reversed) inclusion.

What are properties of $Fn(S, \mathcal{K}, \lambda)$?

直 ト イ ヨ ト イ ヨ ト

Observation: If $|S| = \omega$, then

 $\operatorname{Fn}(S,\mathcal{K},\omega)$

is just the Cohen forcing.

Proposition

Forcing $\operatorname{Fn}(S, \mathcal{K}, \omega)$ satisfies c.c.c. for any set S.

「ア・・ヨ・・ヨ・

Fn(ω, F, ω) ⊨"ω with the generic structure is the Fraïssé limit of F".

イロト イポト イヨト イヨト

Fn(ω, F, ω) ⊨"ω with the generic structure is the Fraïssé limit of F".

Theorem

 $\operatorname{Fn}(\omega_1, \mathcal{F}, \omega) \Vdash "\omega_1$ with the generic structure is rigid", if \mathcal{F} is the class of graphs, linear orders, partial orders, tournaments, rational metric spaces.

イロト イポト イヨト イヨト

Fn(ω, F, ω) ⊨"ω with the generic structure is the Fraïssé limit of F".

Theorem

 $\operatorname{Fn}(\omega_1, \mathcal{F}, \omega) \Vdash "\omega_1$ with the generic structure is rigid", if \mathcal{F} is the class of graphs, linear orders, partial orders, tournaments, rational metric spaces.

Theorem

(CH) Assume \mathcal{LO} is the class of linear orders. $\operatorname{Fn}(\omega_2, \mathcal{LO}, \omega_1) \Vdash$ " ω_2 with the generic structure is ccc-absolutely rigid".

イロト イポト イヨト イヨト

Definition (Avraham-Shelah, 1981)

An uncountable set $A \subseteq \mathbb{R}$ is *increasing*, if the following assertion holds for every $k \in \omega$: For each sequence of pairwise disjoint *k*-tuples $\{(\alpha_1^{\xi}, \dots, \alpha_k^{\xi})\}_{\xi < \omega_1}$ of elements of *A*, and for every tuple of there are $\xi \neq \eta < \omega_1$, such that for $i, j = 1, \dots, k$ $\alpha_i^{\xi} < \alpha_i^{\eta} \iff \alpha_i^{\xi} < \alpha_i^{\eta}$

Definition (Avraham-Shelah, 1981)

An uncountable set $A \subseteq \mathbb{R}$ is *increasing*, if the following assertion holds for every $k \in \omega$:

For each sequence of pairwise disjoint *k*-tuples $\{(\alpha_1^{\xi}, \ldots, \alpha_k^{\xi})\}_{\xi < \omega_1}$ of elements of *A*, and for every tuple of there are $\xi \neq \eta < \omega_1$, such that for $i, j = 1, \ldots, k$

$$\alpha_i^{\xi} < \alpha_i^{\eta} \iff \alpha_j^{\xi} < \alpha_j^{\eta}$$

Proposition

If $A = (A, \leq)$ is increasing, then (A, \leq) is not isomorphic to $A^* = (A, \geq)$.

・ コ ト ・ 一 早 ト ・ 日 ト

Theorem (Avraham-Shelah, 1981)

Existence of an increasing set is consistent with $MA + \neg CH$ *.*

P × E × E

We start with a model of *CH* and fix an increasing set *A* of size ω_1 . We will say that a forcing \mathbb{P} is *appropriate* if for each sequence of pairwise disjoint *k*-tuples

$$\{(p_{\xi}, \alpha_1^{\xi}, \dots, \alpha_k^{\xi})\}_{\xi < \omega_1} \subseteq \mathbb{P} \times A^k$$

there are $\xi \neq \eta < \omega_1$, such that

• for i, j = 1, ..., k

$$\alpha_i^{\xi} < \alpha_i^{\eta} \iff \alpha_j^{\xi} < \alpha_j^{\eta},$$

• p_{ξ} and p_{η} are comparable.

• • • • • • •

Next we prove that

- Finitely supported iterations of appropriate forcings are appropriate.
- Appropriate forcings preserve the increasingness of *A*.

🗇 🕨 🖉 🕨 🖉 🖗

Next we prove that

- Finitely supported iterations of appropriate forcings are appropriate.
- Appropriate forcings preserve the increasingness of A.

By building a suitable iteration we got the model of

 $ZFC + MA(appropriate) + 2^{\omega} = \omega_2.$

But it turns out that $MA(appropriate) \implies MA$.

伺下 イヨト イヨト

Still, there is something missing...

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

æ

We didn't prove that increasing sets exist in the first place... but fortunately

 $\operatorname{Fn}(\omega_1, \mathcal{LO}, \omega) \Vdash "(\omega_1, \leq)$ is increasing."

(actually, *CH* implies that increasing sets exist, but it is more complicated).

伺 ト く ヨ ト く ヨ ト

The immediate consequence is

Theorem (Avraham-Shelah, 1981)

It is consistent with ZFC that there exists an uncountable set of reals A with the property that each uncountable partial function $f \subseteq A \times A$ is non-decreasing on some uncountable set.

Proof.

We work in a model of $ZFC + MA_{\omega_1} + "A$ is increasing". Given a function f we can assume that f is 1-1. We apply MA to the set

 ${E \in [\operatorname{dom} f]^{<\omega} | f \upharpoonright E \text{ is increasing}}.$

伺 ト く ヨ ト く ヨ ト

Can we do the same thing for other structures added by $Fn(\omega_1, \mathcal{K}, \omega)$?

白マイヨマト・ヨマ

Let (X, d) be a metric space.

We call (X, d) *rectangular* if it is uncountable, and for any sequence of pairwise disjoint tuples {(x₁^ξ,...,x_n^ξ)|ξ < ω₁} ⊆ Xⁿ, there are ξ ≠ η < ω₁, such that (x₁^ξ,...,x_n^ξ) ⊛ (x₁^η,...,x_n^η).

Let (X, d) be a metric space.

- We call (X, d) *rectangular* if it is uncountable, and for any sequence of pairwise disjoint tuples {(x₁^ξ,...,x_n^ξ)|ξ < ω₁} ⊆ Xⁿ, there are ξ ≠ η < ω₁, such that (x₁^ξ,...,x_n^ξ) ⊛ (x₁^η,...,x_n^η).
- We call a pair of tuples $\overline{x} = (x_1, \dots, x_n), \overline{y} = (y_1, \dots, y_n) \in X^n$ alike if they satisfy the following axioms:

A1
$$\forall i, j = 1, \dots, n (d(x_i, y_i) = d(x_j, y_j))$$

A2 $\forall i, j = 1, \dots, n (d(x_i, x_j) = d(y_i, y_j))$
A3 $\forall i, j = 1, \dots, n (x_i \neq x_j \implies d(x_i, x_j) = d(x_i, y_j))$
We then write $\overline{x} \circledast \overline{y}$.

Denote by *Metr* the class of rational metric spaces. $Fn(\omega_1, Metr, \omega)$ is the partial order

 $\{(Y,d)| Y \in [\omega_1]^{<\omega}, \text{ and } (Y,d) \text{ is a rational metric space}\},\$

with the ordering relation being the reversed inclusion preserving the metric.

伺い イヨト イヨト

Proposition

$\operatorname{Fn}(\omega_1, \operatorname{Metr}, \omega) \Vdash "(\omega_1, \dot{d})$ is rectangular".

伺き くほき くほう

Proposition

 $\operatorname{Fn}(\omega_1, \operatorname{Metr}, \omega) \Vdash "(\omega_1, \dot{d})$ is rectangular".

Let (\mathcal{M}, d) be the generic space we added.

Definition

A partial order \mathbb{P} is *appropriate* if given any natural number n > 0, for each disjoint family $\{(p_{\xi}, x_1^{\xi}, \dots, x_n^{\xi}) | \xi < \omega_1\} \subseteq \mathbb{P} \times (\mathcal{M}, d)^n$, there exist $\xi \neq \eta < \omega_1$, such that p_{ξ} and p_{η} are comparable, and $(x_1^{\xi}, \dots, x_n^{\xi}) \circledast (x_1^{\eta}, \dots, x_n^{\eta})$.

伺 ト く ヨ ト く ヨ ト

- If \mathbb{P} is appropriate then $\mathbb{P} \Vdash "(\mathcal{M}, d)$ is rectangular".
- Finitely supported iterations of appropriate forcings are appropriate.

It follows, that it is consistent with $ZFC + MA + "2^{\omega} = \omega_2$ " that (\mathcal{M}, d) is rectangular.

Theorem

Let (X, d) be a rectangular rational metric space of size ω_1 . MA_{ω_1} implies that any uncountable 1-1 function $f \subseteq X \times X$ is an isometry on an uncountable set.

(日)

-

Let (X, d) be a rectangular rational metric space of size ω_1 . MA_{ω_1} implies that any uncountable 1-1 function $f \subseteq X \times X$ is an isometry on an uncountable set.

Proof.

We use apply Martin's Axiom to the partial order

$$\mathbb{P}_f = (\{E \in [\operatorname{dom} f]^{<\omega} | f \upharpoonright E \text{ is an isometry}\}, \subseteq).$$

/□ ▶ ▲ 国 ▶ ▲ 国

Let (E, d_E) be any metric space with distances in some countable set $K \subseteq [0, \infty)$. A subset $D \subseteq E$ is a *saturated subset* of E if for any finite subset $E_0 \subseteq E$, for any single-point extension $F = (E_0 \cup \{f\}, d_F)$, with distances in K, there exists $d \in D$ such that for all $e \in E_0$, we have $d_E(e, d) = d_F(e, f)$.

コット ヘリット ヘリッ

Let (X, d) be any metric space, with distances in a given countable set.

- (X, d) is *separably saturated* if it has a countable saturated subset.
- ② (*X*, *d*) is *hereditarily separably saturated* (HSS) if for any countable subset *A* ⊆ *X*, the space $X \setminus A$ is separably saturated.

How many such spaces do exist?

伺 ト イ ヨ ト イ ヨ

Assume MA_{ω_1} . Let (X, d) be any rectangular HSS metric space of size ω_1 , with distances in K. Let $Y \subseteq X$ be any HSS uncountable subspace. Then X and Y are isometric.

Corollary

Assume MA_{ω_1} . Let (X, d) be any rectangular HSS metric space of size ω_1 , with distances in K. X can be decomposed into a disjoint union of λ many its isometric copies for any $\lambda \in \{2, \ldots, \omega_1\}$.

Proposition

Assume MA_{ω_1} . If (X, d) is any rectangular HSS metric space of size ω_1 , with distances in K, then any finite partial isometry of (X, d) extends to a full isometry.

Theorem

Assume MA_{ω_1} . If there exists a rectangular HSS rational metric space of size ω_1 , then there exist infinitely many pairwise non-isometric such spaces.

Proof.

If (X, d) is a rectangular HSS rational metric space of size ω_1 , we can scale the metric:

$$d_k(x, y) = k \cdot d(x, y).$$

Observation: We didn't used the fact that $d : (\mathcal{M}, d) \times (\mathcal{M}, d) \rightarrow \mathbb{Q}$ is a metric! Merely a coloring of pairs. This motivates the following generalization: We fix a class \mathcal{K} is models in some language consisting of binary

relations. For any $A \in \mathcal{K}$ let

 $c:A\times A\to \omega$

assign each pair its isomorphism type.

/∄ ▶ ◀ ⋽ ▶ ◀ ⋽

Let $X \in \mathcal{K}$, and $(x_1, \ldots, x_n), (y_1, \ldots, y_n) \in X^n$ be disjoint. We will say that they are *alike*, and write $(x_1, \ldots, x_n) \circledast (y_1, \ldots, y_n)$, if the following axioms are satisfied

A1a
$$\forall i, j = 1, \dots, n c(x_i, y_i) = c(x_j, y_j)$$

A1b $\forall i, j = 1, \dots, n c(y_i, x_i) = c(y_j, x_j)$
A2a $\forall i, j = 1, \dots, n c(x_i, x_j) = c(y_i, y_j)$
A3a $\forall i, j = 1, \dots, n (x_i \neq x_j \implies c(x_i, x_j) = c(x_i, y_j) = c(y_i, x_j))$

• • **=** • • **=**

 $X \in \mathcal{K}$ is *rectangular* if $|X| > \omega$, and for any family of pairwise disjoint tuples $\{(x_1^{\xi}, \dots, x_n^{\xi}) | \xi < \omega_1\} \subseteq X^n$, there exist $\xi \neq \eta < \omega_1$, such that $(x_1^{\xi}, \dots, x_n^{\xi}) \circledast (x_1^{\eta}, \dots, x_n^{\eta})$.

In most cases $\operatorname{Fn}(\omega_1, \mathcal{K}, \omega)$ forces the generic structure to be rectangular. We fix a rectangular model (\mathcal{X}, c) .

御 と く ヨ と く ヨ と

It is consistent with $ZFC + MA + "2^{\omega} = \omega_2"$ that (\mathcal{X}, c) is rectangular.

Proposition

Let $(X, c) \in \mathcal{K}$ be rectangular. MA_{ω_1} implies that any uncountable 1-1 function $f \subseteq X \times X$ is a homomorphism on an uncountable set.

・ 何 ト ・ ヨ ト ・ ヨ ト

If we take $K = \{0, 1, 2\}$, metric spaces with distances in *K* are graphs – think of two points in distance 1 as connected, and two points in distance 2 as not connected.

> < 国 > < 国</p>

Let *G* be a graph. A subset $D \subseteq G$ is a *saturated subset* of *G* if for any pair of disjoint finite subsets $A, B \subseteq G$, there exists $d \in D \setminus (A \cup B)$ which is connected with each vertex in *A* and with no vertex in *B*.

Definition

If G is any graph, then

- *G* is *separably saturated* if it has a countable saturated subset.
- G is *hereditarily separably saturated* (HSS) if for any countable subset E ⊆ G, the graph G \ E is separably saturated.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proposition

$\operatorname{Fn}(\omega_1, \operatorname{Graphs}, \omega) \Vdash "(\omega_1, \dot{E})$ is a rectangular HSS graph".

🗇 🕨 🖉 🖻 🕨 🖉 🖻

Assume MA_{ω_1} . If G is a HSS rectangular graph of size ω_1 , then each uncountable HSS subgraph of G is isomorphic with G.

Theorem

Assume MA_{ω_1} . If there exists a HSS rectangular graph of size ω_1 then it is unique up to taking the complement.

Theorem

Assume MA_{ω_1} . If G is a rectangular HSS graph of size ω_1 , then either G contains an uncountable clique or uncountable anticlique.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

If *A* is a separable, dense linear order, then *A* is increasing iff it is rectangular.

通とくほとくほど

If A is a separable, dense linear order, then A is increasing iff it is rectangular. Using this technology we can prove:

Theorem (Avraham-Shelah, 1981)

Existence of an increasing set is consistent with $MA + \neg CH$ *.*

Theorem

Assume MA_{ω_1} . If there exists an increasing ω_1 -dense linear order, then it is unique up to reversing the order. (So there are exactly two such orderings.)

伺 ト イ ヨ ト イ ヨ

More details can be found in my preprint Z. Kostana, *What would the rational Urysohn space and the random graph look like if they were uncountable?*, https://arxiv.org/abs/2102.05590

- **3** • - **3**