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Such a name?

Banach spaces with the Radon-Nikodym property
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Stegall: X* has RNP if and only if X is Asplund.
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Definition (Namioka). K is Radon-Nikodym compact
if K — (X", weak*) for some Asplund space X.

Definition (Glasner & Megrilishvili). K is weakly
Radon-Nikodym compact if K — (X*, weak®) where X
does not contain #;.

There is also WRNP of Banach spaces: X* has WRNP ift

X does not contain ¢; (Janicka, Musiat).




WRN Boolean algebras

Definition’. A is WRN if its Stone space ult(A) is
weakly Radon-Nikodym compact.

Definition. A € WRN if A = (G), where G = |, G,

and no G,, contains an infinite independent sequence.
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Theorem. A € WRN iff A =[] F, and no F,, contains

an infinite independent sequence.

Corollary.

(1) The class WRN is hereditary.
(2) No algebra from WRN contains an uncountable inde-
pendent family.

Remark. It follows that 0-dim. image of WRN compact
is again in WRIN.

The class of Radon-Nikodym compacta is not closed under
continuous images (Avilés & Koszmider) and nor is the class
of weakly Radon-Nikodym compacta (Martinez-Cervantes).




Minimally generated Boolean algebras

Definition (Koppelberg). A C B is a minimal exten-
sion if B is generated by A and some z having the property
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A is minimally generated if A = J,_, A¢ and every A¢iq
is a minimal extension of Ay.
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The classes of min. generated algebras and WRIN algebras
share some properties:

e They contain interval algebras;

e contain no uncountable independent families.
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Example. A = ({(0,¢):t € (0,1)}), S = ult(A).
Then A is an interval algebra (so it is minimally generated)

but A@-A=wl#5>5) is not minimally generated (Kop-
pelberg). Clearly A ® A € WRN.

Theorem. There is a minimally generated algebra outside
WRN.




Convering sequences

Remark. If A contains no uncountable independent family
and ult(A) has no converging sequences then ult(.A) is an
Efimov space.

Theorem (Dow & Pichardo-Mendoza). Under CH
there is a minimally generated A such that ult(A) contains

no converging sequences (so is an Efimov space).)




Towards positive answer to Haydon’s problem
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Theorem. Suppose that A = (G), where G = lJ, G, and
G,, contains no n+ 1 independent elements (A € UWRN).
Then ult(A) is sequentially compact.

Example (Haydon). Take a family G C P(w) which is
maximal with respect to the property: (VA, B € G)
if A+ B then oneof ANB, A\ B, B\ A is finite.

Write A = (G); then wlt(.A) is not sequentially compact.
[n particular, A e WRN)\ UWRN.
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and Eberlein

Definition. A € WRN iff A = (G), where G = |, G,

and no G,, contains an infinite independent sequence.

Theorem. A € Eberlein iff A = (G), where G = |, G,

and no G,, contains an infinite centered sequence.
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Definition

e For a class € of Boolean algebras, say tha@ if

BCA Bec&— Biscountable

e For a class € of compacta, say that K € €= if every
continuous image L € € of K is metrizable.
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Facjt) Eberlein® = ccc.

Remark. A € ccc iff every uncountable subfamily of A
contains an infinite centered sequence.
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Theorem. A € WRN iff every uncountable subfamily
of A contains an infinite @1 sequence.
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The class WRN*

Boolean examples.

Every subalgebra of a free algebras is in WRN™.

If MA(w1) does not hold then there is a nonmetrizable 0-dim.
Corson compact space K such that Clop(K) € WRN™.

Compact examples.
Every dyadic space is in WRN™.
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Theorem. There is a compact 0-dim. space K such that
Clop(K) € WRN™ but K ¢ WRN™.




