Grzegorz Plebanek (UWr) Weakly Radon-Nikodym Boolean algebras

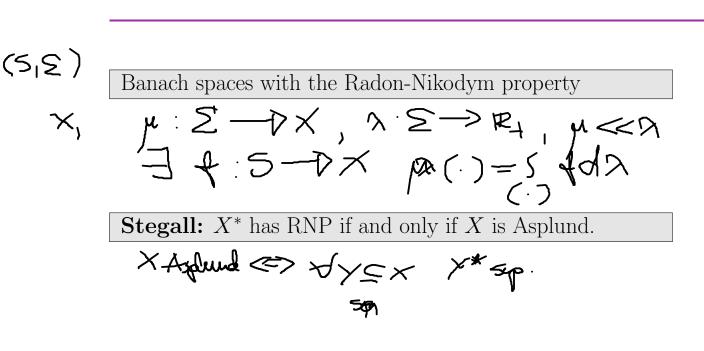
Joint work with

Antonio Avilés Gonzalo Martínez-Cervantes

Based on

- (i) Weakly Radon-Nikodym Boolean algebras and independent sequences, Fund. Math. 241 (2018).
- (ii) Abundance of independent sequences in compact spaces and Boolean algebras, in preparation.

Such a name?



Definition (Namioka). K is Radon-Nikodym compact if $K \hookrightarrow (X^*, weak^*)$ for some Asplund space X.

Definition (Glasner & Megrilishvili). K is weakly Radon-Nikodym compact if $K \hookrightarrow (X^*, weak^*)$ where Xdoes not contain ℓ_1 .

There is also WRNP of Banach spaces: X^* has WRNP iff X does not contain ℓ_1 (Janicka, Musiał).

WRN Boolean algebras

Definition'. \mathcal{A} is **WRN** if its Stone space $ult(\mathcal{A})$ is weakly Radon-Nikodym compact.

Definition. $\mathcal{A} \in \mathbf{WRN}$ if $\mathcal{A} = \langle \mathcal{G} \rangle$, where $\mathcal{G} = \bigcup_n \mathcal{G}_n$ and no \mathcal{G}_n contains an infinite independent sequence.

$$a_1, \dots, a_m \in \mathcal{A}$$
 is independent if
 $a_1^{\varepsilon_1} \cap \dots \cap a_m^{\varepsilon_m} \neq \mathcal{D}$ for $\varepsilon_i \in [20, 7]$

Theorem. $\mathcal{A} \in \mathbf{WRN}$ iff $\mathcal{A} = \bigcup_n \mathcal{F}_n$ and no \mathcal{F}_n contains an infinite independent sequence.

Corollary.

- (1) The class \mathbf{WRN} is hereditary.
- (2) No algebra from **WRN** contains an uncountable independent family.

Remark. It follows that 0-dim. image of **WRN** compact is again in **WRN**.

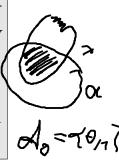
The class of Radon-Nikodym compacta is not closed under continuous images (Avilés & Koszmider) and nor is the class of weakly Radon-Nikodym compacta (Martínez-Cervantes).

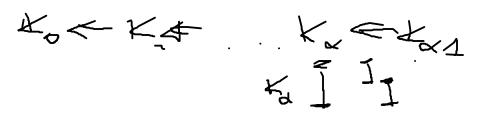
Minimally generated Boolean algebras

Definition (Koppelberg). $\mathcal{A} \subseteq \mathcal{B}$ is a minimal extension if \mathcal{B} is generated by \mathcal{A} and some x having the property

 $(\forall a \in \mathcal{A})a \cap x \in \mathcal{A} \text{ or } a^c \cap x \in \mathcal{A}.$

 \mathcal{A} is minimally generated if $\mathcal{A} = \bigcup_{\xi < \kappa} \mathcal{A}_{\xi}$ and every $\mathcal{A}_{\xi+1}$ is a minimal extension of \mathcal{A}_{ξ} .





The classes of min. generated algebras and **WRN** algebras share some properties:

- They contain interval algebras;
- contain no uncountable independent families.

$$\begin{aligned} \text{interval agains} &\equiv \text{an algebra generated} \\ &\text{las a dran.} & \text{Supposed} \\ &\mathcal{A} \otimes \mathcal{A} = dop(S \times S) \\ &\text{Example. } \mathcal{A} = \langle \{(0,t): t \in (0,1)\} \rangle, S = ult(\mathcal{A}). \end{aligned}$$

Then \mathcal{A} is an interval algebra (so it is minimally generated) but $\mathcal{A} \otimes \mathcal{A} = ult(S \times S)$ is not minimally generated (Koppelberg). Clearly $\mathcal{A} \otimes \mathcal{A} \in \mathbf{WRN}$.

Theorem. There is a minimally generated algebra outside **WRN**.

Problem (Haydon). Assume $\mathcal{A} \in \mathbf{WRN}$; does $ult(\mathcal{A})$ contain a converging sequence?

Remark. If \mathcal{A} contains no uncountable independent family and $ult(\mathcal{A})$ has no converging sequences then $ult(\mathcal{A})$ is an Efimov space.

Theorem (Dow & Pichardo-Mendoza). Under CH there is a minimally generated \mathcal{A} such that $ult(\mathcal{A})$ contains no converging sequences (so is an Efimov space).)

Towards positive answer to Haydon's problem

Theorem. Suppose that $\mathcal{A} = \langle \mathcal{G} \rangle$, where $\mathcal{G} = \bigcup_{p} \mathcal{G}_{n}$ and \mathcal{G}_{n} contains no n+1 independent elements ($\mathcal{A} \in \mathbf{UWRN}$). Then $ult(\mathcal{A})$ is sequentially compact.

Example (Haydon). Take a family $\mathcal{G} \subseteq P(\omega)$ which is maximal with respect to the property: $(\forall A, B \in \mathcal{G})$ if $A \neq B$ then one of $A \cap B, A \setminus B, B \setminus A$ is finite. Write $\mathcal{A} = \langle \mathcal{G} \rangle$; then $ult(\mathcal{A})$ is not sequentially compact. In particular, $\mathcal{A} \in WRN \setminus UWRN$. $\mathfrak{glt}(\mathcal{A}) \supseteq \omega$, $\mathfrak{O} : \mathcal{A}_1 : \mathcal{Q}_1 \cdots$ **bass** \mathcal{M} converges $\mathfrak{subsceptec} \mathcal{C}$. \mathcal{G} Contains we infirmete independent sequence $\mathfrak{a}_0, \mathfrak{q}_1 \cdots \in \mathcal{A}$

A E Elpedin => ult (A) is Eberlen conpet WRN and Eberlein

Definition. $\mathcal{A} \in \mathbf{WRN}$ iff $\mathcal{A} = \langle \mathcal{G} \rangle$, where $\mathcal{G} = \bigcup_n \mathcal{G}_n$ and no \mathcal{G}_n contains an infinite independent sequence.

Theorem. $\mathcal{A} \in \mathbf{Eberlein}$ iff $\mathcal{A} = \langle \mathcal{G} \rangle$, where $\mathcal{G} = \bigcup_n \mathcal{G}_n$ and no \mathcal{G}_n contains an infinite centered sequence.

• For a class \mathfrak{C} of compacta, say that $K \in \mathfrak{C}^{\perp}$ if every continuous image $L \in \mathfrak{C}$ of K is metrizable.

Fact. Eberlein^{\perp} = ccc.

 \mathbf{D}

Remark. $\mathcal{A} \in \mathbf{ccc}$ iff every uncountable subfamily of \mathcal{A} contains an infinite centered sequence.

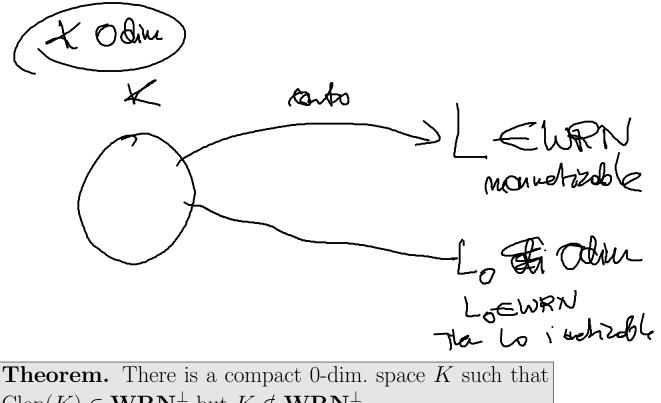
Theorem. $\mathcal{A} \in \mathbf{WRN}^{\perp}$ iff every uncountable subfamily of \mathcal{A} contains an infinite **where** sequence.

Boolean examples.

Every subalgebra of a free algebras is in \mathbf{WRN}^{\perp} . If $MA(\omega_1)$ does not hold then there is a nonmetrizable 0-dim. Corson compact space K such that $Clop(K) \in \mathbf{WRN}^{\perp}$.

Compact examples.

Every dyadic space is in \mathbf{WRN}^{\perp} .



 $\operatorname{Clop}(K) \in \mathbf{WRN}^{\perp}$ but $K \notin \mathbf{WRN}^{\perp}$.