Universal autohomeomorphisms of \mathbb{N}^*

Jan van Mill

University of Amsterdam

Warsaw November 17, 2021

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- All spaces under discussion here are Tychonoff and all results are joint work with Klaas Pieter Hart.
- There are at least two notions of universality of autohomeomorphisms of topological spaces.
- Let h be an autohomeomorphism of the space X. We say that h is *universal* for a class of pairs (Y,g), where Y is a space and g is an autohomeomorphism of Y, there exists a continuous surjection $s: X \to Y$ such that the diagram

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

commutes.

- Of course, this definition only makes sense if for the pairs (Y,g) that we consider it is true that Y is a continuous image of X.
- Our basic space of interest is N^{*}, the Čech-Stone remainder βN \ N of the natural numbers N endowed with the discrete topology.
- The underlying set of $\beta\mathbb{N}$ is the set of all ultrafilters p in $\mathscr{P}(\mathbb{N})$. Its topology is generated by the collection $\{A^+: A \in \mathscr{P}(\mathbb{N})\}$, where $A^+ = \{p \in \beta\mathbb{N} : A \in p\}$.
- The space ℕ is identified with the set of all *fixed* ultrafilters in 𝒫(ℕ).
- The spaces $\beta\mathbb{N}$ and \mathbb{N}^* are among the best studied spaces in set theory and topology.
- The above type of universality for N^{*} was thoroughly investigated by Will Brian, Universal flows of 𝒫(ω)/fin, Israel J. Math. 233 (2019), 453-500.

- We are interested in the following *dual* notion of universality:
- An autohomeomorphism h on a space X is universal for a class of pairs (Y, g), where Y is a space and g is an autohomeomorphism of Y, if for every such pair there is an embedding e: Y → X such that the diagram

commutes; that is, h extends the copy of g on e(Y).

• Of course, this definition only makes sense if for the pairs (Y,g) that we consider it is true that Y can be embedded in X.

- Consider $X = K^{\mathbb{Z}}$, where K is the Cantor set 2^{ω} , and let $h: X \to X$ be the shift mapping $h(x)_n = x_{n+1}$, $x \in X, n \in \mathbb{Z}$. Then (X, h) is universal for the class of all pairs (Y, f), where Y is zero-dimensional, separable metrizable, and $f: Y \to Y$ is an autohomeomorphism.
- This is a folklore result, and the proof is obvious.
- We may assume that $Y \subseteq 2^{\omega}$. Consider the embedding $e \colon Y \to K^X$ defined by

$$e(x) = (\cdots, f^{-2}(x), f^{-1}(x), x, f(x), f^{2}(x), \cdots,).$$

Then, clearly, $h \circ e = e \circ f$.

- The same proof works for Cantor cubes 2^{τ} , $\tau \ge \omega$, and zero-dimensional spaces of weight at most τ .
- And, the same proof works for Tychonoff cubes I^τ, τ ≥ ω, and Tychonoff spaces of weight at most τ.

- So there are many universal autohomeomorphisms on various spaces. Related is the classical work on linearizations of group actions in Banach spaces.
- Does ℕ* have a universal autohomeomorphism?
- As we mentioned above, Brian dealt with the first case of universality that we discussed. We will deal with the second case.
- The question that we study is: is there an autohomeomorphism h of \mathbb{N}^* such that for any pair (Y,g), where Y is a closed subspace of \mathbb{N}^* with autohomeomorphism g, there is an embedding $e: Y \to \mathbb{N}^*$ such that the diagram

$$\mathbb{N}^* < \stackrel{h \approx}{\longrightarrow} \mathbb{N}^* \\ \downarrow^{e} \\ \forall Y \xrightarrow{\forall g \approx} \forall Y$$

commutes; that is, h extends the copy of g on e(Y).

- Shelah proved that it is consistent that all autohomeomorphisms of N^{*} are trivial (see his 1998 book on proper forcing).
- This means that for every autohomeomorphism f of \mathbb{N}^* there are finite subsets E and F of \mathbb{N} , and a bijection $\pi: \mathbb{N} \setminus E \to \mathbb{N} \setminus F$ such that on \mathbb{N}^* , f coincides with the Stone extension $\beta\pi$ of π .
- In particular this means that there are only c many autohomeomorphisms of N^{*}.
- The fixed-point set of any trivial autohomeomorphism is *clopen*. Indeed, let f, E, F and π be as above. Then the fixed-point set of $\beta\pi \upharpoonright \mathbb{N}^*$ coincides with $A^+ \cap \mathbb{N}^*$, where $A = \{n \in \mathbb{N} : \pi(n) = n\}.$
- In Shelah's model universal autohomeomorphisms do not exist. To prove that, all we need to show is that there is a closed subspace of ℕ* with an autohomeomorphism whose fixed-point set is not (relatively) clopen.

This is easy. We let L be the ordinal ω₁ + 1 endowed with its G_δ-topology. Thus all points other than ω₁ are isolated and the neighbourhoods of ω₁ are exactly the co-countable sets that contain it. Then L is a P-space of weight ℵ₁ and it is known that βL can be embedded in N*. We define f: L → L such that ω₁ is the only fixed point of βf. Split ω₁ into two disjoint uncountable sets, say E and F. Let π: E → F be a bijection. Now put

$$f(\omega_1) = \omega_1,$$

$$f(e) = \pi(e) \qquad (e \in E),$$

$$f(f) = \pi^{-1}(f) \qquad (f \in F).$$

Then f is an involution, ω_1 is its only fixed-point, and it is not difficult to show that ω_1 is the only fixed-point of βf .

- Hence there are models of set theory in which N^{*} has no universal autohomeomorphism.
- The situation dramatically changes under the Continuum Hypothesis (abbreviated: CH).
- Walter Rudin showed that under CH, N^{*} has 2^c many homeomorphisms. Hence in the presence of CH there is more chance than in the Shelah model that one of them is universal.

Theorem

 \mathbb{N}^* has a universal homeomorphism under CH.

• For the proof, we need CH many, many times.

• The following well-known result is due to Parovičenko:

Theorem

Assume CH. Then \mathbb{N}^* is topologically the unique space X with the following properties:

1 X is a compact zero-dimensional F-space of weight \mathfrak{c} .

2 Nonempty G_{δ} 's in X have infinite interior.

- A compact space X is an *F*-space if disjoint open F_σ-subsets of X have disjoint closures.
- (So this is a (very) weak form of extremal disconnectivity: the closure of every open subset is open.)
- It is known that Parovičenko's characterization of N^{*} implies CH (van Douwen & van Mill).

- Results in the same spirit that we will use are that under CH:
 - The closed subspaces of N* are characterized as the class of all compact zero-dimensional F-spaces of weight c (Louveau).
 - ② Every closed subspace of N^{*} can be re-embedded as a nowhere dense closed P-set (Balcar, Frankiewicz).
 - Severy homeomorphism between closed nowhere dense P-sets in N* can be extended to an autohomeomorphism of N* (van Douwen & van Mill).
- Let Aut denote the group of autohomeomorphisms of \mathbb{N}^* .
- Let $\sigma \colon \operatorname{Aut} \times \mathbb{N}^* \to \mathbb{N}^*$ be the natural action. That is,

$$\sigma(f,p) = f(p).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- This action is continuous when Aut carries the compact-open topology.
- So it is also continuous when Aut carries the stronger G_{δ} -topology.

• Define an autohomeomorphism $h: \operatorname{Aut} \times \mathbb{N}^* \to \operatorname{Aut} \times \mathbb{N}^*$ by

$$h(f,p) = (f, f(p)).$$

- Now if X is a closed subset of N* and g: X → X is an autohomeomorphism then we can re-embed X as a nowhere dense closed P-set and we can then find an f ∈ Aut such that f ↾ X = g. We transfer this embedded copy of X to {f} × N* in Aut × N*; for this copy of X we then have h ↾ X = g. It follows that h satisfies the universality condition. (We used CH already twice.)
- So Aut × N^{*} contains witnesses of all autohomeomorphism's of compact subspaces of N^{*}.
- But Aut $\times \mathbb{N}^*$ is not compact, it is not \mathbb{N}^* !
- By a result of Negrepontis, Aut × N^{*} is an F-space, being the product of a P-space and a compact F-space.
- (This explains why we used the G_{δ} -topology on Aut.)

- The weight of Aut $\times \mathbb{N}^*$ is obviously \mathfrak{c} .
- Under CH, Aut $\times \mathbb{N}^*$ is *ultraparacompact* (= every open cover has a disjoint (cl)open refinement).
- Using this, it is not difficult to construct a Boolean subalgebra $\mathbb B$ of the algebra of clopen subsets of Aut $\times \mathbb N^*$ that is closed under h and h^{-1} , of cardinality c, and that has the property that for every pair of countable subsets A and B of \mathbb{B} such that $a \cap b = \emptyset$ whenever $a \in A$ and $b \in B$ there is a $c \in \mathbb{B}$ such that $a \subseteq c$ and $b \cap c = \emptyset$ for all $a \in A$ and $b \in B$.
- The Stone space $st(\mathbb{B})$ of \mathbb{B} is then a compactification of Aut $\times \mathbb{N}^*$ that is a compact zero-dimensional *F*-space of weight \mathfrak{c} , with an autohomeomorphism h that extends h. $(\beta(\operatorname{Aut} \times \mathbb{N}^*) \text{ is too big.})$
- We embed $st(\mathbb{B})$ into \mathbb{N}^* as a nowhere dense *P*-set and extend h to an autohomeomorphism H of \mathbb{N}^* .
- Then H is the desired universal homeomorphism of \mathbb{N}^* .

Biography

- J. van Mill, An introduction to βω, Handbook of Set-Theoretic Topology (K. Kunen and J.E. Vaughan, eds.), North-Holland, Amsterdam, (1984), pp. 503-567.
- E. K. van Douwen, J. van Mill, The homeomorphism extension theorem for $\beta \omega \setminus \omega$, Ann. New York Acad. Sci., 704 (1993), 345-350.
- K. P. Hart and J. van Mill, Universal autohomeomorphisms of N^{*}, 2021, to appear in Proc. Amer. Math. Soc.

- https://staff.fnwi.uva.nl/j.vanmill/
- Thank you for listening! ©