Topological properties in tensor products of Banach spaces

Antonio Avilés Universidad de Murcia with G. Martínez Cervantes, J. Rodríguez and A. Rueda Zoca

MTM2017-86182-P (AEI/FEDER, UE) 20797/PI/18 by Fundación Séneca, ACyT Región de Murcia

イロト 不得 トイラト イラト 二日

Tensor product of vector spaces

• $X \otimes Y = span\{x \otimes y\}_{x \in X, y \in Y} \subset Bilinear(X \times Y)^{\sharp}$

Tensor product of vector spaces

•
$$X \otimes Y = span\{x \otimes y\}_{x \in X, y \in Y} \subset Bilinear(X \times Y)^{\sharp}$$

 $x \otimes y(b) = b(x, y)$

・ロト ・回ト ・ヨト ・ヨト 三日

Tensor product of vector spaces

•
$$(X \otimes Y)^{\sharp} = Bilinear(X \times Y) = L(X, Y^{\sharp}) = L(Y, X^{\sharp})$$

イロト イヨト イヨト イヨト 二日

Projective tensor product of Banach spaces $X \otimes_{\pi} Y$

Tensor product of vector spaces

•
$$(X \otimes Y)^{\sharp} = Bilinear(X \times Y) = L(X, Y^{\sharp}) = L(Y, X^{\sharp})$$

Projective tensor product of Banach spaces $X \otimes_{\pi} Y$

• $\mathscr{B}(X,Y)$, the bilinear and continuous are a Banach space

Tensor product of vector spaces

•
$$(X \otimes Y)^{\sharp} = Bilinear(X \times Y) = L(X, Y^{\sharp}) = L(Y, X^{\sharp})$$

Projective tensor product of Banach spaces $X \otimes_{\pi} Y$

• $\mathscr{B}(X,Y)$, the bilinear and continuous are a Banach space $\|b\| = \sup\{|b(x,y)| : \|x\| \le 1, \|y\| \le 1\}$

イロト イロト イヨト イヨト ヨー わへの

Tensor product of vector spaces

•
$$(X \otimes Y)^{\sharp} = Bilinear(X \times Y) = L(X, Y^{\sharp}) = L(Y, X^{\sharp})$$

Projective tensor product of Banach spaces $X \otimes_{\pi} Y$

• $\mathscr{B}(X,Y)$, the bilinear and continuous are a Banach space $\|b\| = \sup\{|b(x,y)|: \|x\| \le 1, \|y\| \le 1\}$

イロト イロト イヨト イヨト ヨー わへの

•
$$X \otimes_{\pi} Y = \overline{span}\{x \otimes y\} \subset \mathscr{B}(X \times Y)^*$$

Tensor product of vector spaces

•
$$(X \otimes Y)^{\sharp} = Bilinear(X \times Y) = L(X, Y^{\sharp}) = L(Y, X^{\sharp})$$

Projective tensor product of Banach spaces $X \otimes_{\pi} Y$

• $\mathscr{B}(X,Y)$, the bilinear and continuous are a Banach space $\|b\| = \sup\{|b(x,y)|: \|x\| \le 1, \|y\| \le 1\}$

•
$$X \otimes_{\pi} Y = \overline{span}\{x \otimes y\} \subset \mathscr{B}(X \times Y)^*$$

•
$$(X \otimes_{\pi} Y)^* = \mathscr{B}(X \times Y) = \mathscr{L}(X, Y^*) = \mathscr{L}(Y, X^*)$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

If X and Y have (P), does $X \otimes_{\pi} Y$ have (P)?

• X is reflexive.

- X is reflexive.
- X is (subspace of) weakly compactly generated space.
 X is SWCG ⇔ B_{X*} is Eberlein compact

- X is reflexive.
- X is (subspace of) weakly compactly generated space.
 X is SWCG ⇔ B_{X*} is Eberlein compact
- X is a (subspace of) Hilbert generated space.
 X is SHG ⇔ B_{X*} is Uniform Eberlein compact.

- X is reflexive.
- X is (subspace of) weakly compactly generated space.
 X is SWCG ⇔ B_{X*} is Eberlein compact
- X is a (subspace of) Hilbert generated space.
 X is SHG ⇔ B_{X*} is Uniform Eberlein compact.
- X is weakly Lindelöf determined space. X is WLD $\Leftrightarrow B_{X^*}$ is Corson compact.

• A Hilbert space ℓ_2 has all good properties...

A Hilbert space ℓ₂ has all good properties... but {e_i ⊗ e_i} spans a copy of ℓ₁ inside ℓ₂ ⊗_π ℓ₂.

A Hilbert space ℓ₂ has all good properties... but {e_i ⊗ e_i} spans a copy of ℓ₁ inside ℓ₂ ⊗_π ℓ₂.

• We want $(X \otimes_{\pi} Y)^*$ to be small. And remember

$$(X \otimes_{\pi} Y)^* = \mathscr{B}(X \times Y) = \mathscr{L}(X, Y^*) = \mathscr{L}(Y, X^*).$$

A Hilbert space ℓ₂ has all good properties... but {e_i ⊗ e_i} spans a copy of ℓ₁ inside ℓ₂ ⊗_π ℓ₂.

• We want $(X \otimes_{\pi} Y)^*$ to be small. And remember

$$(X \otimes_{\pi} Y)^* = \mathscr{B}(X \times Y) = \mathscr{L}(X, Y^*) = \mathscr{L}(Y, X^*).$$

• So the problem is that there are too many operators $\ell_2 \longrightarrow \ell_2^*$.

 If all X → Y* are compact and X, Y reflexive ⇒ X ⊗_π Y reflexive.

- If all X → Y* are compact and X, Y reflexive ⇒ X ⊗_π Y reflexive.
- If all $X \to Y^*$ are Dunford-Pettis $(x_n \xrightarrow{w} 0 \Rightarrow Tx_n \to 0)$: and $X, Y WCG \Rightarrow X \otimes_{\pi} Y WCG$.

イロト イロト イヨト イヨト ヨー わへの

- If all X → Y* are compact and X, Y reflexive ⇒ X ⊗_π Y reflexive.
- If all X → Y* are Dunford-Pettis (x_n → 0 ⇒ Tx_n → 0): and X, Y WCG ⇒ X ⊗_π Y WCG.

イロト イロト イヨト イヨト ヨー わへの

 If all X → Y* and Y → X* are c-Dunford-Pettis and X, Y SWCG ⇒ X ⊗_π Y SWCG.

- If all X → Y* are compact and X, Y reflexive ⇒ X ⊗_π Y reflexive.
- If all $X \to Y^*$ are Dunford-Pettis $(x_n \xrightarrow{w} 0 \Rightarrow Tx_n \to 0)$: and $X, Y WCG \Rightarrow X \otimes_{\pi} Y WCG$.
- If all X → Y* and Y → X* are c-Dunford-Pettis and X, Y SWCG ⇒ X ⊗_π Y SWCG.
- If all X → Y* and Y → X* have separable range and X, Y WLD ⇒ X ⊗_π Y WLD.

イロト イロト イヨト イヨト ヨー わへの

- If all X → Y* are compact and X, Y reflexive ⇐⇒ X ⊗_π Y reflexive. (approx. prop.)
- If all $X \to Y^*$ are Dunford-Pettis $(x_n \xrightarrow{w} 0 \Rightarrow Tx_n \to 0)$: and $X, Y WCG \Rightarrow X \otimes_{\pi} Y WCG$.
- If all X → Y* and Y → X* are c-Dunford-Pettis and X, Y SWCG ⇒ X ⊗_π Y SWCG.
- If all X → Y* and Y → X* have separable range and X, Y WLD ⇐⇒ X ⊗_π Y WLD. (always)

The tensor products $\ell_p(I) \otimes_{\pi} \ell_q(I)$

•
$$1/p + 1/q \ge 1 \Rightarrow \ell_p \otimes_{\pi} \ell_q \supset \ell_1.$$

•
$$1/p + 1/q < 1 \Rightarrow \ell_p \otimes_{\pi} \ell_q$$
 is reflexive.

Theorem

When 1/p + 1/q < 1, the space $\ell_p \otimes_{\pi} \ell_q$ is a subspace of a Hilbert generated space.

•
$$X \otimes_{\varepsilon} Y = \overline{span}\{x \otimes y\} \subset C(B_{X^*} \times B_{Y^*}),$$

 $(x \otimes y)(x^*, y^*) = x^*(x) \cdot y^*(y)$

•
$$X \otimes_{\varepsilon} Y = \overline{span}\{x \otimes y\} \subset C(B_{X^*} \times B_{Y^*}),$$

 $(x \otimes y)(x^*, y^*) = x^*(x) \cdot y^*(y)$

•
$$(X \otimes_{\varepsilon} Y)^* = \mathscr{B}_{int}(X \times Y) = \mathscr{L}_{int}(X, Y^*) = \mathscr{L}_{int}(Y, X^*)$$

 $X \longrightarrow L_{\infty}(\mu) \longrightarrow L_1(\mu) \longrightarrow Y^*$

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

•
$$X \otimes_{\varepsilon} Y = \overline{span}\{x \otimes y\} \subset C(B_{X^*} \times B_{Y^*}),$$

 $(x \otimes y)(x^*, y^*) = x^*(x) \cdot y^*(y)$

•
$$(X \otimes_{\varepsilon} Y)^* = \mathscr{B}_{int}(X \times Y) = \mathscr{L}_{int}(X, Y^*) = \mathscr{L}_{int}(Y, X^*)$$

 $X \longrightarrow L_{\infty}(\mu) \longrightarrow L_1(\mu) \longrightarrow Y^*$

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

•
$$C(K) \otimes_{\varepsilon} X = C(K, X). \ C(K) \otimes_{\varepsilon} C(L) = C(K \times L).$$

•
$$X \otimes_{\varepsilon} Y = \overline{span}\{x \otimes y\} \subset C(B_{X^*} \times B_{Y^*}),$$

 $(x \otimes y)(x^*, y^*) = x^*(x) \cdot y^*(y)$

•
$$(X \otimes_{\varepsilon} Y)^* = \mathscr{B}_{int}(X \times Y) = \mathscr{L}_{int}(X, Y^*) = \mathscr{L}_{int}(Y, X^*)$$

 $X \longrightarrow L_{\infty}(\mu) \longrightarrow L_1(\mu) \longrightarrow Y^*$

•
$$C(K) \otimes_{\varepsilon} X = C(K, X)$$
. $C(K) \otimes_{\varepsilon} C(L) = C(K \times L)$.

X, Y SWCG

•
$$X \otimes_{\varepsilon} Y = \overline{span}\{x \otimes y\} \subset C(B_{X^*} \times B_{Y^*}),$$

 $(x \otimes y)(x^*, y^*) = x^*(x) \cdot y^*(y)$

•
$$(X \otimes_{\varepsilon} Y)^* = \mathscr{B}_{int}(X \times Y) = \mathscr{L}_{int}(X, Y^*) = \mathscr{L}_{int}(Y, X^*)$$

 $X \longrightarrow L_{\infty}(\mu) \longrightarrow L_1(\mu) \longrightarrow Y^*$

•
$$C(K) \otimes_{\varepsilon} X = C(K, X)$$
. $C(K) \otimes_{\varepsilon} C(L) = C(K \times L)$.

X, Y SWCG $\Rightarrow B_{X^*}, B_{Y^*}$ Eberlein

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

•
$$X \otimes_{\varepsilon} Y = \overline{span}\{x \otimes y\} \subset C(B_{X^*} \times B_{Y^*}),$$

 $(x \otimes y)(x^*, y^*) = x^*(x) \cdot y^*(y)$

•
$$(X \otimes_{\varepsilon} Y)^* = \mathscr{B}_{int}(X \times Y) = \mathscr{L}_{int}(X, Y^*) = \mathscr{L}_{int}(Y, X^*)$$

 $X \longrightarrow L_{\infty}(\mu) \longrightarrow L_1(\mu) \longrightarrow Y^*$

•
$$C(K) \otimes_{\varepsilon} X = C(K, X)$$
. $C(K) \otimes_{\varepsilon} C(L) = C(K \times L)$.

X, Y SWCG $\Rightarrow B_{X^*}, B_{Y^*}$ Eberlein

 $\Rightarrow B_{X^*} \times B_{Y^*}$ Eberlein

•
$$X \otimes_{\varepsilon} Y = \overline{span}\{x \otimes y\} \subset C(B_{X^*} \times B_{Y^*}),$$

 $(x \otimes y)(x^*, y^*) = x^*(x) \cdot y^*(y)$

•
$$(X \otimes_{\varepsilon} Y)^* = \mathscr{B}_{int}(X \times Y) = \mathscr{L}_{int}(X, Y^*) = \mathscr{L}_{int}(Y, X^*)$$

 $X \longrightarrow L_{\infty}(\mu) \longrightarrow L_1(\mu) \longrightarrow Y^*$

•
$$C(K) \otimes_{\varepsilon} X = C(K,X)$$
. $C(K) \otimes_{\varepsilon} C(L) = C(K \times L)$.

- X, Y SWCG $\Rightarrow B_{X^*}, B_{Y^*}$ Eberlein
- $\Rightarrow B_{X^*} \times B_{Y^*}$ Eberlein
- $\Rightarrow C(B_{X^*} \times B_{Y^*}) WCG$

•
$$X \otimes_{\varepsilon} Y = \overline{span}\{x \otimes y\} \subset C(B_{X^*} \times B_{Y^*}),$$

 $(x \otimes y)(x^*, y^*) = x^*(x) \cdot y^*(y)$

•
$$(X \otimes_{\varepsilon} Y)^* = \mathscr{B}_{int}(X \times Y) = \mathscr{L}_{int}(X, Y^*) = \mathscr{L}_{int}(Y, X^*)$$

 $X \longrightarrow L_{\infty}(\mu) \longrightarrow L_1(\mu) \longrightarrow Y^*$

•
$$C(K) \otimes_{\varepsilon} X = C(K,X)$$
. $C(K) \otimes_{\varepsilon} C(L) = C(K \times L)$.

- X, Y SWCG
- $\Rightarrow B_{X^*}, B_{Y^*}$ Eberlein
- $\Rightarrow B_{X^*} \times B_{Y^*}$ Eberlein
- $\Rightarrow C(B_{X^*} \times B_{Y^*}) \text{ WCG}$
- $\Rightarrow X \otimes_{\varepsilon} Y$ SWCG.

•
$$X \otimes_{\varepsilon} Y = \overline{span}\{x \otimes y\} \subset C(B_{X^*} \times B_{Y^*}),$$

 $(x \otimes y)(x^*, y^*) = x^*(x) \cdot y^*(y)$

•
$$(X \otimes_{\varepsilon} Y)^* = \mathscr{B}_{int}(X \times Y) = \mathscr{L}_{int}(X, Y^*) = \mathscr{L}_{int}(Y, X^*)$$

 $X \longrightarrow L_{\infty}(\mu) \longrightarrow L_1(\mu) \longrightarrow Y^*$

•
$$C(K) \otimes_{\varepsilon} X = C(K,X)$$
. $C(K) \otimes_{\varepsilon} C(L) = C(K \times L)$.

X, Y WLD $\Rightarrow B_{X^*}, B_{Y^*} \text{ Eberlein}$ $\Rightarrow B_{X^*} \times B_{Y^*} \text{ Eberlein}$ $\Rightarrow C(B_{X^*} \times B_{Y^*}) \text{ WCG}$ $\Rightarrow X \otimes_{\varepsilon} Y \text{ SWCG.}$

•
$$X \otimes_{\varepsilon} Y = \overline{span}\{x \otimes y\} \subset C(B_{X^*} \times B_{Y^*}),$$

 $(x \otimes y)(x^*, y^*) = x^*(x) \cdot y^*(y)$

•
$$(X \otimes_{\varepsilon} Y)^* = \mathscr{B}_{int}(X \times Y) = \mathscr{L}_{int}(X, Y^*) = \mathscr{L}_{int}(Y, X^*)$$

 $X \longrightarrow L_{\infty}(\mu) \longrightarrow L_1(\mu) \longrightarrow Y^*$

•
$$C(K) \otimes_{\varepsilon} X = C(K,X)$$
. $C(K) \otimes_{\varepsilon} C(L) = C(K \times L)$.

 $\begin{array}{l} X, Y \quad \mathsf{WLD} \\ \Rightarrow B_{X^*}, B_{Y^*} \quad \mathsf{Corson} \\ \Rightarrow B_{X^*} \times B_{Y^*} \quad \mathsf{Eberlein} \\ \Rightarrow C(B_{X^*} \times B_{Y^*}) \quad \mathsf{WCG} \\ \Rightarrow X \otimes_{\varepsilon} Y \quad \mathsf{SWCG}. \end{array}$

•
$$X \otimes_{\varepsilon} Y = \overline{span}\{x \otimes y\} \subset C(B_{X^*} \times B_{Y^*}),$$

 $(x \otimes y)(x^*, y^*) = x^*(x) \cdot y^*(y)$

•
$$(X \otimes_{\varepsilon} Y)^* = \mathscr{B}_{int}(X \times Y) = \mathscr{L}_{int}(X, Y^*) = \mathscr{L}_{int}(Y, X^*)$$

 $X \longrightarrow L_{\infty}(\mu) \longrightarrow L_1(\mu) \longrightarrow Y^*$

•
$$C(K) \otimes_{\varepsilon} X = C(K,X)$$
. $C(K) \otimes_{\varepsilon} C(L) = C(K \times L)$.

 $\begin{array}{l} X, Y \quad \mathsf{WLD} \\ \Rightarrow B_{X^*}, B_{Y^*} \quad \mathsf{Corson} \\ \Rightarrow B_{X^*} \times B_{Y^*} \quad \mathsf{Corson} \\ \Rightarrow C(B_{X^*} \times B_{Y^*}) \quad \mathsf{WCG} \\ \Rightarrow X \otimes_{\varepsilon} Y \quad \mathsf{SWCG}. \end{array}$

•
$$X \otimes_{\varepsilon} Y = \overline{span}\{x \otimes y\} \subset C(B_{X^*} \times B_{Y^*}),$$

 $(x \otimes y)(x^*, y^*) = x^*(x) \cdot y^*(y)$

•
$$(X \otimes_{\varepsilon} Y)^* = \mathscr{B}_{int}(X \times Y) = \mathscr{L}_{int}(X, Y^*) = \mathscr{L}_{int}(Y, X^*)$$

 $X \longrightarrow L_{\infty}(\mu) \longrightarrow L_1(\mu) \longrightarrow Y^*$

•
$$C(K) \otimes_{\varepsilon} X = C(K,X)$$
. $C(K) \otimes_{\varepsilon} C(L) = C(K \times L)$.

 $\begin{array}{l} X, Y \quad \mathsf{WLD} \\ \Rightarrow B_{X^*}, B_{Y^*} \quad \mathsf{Corson} \\ \Rightarrow B_{X^*} \times B_{Y^*} \quad \mathsf{Corson} \\ \neq C(B_{X^*} \times B_{Y^*}) \quad \mathsf{WLD} \\ \Rightarrow X \otimes_{\varepsilon} Y \quad \mathsf{SWCG}. \end{array}$

 $X \otimes_{\varepsilon} Y$ is WLD if and only if X and Y are WLD and all integral operators $X \to Y^*$ and $Y \to X^*$ have separable range.

イロン イボン イモン イモン 三日

 $X \otimes_{\varepsilon} Y$ is WLD if and only if X and Y are WLD and all integral operators $X \to Y^*$ and $Y \to X^*$ have separable range.

• A sufficient condition is that either $C(B_{X^*})$ or $C(B_{Y^*})$ are WLD.

・ロト ・ 回 ト ・ ヨ ト ・ ヨ ・ つへの

 $X \otimes_{\varepsilon} Y$ is WLD if and only if X and Y are WLD and all integral operators $X \to Y^*$ and $Y \to X^*$ have separable range.

- A sufficient condition is that either $C(B_{X^*})$ or $C(B_{Y^*})$ are WLD.
- When X = Y, it is necessary and sufficient that $C(B_{X^*})$ is WLD.

X has (C) iff every x^* in the w^* -closure of a bounded dual set is in the closure of a sequence of convex combinations.

- If X has the λ-BSAP property, and X ⊗_ε X has property (C), then all measures on B_{X*} are of countable type.
- (Plebanek, Sobota) If C(K×K) has property (C) then all measures on K have countable type.