Topological properties in tensor products of Banach spaces

Antonio Avilés
Universidad de Murcia
with G. Martínez Cervantes, J. Rodríguez and A. Rueda Zoca

MTM2017-86182-P (AEI/FEDER, UE)
20797/PI/18 by Fundación Séneca, ACyT Región de Murcia

Tensor products

Tensor product of vector spaces

- $X \otimes Y=\operatorname{span}\{x \otimes y\}_{x \in X, y \in Y} \subset \operatorname{Bilinear}(X \times Y)^{\sharp}$

Tensor products

Tensor product of vector spaces

- $X \otimes Y=\operatorname{span}\{x \otimes y\}_{x \in X, y \in Y} \subset \operatorname{Bilinear}(X \times Y)^{\sharp}$

$$
x \otimes y(b)=b(x, y)
$$

Tensor products

Tensor product of vector spaces

- $X \otimes Y=\operatorname{span}\{x \otimes y\}_{x \in X, y \in Y} \subset$ Bilinear $(X \times Y)^{\sharp}$

$$
x \otimes y(b)=b(x, y)
$$

- $(X \otimes Y)^{\sharp}=\operatorname{Bilinear}(X \times Y)=L\left(X, Y^{\sharp}\right)=L\left(Y, X^{\sharp}\right)$

Projective tensor product of Banach spaces $X \otimes_{\pi} Y$

Tensor product of vector spaces

- $X \otimes Y=\operatorname{span}\{x \otimes y\}_{x \in X, y \in Y} \subset \operatorname{Bilinear}(X \times Y)^{\sharp}$

$$
x \otimes y(b)=b(x, y)
$$

- $(X \otimes Y)^{\sharp}=\operatorname{Bilinear}(X \times Y)=L\left(X, Y^{\sharp}\right)=L\left(Y, X^{\sharp}\right)$

Projective tensor product of Banach spaces $X \otimes_{\pi} Y$

- $\mathscr{B}(X, Y)$, the bilinear and continuous are a Banach space

Tensor product of vector spaces

- $X \otimes Y=\operatorname{span}\{x \otimes y\}_{x \in X, y \in Y} \subset \operatorname{Bilinear}(X \times Y)^{\sharp}$

$$
x \otimes y(b)=b(x, y)
$$

- $(X \otimes Y)^{\sharp}=\operatorname{Bilinear}(X \times Y)=L\left(X, Y^{\sharp}\right)=L\left(Y, X^{\sharp}\right)$

Projective tensor product of Banach spaces $X \otimes_{\pi} Y$

- $\mathscr{B}(X, Y)$, the bilinear and continuous are a Banach space

$$
\|b\|=\sup \{|b(x, y)|:\|x\| \leq 1,\|y\| \leq 1\}
$$

Tensor product of vector spaces

- $X \otimes Y=\operatorname{span}\{x \otimes y\}_{x \in X, y \in Y} \subset \operatorname{Bilinear}(X \times Y)^{\sharp}$

$$
x \otimes y(b)=b(x, y)
$$

- $(X \otimes Y)^{\sharp}=$ Bilinear $(X \times Y)=L\left(X, Y^{\sharp}\right)=L\left(Y, X^{\sharp}\right)$

Projective tensor product of Banach spaces $X \otimes_{\pi} Y$

- $\mathscr{B}(X, Y)$, the bilinear and continuous are a Banach space

$$
\|b\|=\sup \{|b(x, y)|:\|x\| \leq 1,\|y\| \leq 1\}
$$

- $X \otimes_{\pi} Y=\overline{\operatorname{span}}\{x \otimes y\} \subset \mathscr{B}(X \times Y)^{*}$

Tensor product of vector spaces

- $X \otimes Y=\operatorname{span}\{x \otimes y\}_{x \in X, y \in Y} \subset$ Bilinear $(X \times Y)^{\sharp}$

$$
x \otimes y(b)=b(x, y)
$$

- $(X \otimes Y)^{\sharp}=$ Bilinear $(X \times Y)=L\left(X, Y^{\sharp}\right)=L\left(Y, X^{\sharp}\right)$

Projective tensor product of Banach spaces $X \otimes_{\pi} Y$

- $\mathscr{B}(X, Y)$, the bilinear and continuous are a Banach space

$$
\|b\|=\sup \{|b(x, y)|:\|x\| \leq 1,\|y\| \leq 1\}
$$

- $X \otimes_{\pi} Y=\overline{\operatorname{span}}\{x \otimes y\} \subset \mathscr{B}(X \times Y)^{*}$
- $\left(X \otimes_{\pi} Y\right)^{*}=\mathscr{B}(X \times Y)=\mathscr{L}\left(X, Y^{*}\right)=\mathscr{L}\left(Y, X^{*}\right)$

Preservation of topological properties

If X and Y have (P), does $X \otimes_{\pi} Y$ have (P)?

Preservation of topological properties

If X and Y have (P), does $X \otimes_{\pi} Y$ have (P)?

- X is reflexive.

Preservation of topological properties

If X and Y have (P), does $X \otimes_{\pi} Y$ have (P)?

- X is reflexive.
- X is (subspace of) weakly compactly generated space. X is SWCG $\Leftrightarrow B_{X^{*}}$ is Eberlein compact

If X and Y have (P), does $X \otimes_{\pi} Y$ have (P)?

- X is reflexive.
- X is (subspace of) weakly compactly generated space. X is SWCG $\Leftrightarrow B_{X^{*}}$ is Eberlein compact
- X is a (subspace of) Hilbert generated space. X is $\mathrm{SHG} \Leftrightarrow B_{X^{*}}$ is Uniform Eberlein compact.

If X and Y have (P), does $X \otimes_{\pi} Y$ have (P)?

- X is reflexive.
- X is (subspace of) weakly compactly generated space. X is SWCG $\Leftrightarrow B_{X^{*}}$ is Eberlein compact
- X is a (subspace of) Hilbert generated space. X is $\mathrm{SHG} \Leftrightarrow B_{X^{*}}$ is Uniform Eberlein compact.
- X is weakly Lindelöf determined space. X is WLD $\Leftrightarrow B_{X^{*}}$ is Corson compact.

Preservation can fail badly...

- A Hilbert space ℓ_{2} has all good properties...

Preservation can fail badly...

- A Hilbert space ℓ_{2} has all good properties... but $\left\{e_{i} \otimes e_{i}\right\}$ spans a copy of ℓ_{1} inside $\ell_{2} \otimes_{\pi} \ell_{2}$.

Preservation can fail badly...

- A Hilbert space ℓ_{2} has all good properties... but $\left\{e_{i} \otimes e_{i}\right\}$ spans a copy of ℓ_{1} inside $\ell_{2} \otimes_{\pi} \ell_{2}$.
- We want $\left(X \otimes_{\pi} Y\right)^{*}$ to be small. And remember

$$
\left(X \otimes_{\pi} Y\right)^{*}=\mathscr{B}(X \times Y)=\mathscr{L}\left(X, Y^{*}\right)=\mathscr{L}\left(Y, X^{*}\right)
$$

Preservation can fail badly...

- A Hilbert space ℓ_{2} has all good properties... but $\left\{e_{i} \otimes e_{i}\right\}$ spans a copy of ℓ_{1} inside $\ell_{2} \otimes_{\pi} \ell_{2}$.
- We want $\left(X \otimes_{\pi} Y\right)^{*}$ to be small. And remember

$$
\left(X \otimes_{\pi} Y\right)^{*}=\mathscr{B}(X \times Y)=\mathscr{L}\left(X, Y^{*}\right)=\mathscr{L}\left(Y, X^{*}\right)
$$

- So the problem is that there are too many operators $\ell_{2} \longrightarrow \ell_{2}^{*}$.

When there are few bilinear maps

- If all $X \rightarrow Y^{*}$ are compact and X, Y reflexive $\Rightarrow X \otimes_{\pi} Y$ reflexive.

When there are few bilinear maps

- If all $X \rightarrow Y^{*}$ are compact and X, Y reflexive $\Rightarrow X \otimes_{\pi} Y$ reflexive.
- If all $X \rightarrow Y^{*}$ are Dunford-Pettis $\left(x_{n} \xrightarrow{w} 0 \Rightarrow T x_{n} \rightarrow 0\right)$: and X, Y WCG $\Rightarrow X \otimes_{\pi} Y$ WCG.

When there are few bilinear maps

- If all $X \rightarrow Y^{*}$ are compact and X, Y reflexive $\Rightarrow X \otimes_{\pi} Y$ reflexive.
- If all $X \rightarrow Y^{*}$ are Dunford-Pettis $\left(x_{n} \xrightarrow{w} 0 \Rightarrow T x_{n} \rightarrow 0\right)$: and X, Y WCG $\Rightarrow X \otimes_{\pi} Y$ WCG.
- If all $X \rightarrow Y^{*}$ and $Y \rightarrow X^{*}$ are c-Dunford-Pettis and X, Y SWCG $\Rightarrow X \otimes_{\pi} Y$ SWCG.

When there are few bilinear maps

- If all $X \rightarrow Y^{*}$ are compact and X, Y reflexive $\Rightarrow X \otimes_{\pi} Y$ reflexive.
- If all $X \rightarrow Y^{*}$ are Dunford-Pettis $\left(x_{n} \xrightarrow{w} 0 \Rightarrow T x_{n} \rightarrow 0\right)$: and X, Y WCG $\Rightarrow X \otimes_{\pi} Y$ WCG.
- If all $X \rightarrow Y^{*}$ and $Y \rightarrow X^{*}$ are c-Dunford-Pettis and X, Y SWCG $\Rightarrow X \otimes_{\pi} Y$ SWCG.
- If all $X \rightarrow Y^{*}$ and $Y \rightarrow X^{*}$ have separable range and X, Y WLD $\Rightarrow X \otimes_{\pi} Y$ WLD.

When there are few bilinear maps

- If all $X \rightarrow Y^{*}$ are compact and X, Y reflexive $\Longleftrightarrow X \otimes_{\pi} Y$ reflexive. (approx. prop.)
- If all $X \rightarrow Y^{*}$ are Dunford-Pettis $\left(x_{n} \xrightarrow{w} 0 \Rightarrow T x_{n} \rightarrow 0\right)$: and X, Y WCG $\Rightarrow X \otimes_{\pi} Y$ WCG.
- If all $X \rightarrow Y^{*}$ and $Y \rightarrow X^{*}$ are c-Dunford-Pettis and X, Y SWCG $\Rightarrow X \otimes_{\pi} Y$ SWCG.
- If all $X \rightarrow Y^{*}$ and $Y \rightarrow X^{*}$ have separable range and X, Y WLD $\Longleftrightarrow X \otimes_{\pi} Y$ WLD. (always)

The tensor products $\ell_{p}(I) \otimes_{\pi} \ell_{q}(I)$

- $1 / p+1 / q \geq 1 \Rightarrow \ell_{p} \otimes_{\pi} \ell_{q} \supset \ell_{1}$.
- $1 / p+1 / q<1 \Rightarrow \ell_{p} \otimes_{\pi} \ell_{q}$ is reflexive.

Theorem

When $1 / p+1 / q<1$, the space $\ell_{p} \otimes_{\pi} \ell_{q}$ is a subspace of a Hilbert generated space.

The injective tensor product $X \otimes_{\mathcal{E}} Y$

- $X \otimes_{\varepsilon} Y=\overline{\operatorname{span}}\{x \otimes y\} \subset C\left(B_{X^{*}} \times B_{Y^{*}}\right)$,
$(x \otimes y)\left(x^{*}, y^{*}\right)=x^{*}(x) \cdot y^{*}(y)$

The injective tensor product $X \otimes_{\mathcal{E}} Y$

- $X \otimes_{\mathcal{E}} Y=\overline{\operatorname{span}}\{x \otimes y\} \subset C\left(B_{X^{*}} \times B_{Y^{*}}\right)$,
$(x \otimes y)\left(x^{*}, y^{*}\right)=x^{*}(x) \cdot y^{*}(y)$
- $\left(X \otimes_{\varepsilon} Y\right)^{*}=\mathscr{B}_{\text {int }}(X \times Y)=\mathscr{L}_{\text {int }}\left(X, Y^{*}\right)=\mathscr{L}_{\text {int }}\left(Y, X^{*}\right)$

$$
X \longrightarrow L_{\infty}(\mu) \longrightarrow L_{1}(\mu) \longrightarrow Y^{*}
$$

The injective tensor product $X \otimes_{\mathcal{E}} Y$

- $X \otimes_{\varepsilon} Y=\overline{\operatorname{span}}\{x \otimes y\} \subset C\left(B_{X^{*}} \times B_{Y^{*}}\right)$,
$(x \otimes y)\left(x^{*}, y^{*}\right)=x^{*}(x) \cdot y^{*}(y)$
- $\left(X \otimes_{\varepsilon} Y\right)^{*}=\mathscr{B}_{\text {int }}(X \times Y)=\mathscr{L}_{\text {int }}\left(X, Y^{*}\right)=\mathscr{L}_{\text {int }}\left(Y, X^{*}\right)$

$$
X \longrightarrow L_{\infty}(\mu) \longrightarrow L_{1}(\mu) \longrightarrow Y^{*}
$$

- $C(K) \otimes_{\varepsilon} X=C(K, X) . C(K) \otimes_{\varepsilon} C(L)=C(K \times L)$.

The injective tensor product $X \otimes_{\mathcal{E}} Y$

- $X \otimes_{\varepsilon} Y=\overline{\operatorname{span}}\{x \otimes y\} \subset C\left(B_{X^{*}} \times B_{Y^{*}}\right)$,
$(x \otimes y)\left(x^{*}, y^{*}\right)=x^{*}(x) \cdot y^{*}(y)$
- $\left(X \otimes_{\varepsilon} Y\right)^{*}=\mathscr{B}_{\text {int }}(X \times Y)=\mathscr{L}_{\text {int }}\left(X, Y^{*}\right)=\mathscr{L}_{\text {int }}\left(Y, X^{*}\right)$

$$
X \longrightarrow L_{\infty}(\mu) \longrightarrow L_{1}(\mu) \longrightarrow Y^{*}
$$

- $C(K) \otimes_{\varepsilon} X=C(K, X) . C(K) \otimes_{\varepsilon} C(L)=C(K \times L)$.
X, Y SWCG

The injective tensor product $X \otimes_{\mathcal{E}} Y$

- $X \otimes_{\varepsilon} Y=\overline{\operatorname{span}}\{x \otimes y\} \subset C\left(B_{X^{*}} \times B_{Y^{*}}\right)$,
$(x \otimes y)\left(x^{*}, y^{*}\right)=x^{*}(x) \cdot y^{*}(y)$
- $\left(X \otimes_{\varepsilon} Y\right)^{*}=\mathscr{B}_{\text {int }}(X \times Y)=\mathscr{L}_{\text {int }}\left(X, Y^{*}\right)=\mathscr{L}_{\text {int }}\left(Y, X^{*}\right)$

$$
X \longrightarrow L_{\infty}(\mu) \longrightarrow L_{1}(\mu) \longrightarrow Y^{*}
$$

- $C(K) \otimes_{\varepsilon} X=C(K, X) . C(K) \otimes_{\varepsilon} C(L)=C(K \times L)$.
X, Y SWCG
$\Rightarrow B_{X^{*}}, B_{Y^{*}}$ Eberlein
- $X \otimes_{\varepsilon} Y=\overline{\operatorname{span}}\{x \otimes y\} \subset C\left(B_{X^{*}} \times B_{Y^{*}}\right)$,

$$
(x \otimes y)\left(x^{*}, y^{*}\right)=x^{*}(x) \cdot y^{*}(y)
$$

- $\left(X \otimes_{\varepsilon} Y\right)^{*}=\mathscr{B}_{\text {int }}(X \times Y)=\mathscr{L}_{\text {int }}\left(X, Y^{*}\right)=\mathscr{L}_{\text {int }}\left(Y, X^{*}\right)$

$$
X \longrightarrow L_{\infty}(\mu) \longrightarrow L_{1}(\mu) \longrightarrow Y^{*}
$$

- $C(K) \otimes_{\varepsilon} X=C(K, X) . C(K) \otimes_{\varepsilon} C(L)=C(K \times L)$.
X, Y SWCG
$\Rightarrow B_{X^{*}}, B_{Y^{*}}$ Eberlein
$\Rightarrow B_{X^{*}} \times B_{Y^{*}}$ Eberlein
- $X \otimes_{\varepsilon} Y=\overline{\operatorname{span}}\{x \otimes y\} \subset C\left(B_{X^{*}} \times B_{Y^{*}}\right)$,

$$
(x \otimes y)\left(x^{*}, y^{*}\right)=x^{*}(x) \cdot y^{*}(y)
$$

- $\left(X \otimes_{\varepsilon} Y\right)^{*}=\mathscr{B}_{\text {int }}(X \times Y)=\mathscr{L}_{\text {int }}\left(X, Y^{*}\right)=\mathscr{L}_{\text {int }}\left(Y, X^{*}\right)$

$$
X \longrightarrow L_{\infty}(\mu) \longrightarrow L_{1}(\mu) \longrightarrow Y^{*}
$$

- $C(K) \otimes_{\varepsilon} X=C(K, X) . C(K) \otimes_{\varepsilon} C(L)=C(K \times L)$.
X, Y SWCG
$\Rightarrow B_{X^{*}}, B_{Y^{*}}$ Eberlein
$\Rightarrow B_{X^{*}} \times B_{Y^{*}}$ Eberlein
$\Rightarrow C\left(B_{X^{*}} \times B_{Y^{*}}\right)$ WCG
- $X \otimes_{\varepsilon} Y=\overline{\operatorname{span}}\{x \otimes y\} \subset C\left(B_{X^{*}} \times B_{Y^{*}}\right)$,

$$
(x \otimes y)\left(x^{*}, y^{*}\right)=x^{*}(x) \cdot y^{*}(y)
$$

- $\left(X \otimes_{\varepsilon} Y\right)^{*}=\mathscr{B}_{\text {int }}(X \times Y)=\mathscr{L}_{\text {int }}\left(X, Y^{*}\right)=\mathscr{L}_{\text {int }}\left(Y, X^{*}\right)$

$$
X \longrightarrow L_{\infty}(\mu) \longrightarrow L_{1}(\mu) \longrightarrow Y^{*}
$$

- $C(K) \otimes_{\varepsilon} X=C(K, X) . C(K) \otimes_{\varepsilon} C(L)=C(K \times L)$.
X, Y SWCG
$\Rightarrow B_{X^{*}}, B_{Y^{*}}$ Eberlein
$\Rightarrow B_{X^{*}} \times B_{Y^{*}}$ Eberlein
$\Rightarrow C\left(B_{X^{*}} \times B_{Y^{*}}\right)$ WCG
$\Rightarrow X \otimes_{\varepsilon} Y$ SWCG.
- $X \otimes_{\varepsilon} Y=\overline{\operatorname{span}}\{x \otimes y\} \subset C\left(B_{X^{*}} \times B_{Y^{*}}\right)$,

$$
(x \otimes y)\left(x^{*}, y^{*}\right)=x^{*}(x) \cdot y^{*}(y)
$$

- $\left(X \otimes_{\varepsilon} Y\right)^{*}=\mathscr{B}_{\text {int }}(X \times Y)=\mathscr{L}_{\text {int }}\left(X, Y^{*}\right)=\mathscr{L}_{\text {int }}\left(Y, X^{*}\right)$

$$
X \longrightarrow L_{\infty}(\mu) \longrightarrow L_{1}(\mu) \longrightarrow Y^{*}
$$

- $C(K) \otimes_{\varepsilon} X=C(K, X) . C(K) \otimes_{\varepsilon} C(L)=C(K \times L)$.
X, Y WLD
$\Rightarrow B_{X^{*}}, B_{Y^{*}}$ Eberlein
$\Rightarrow B_{X^{*}} \times B_{Y^{*}}$ Eberlein
$\Rightarrow C\left(B_{X^{*}} \times B_{Y^{*}}\right)$ WCG
$\Rightarrow X \otimes_{\mathcal{E}} Y$ SWCG.
- $X \otimes_{\varepsilon} Y=\overline{\operatorname{span}}\{x \otimes y\} \subset C\left(B_{X^{*}} \times B_{Y^{*}}\right)$,

$$
(x \otimes y)\left(x^{*}, y^{*}\right)=x^{*}(x) \cdot y^{*}(y)
$$

- $\left(X \otimes_{\varepsilon} Y\right)^{*}=\mathscr{B}_{\text {int }}(X \times Y)=\mathscr{L}_{\text {int }}\left(X, Y^{*}\right)=\mathscr{L}_{\text {int }}\left(Y, X^{*}\right)$

$$
X \longrightarrow L_{\infty}(\mu) \longrightarrow L_{1}(\mu) \longrightarrow Y^{*}
$$

- $C(K) \otimes_{\varepsilon} X=C(K, X) . C(K) \otimes_{\varepsilon} C(L)=C(K \times L)$.
X, Y WLD
$\Rightarrow B_{X^{*}}, B_{Y^{*}}$ Corson
$\Rightarrow B_{X^{*}} \times B_{Y^{*}}$ Eberlein
$\Rightarrow C\left(B_{X^{*}} \times B_{Y^{*}}\right)$ WCG
$\Rightarrow X \otimes_{\varepsilon} Y$ SWCG.
- $X \otimes_{\varepsilon} Y=\overline{\operatorname{span}}\{x \otimes y\} \subset C\left(B_{X^{*}} \times B_{Y^{*}}\right)$,

$$
(x \otimes y)\left(x^{*}, y^{*}\right)=x^{*}(x) \cdot y^{*}(y)
$$

- $\left(X \otimes_{\varepsilon} Y\right)^{*}=\mathscr{B}_{\text {int }}(X \times Y)=\mathscr{L}_{\text {int }}\left(X, Y^{*}\right)=\mathscr{L}_{\text {int }}\left(Y, X^{*}\right)$

$$
X \longrightarrow L_{\infty}(\mu) \longrightarrow L_{1}(\mu) \longrightarrow Y^{*}
$$

- $C(K) \otimes_{\varepsilon} X=C(K, X) . C(K) \otimes_{\varepsilon} C(L)=C(K \times L)$.
X, Y WLD
$\Rightarrow B_{X^{*}}, B_{Y^{*}}$ Corson
$\Rightarrow B_{X^{*}} \times B_{Y^{*}}$ Corson
$\Rightarrow C\left(B_{X^{*}} \times B_{Y^{*}}\right)$ WCG
$\Rightarrow X \otimes_{\varepsilon} Y$ SWCG.
- $X \otimes_{\varepsilon} Y=\overline{\operatorname{span}}\{x \otimes y\} \subset C\left(B_{X^{*}} \times B_{Y^{*}}\right)$,

$$
(x \otimes y)\left(x^{*}, y^{*}\right)=x^{*}(x) \cdot y^{*}(y)
$$

- $\left(X \otimes_{\varepsilon} Y\right)^{*}=\mathscr{B}_{\text {int }}(X \times Y)=\mathscr{L}_{\text {int }}\left(X, Y^{*}\right)=\mathscr{L}_{\text {int }}\left(Y, X^{*}\right)$

$$
X \longrightarrow L_{\infty}(\mu) \longrightarrow L_{1}(\mu) \longrightarrow Y^{*}
$$

- $C(K) \otimes_{\varepsilon} X=C(K, X) . C(K) \otimes_{\varepsilon} C(L)=C(K \times L)$.
X, Y WLD
$\Rightarrow B_{X^{*}}, B_{Y^{*}}$ Corson
$\Rightarrow B_{X^{*}} \times B_{Y^{*}}$ Corson
$\nRightarrow C\left(B_{X^{*}} \times B_{Y^{*}}\right)$ WLD
$\Rightarrow X \otimes_{\varepsilon} Y$ SWCG.
$X \otimes_{\varepsilon} Y$ is WLD if and only if
X and Y are WLD and
all integral operators $X \rightarrow Y^{*}$ and $Y \rightarrow X^{*}$ have separable range.

WLD in injective tensor products

$X \otimes_{\varepsilon} Y$ is WLD if and only if
X and Y are WLD and
all integral operators $X \rightarrow Y^{*}$ and $Y \rightarrow X^{*}$ have separable range.

- A sufficient condition is that either $C\left(B_{X^{*}}\right)$ or $C\left(B_{Y^{*}}\right)$ are WLD.

WLD in injective tensor products

$X \otimes_{\varepsilon} Y$ is WLD if and only if
X and Y are WLD and
all integral operators $X \rightarrow Y^{*}$ and $Y \rightarrow X^{*}$ have separable range.

- A sufficient condition is that either $C\left(B_{X^{*}}\right)$ or $C\left(B_{Y^{*}}\right)$ are WLD.
- When $X=Y$, it is necessary and sufficient that $C\left(B_{X^{*}}\right)$ is WLD.

Property (C)

X has (C) iff every x^{*} in the w^{*}-closure of a bounded dual set is in the closure of a sequence of convex combinations.

- If X has the λ-BSAP property, and $X \otimes_{\varepsilon} X$ has property (C), then all measures on $B_{X^{*}}$ are of countable type.
- (Plebanek, Sobota) If $C(K \times K)$ has property (C) then all measures on K have countable type.

