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Preservation of topological properties

If X and Y have (P), does X ®7 Y have (P)?
o X is reflexive.

e X is (subspace of) weakly compactly generated space.
X is SWCG & By is Eberlein compact

@ X is a (subspace of) Hilbert generated space.
X is SHG < Bx- is Uniform Eberlein compact.

@ X is weakly Lindelof determined space.
X is WLD < Bx- is Corson compact.
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Preservation can fail badly...

e A Hilbert space /3 has all good properties... but {e;® e;}
spans a copy of £1 inside {2 Q@ {>.

e We want (X ®z Y)* to be small. And remember

(X2 Y) = B(X x Y)=ZL(X,Y") = 2(Y,X").

@ So the problem is that there are too many operators ¢; — /3.
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When there are few bilinear maps

o If all X — Y™ are compact
and X, Y reflexive <= X ®, Y reflexive. (approx. prop.)

o If all X — Y* are Dunford-Pettis (x, — 0 = Tx, — 0):
and X, Y WCG = X®,; Y WCG.

o Ifall X = Y* and Y — X™* are c-Dunford-Pettis
and X,Y SWCG = X®,; Y SWCG.

o If all X — Y™ and Y — X* have separable range
and X, Y WLD <= X®; Y WLD. (always)



The tensor products ¢,(1) @z £q(1)

0 1/p+1/g<1 =, ®5ly is reflexive.

When 1/p+1/q < 1, the space £, @z {q is a subspace of a Hilbert
generated space.
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o X®Y =3span{x®y} C C(Bx: x By+),
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° (X®eY) =Bine(X X Y) =Line(X,Y") = Lime (Y, X7)
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o C(K)®eX = C(K,X). C(K)®e C(L) = C(K x L).

X, Y WLD
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= Bx+ x By« Corson
# C(Bx+ x By+) WLD
= X ®¢ Y SWCG.
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WLD in injective tensor products

X ®e Y is WLD if and only if
X and Y are WLD and
all integral operators X — Y* and Y — X* have separable range.

e A sufficient condition is that either C(Bx~) or C(By+) are
WLD.

@ When X =Y, it is necessary and sufficient that C(Bx-) is
WLD.



Property (C)

X has (C) iff every x* in the w*-closure of a bounded dual set is in
the closure of a sequence of convex combinations.

e If X has the A-BSAP property,and X ®, X has property (C),
then all measures on By are of countable type.

o (Plebanek, Sobota) If C(K x K) has property (C) then all
measures on K have countable type.



