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Introduction

Why do we need
• non-differentiable
• discontinuous

mappings in real-life applications?

Two reasons:
• natural: folding, breaking, changes of state;
• technical: necessary because of the available mathematical

tools.
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Introduction

Variational principles

• Fermat’s principle (Hero of Alexandria, Pierre de Fermat):
Light travels through media along paths of shortest time.

• Extremal action principle (Euler, Maupertuis): Bodies
travel along paths locally minimizing the reduced action
(integral of the momentum).

Other examples: Dirichlet’s principle for harmonic maps,
Einstein-Hilbert action in general relativity etc.

Minima of accumulative, i.e, integral quantities⇒ we measure
distance to minimizer with integral expressions.
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Introduction

Harmonic maps and W1,2

Canonical example: harmonic maps

A map f : Bn → Rm is minimizing harmonic if it is a minimum of
the Dirichlet energy

E(f ) =
∫

Bn
|Df |2

among all maps with the same boundary values as f .

What all maps?
C1(Bn), with distance d(f , g) = |E(f )− E(g)|?
Problems:

• d is not a metric (remedy: add ‖f − g‖L2 to d(f , g))
• space is not complete⇒ existence of minima is not

guaranteed.
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Introduction

Harmonic functions and W1,2

Right choice: Sobolev space W1,2(Bn) – the completion of C1

(or C∞) maps, in the norm

‖f‖W1,2 = ‖f‖L2 +
√
E(f )

But if n ≥ 2, then this space contains discontinuous functions:

log(log(e +
1
|x| )) ∈ W1,2(Bn).
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Introduction

Weak derivative and Sobolev spaces

Definition
A function g ∈ L1

loc is the weak derivative in the i-th direction of
f ∈ L1

loc(U), if∫
U

f
∂

∂xi φ = −
∫

U
g φ for any φ ∈ C∞

o (U).

We write g = Dif . If f ∈ C1(U), then Dif = ∂
∂xi f .

Definition (Sobolev space)

W1,p(U) = {f ∈ Lp(U) : Dif ∈ Lp(U) for i = 1, . . . , n}

If p ≤ n = dim U and n ≥ 2, then W1,p(U) contains
discontinuous functions.
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Introduction

Sobolev and Orlicz-Sobolev spaces

Advantages of Sobolev spaces:
• smooth functions are dense,

• nice embedding properties,
∗ Banach spaces with uniformly convex norm⇒ reflexive⇒

weak compactness of bounded subsets.
∗means that sufficiently nice functionals attain their minima
(minimizing sequences have weakly convergent subsequences).

Of interest are also Orlicz-Sobolev functions

W1,P(U) = {f ∈ L1(U) : P(|Dif |) ∈ L1(U) for i = 1, . . . , n},

e.g., for P(t) = tn/ log(e + t) and p < n, W1,p ⊃ W1,P ⊃ W1,n.
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Introduction

Topology encoded in the derivative

invertibility:
Assume X, Y are Banach, F : X→ Y is C1. If

DF(x) : X→ Y is a linear isomorphism (1)

then F is a local homeomorphism at x.
If (1) holds for all x ∈ X, then F is an open mapping.

local orientation:
If F : Ω ⊂ Rn → F(Ω) ⊂ Rn is C1 and

JF(x) = det DF(x) > 0, then F preserves local orientation at x.
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Introduction

Topology encoded in the derivative

Brouwer degree: Let M, N be closed manifolds of the same
dimension.

If F : M→ N is C1, then

deg F =
1

vol(N)

∫
M

JF(x) dx

Other topological invariants (Hopf index, characteristic classes)
of a mapping can be determined if the derivative is known.
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Introduction

For weakly differentiable mappings, we can calculate the
values of ‘invariants’, substituting the weak derivative where
the strong one should go.

Two (closely related) questions:
• If two weakly differentiable mappings are suff. close in

some Sobolev norm, do their ‘invariants’ match?
• If a continuous, non-differentiable mapping is weakly

differentiable, does this value of the ‘invariant’ match the
true topological invariant?

And are these ‘invariants’ of any use?
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Introduction

Degree for Sobolev maps

The formula for the Brouwer degree:

deg F =
1

vol(Nn)

∫
Mn

det DF(x) dx

defines a map deg : C1(M, N)→ Z, continuous in C1 norm.

It is also continuous in C1(M, N) with W1,n norm.
We extend deg by density to arbitrary W1,n(M, N) maps,
possibly discontinuous.

Theorem

Assume fm : M→ N, m = 1, 2, . . ., is a sequence of C1 maps
convergent in W1,n(M, N). Then the sequence deg fm is constant
for suff. large m.

TOPOLOGICAL INVARIANTS FOR DISCONTINUOUS MAPPINGS 11/21



Introduction

Degree for Sobolev maps

The formula for the Brouwer degree:

deg F =
1

vol(Nn)

∫
Mn

det DF(x) dx

defines a map deg : C1(M, N)→ Z, continuous in C1 norm.
It is also continuous in C1(M, N) with W1,n norm.

We extend deg by density to arbitrary W1,n(M, N) maps,
possibly discontinuous.

Theorem

Assume fm : M→ N, m = 1, 2, . . ., is a sequence of C1 maps
convergent in W1,n(M, N). Then the sequence deg fm is constant
for suff. large m.

TOPOLOGICAL INVARIANTS FOR DISCONTINUOUS MAPPINGS 11/21



Introduction

Degree for Sobolev maps

The formula for the Brouwer degree:

deg F =
1

vol(Nn)

∫
Mn

det DF(x) dx

defines a map deg : C1(M, N)→ Z, continuous in C1 norm.
It is also continuous in C1(M, N) with W1,n norm.
We extend deg by density to arbitrary W1,n(M, N) maps,
possibly discontinuous.

Theorem

Assume fm : M→ N, m = 1, 2, . . ., is a sequence of C1 maps
convergent in W1,n(M, N). Then the sequence deg fm is constant
for suff. large m.

TOPOLOGICAL INVARIANTS FOR DISCONTINUOUS MAPPINGS 11/21



Introduction

Other invariants

Take any other invariant of a map f , e.g., homotopy class [f ].

Question

Assume fm : M→ N is a sequence of smooth / C1/
continuous maps convergent in W1,p(M, N). Does the value of
the invariant ([fm]) become constant for large m?

If so, then the invariant (e.g., homotopy classes) can be
extended, by density, to all W1,p(M, N).
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Introduction

Motivation

Problem
Find a non-trivial (non-constant) harmonic function h : B→ R.

Solution: minimize Dirichlet’s energy E among all W1,2(B)
functions with prescribed, non-trivial values on ∂B.

Problem

Find a non-trivial harmonic function h : S2 → S2.

Sn has no boundary!
Solution: minimize Dirichlet’s energy E among all W1,2(S2)
functions with prescribed, non-zero homotopy class.
(White, Eells&Ferreira)
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Results

Function spaces

Definition

Assume N is isometrically embedded in Rk.

W1,p(M, N) = {f ∈ W1,p(M, Rk) : f (x) ∈ N for a.e. x ∈ M}

Smooth mappings need not be dense in W1,p(M, N) for p < n;
H1,p(M, N) := the closure of C∞ in W1,p.

Orlicz-Sobolev maps W1,P between manifolds are defined in
the same way; we are interested in those that are only slightly
larger than W1,n (e.g., P(t) = tn/ log(e + t)).
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Results

Homotopy classes

Theorem (White, 1986)

If M, N are compact, oriented Riemannian manifolds, dim M = n,
then the homotopy classes are well defined in W1,n(M, N).

Theorem (G., Hajłasz, 2012)

The homotopy classes are well defined in H1,p(M, N),
n− 1 ≤ p < n, if πn(N) = 0, and they cannot be well defined in
H1,p(Sn, N), if πn(N) = 0. An analogous result holds for a certain
class of Orlicz-Sobolev spaces, slightly larger than W1,n(M, N).
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Results

Degree

Theorem (G., Hajłasz, 2012)

If M, N are compact, oriented n-dim. Riemannian manifolds w/out
boundary, n− 1 ≤ p < n. Then the degree is well defined in
H1,p(M, N) (and in the aforementioned class of Orlicz-Sobolev
spaces) if and only if the universal cover of N is not a rational
homology sphere (RHS).

A rational homology n-sphere: an n-dimensional smooth manifold
with the same deRham cohomology as Sn.
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Results

Importance of the degree

Fact

If f , g ∈ C1(Bn, Rn) ∩ C(Bn, Rn) and f = g on ∂B, then∫
Bn

Jf =
∫

Bn
Jg.

f

g

Rn and deg F =
∫

Bn Jf −
∫

Bn Jg = 0.F :

because Rn is contractible. It holds for W1,n maps, as well.
What if the target is not contractible?
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Results

Importance of the degree

Lemma
If M is a smooth, compact, connected, oriented, n-dim. manifold
w/out boundary, n ≥ 2, then there is a smooth mapping f : Sn → M
of non-zero degree if and only if the universal cover of M is a RHS.

Corollary

If f , g ∈ C1(Bn, N) ∩ C(Bn, N), f = g on ∂Bn, and the universal
cover of N is not a RHS, then∫

Bn
Jf =

∫
Bn

Jg.
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Results

Continuity of mappings with positive Jacobian

Theorem (Gol’dšteı̆n&Vodop’yanov, 1976)

If U ⊂ Rn is open and f ∈ W1,n(U, Rn) has positive Jacobian a.e.,
then f is continuous.

The same holds for our Orlicz-Sobolev maps W1,P.
How about mappings between manifolds?

Theorem (G., Hajłasz, Pakzad, 2019)

If M, N are oriented, closed Riemannian n-manifolds and
f ∈ W1,n(M, N) has positive Jacobian a.e., then f is continuous.

Theorem (G., Hajłasz, 2019)

The same holds in our Orlicz-Sobolev spaces W1,P, if the universal
cover of N is not a RHS. However, if the universal cover of N is Sn,
then there exist discontinuous W1,P maps of positive Jacobian.
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Results

Other invariants, other directions...

Question

Assume f is a weakly or approximately differentiable,
continuous map.
How much of its topology can be read from the ‘invariants’
calculated using its weak/approximate derivative (which we
can study and estimate by analytic means)?

• local degree/orientation→ study of homeomorphisms
with Jacobian changing sign (2017, 2019),

• Hopf invariant and its generalizations→ study of C1 maps
with degenerate derivative, topologically non-trivial
examples showing sharpness of assumptions to the Sard
theorem (2018, 2019).
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Results

Thank you
for your attention
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