姚静涛 JingTao Yao

Department of Computer Science University of Regina jingtao yao@uregina.ca

University of Warsaw, Poland, Oct 12, 2023

Great Moments in Poland

Friendship

Three-way Clustering

- Meeting Polish friends in Poland after 20+ years of friendship and rough set research especially after the pandemic breakdown.
- Thank you Profs Dominik Slezak, Hung Son Nguyen, Marcin Szczuka, Piotr Wasilewski,

Birthday

Three-way Clustering

- Celebrating 80 birthday of Professor Andrzej Skowron, the great scientist, teacher, and friend!
- Wish Prof. Skowron 福如东海. 寿比南山!

Birth Place of Rough Sets

Three-way Clustering

- Rough sets turned 40 years last year.
- Prof Duoqian Miao and I organized a special issues Rough sets: achievements and future directions in International Journal of Approximate Reasoning
 - Yiyu Yao,
 The Dao of three-way decision and three-world thinking, IJAR 162:109032, 2023.
 - Guoqiang Wang, Pengfei Zhang, Dexian Wang, Hongmei Chen, Tianrui Li,
 Fast attribute reduction via inconsistent equivalence classes for large-scale data,
 IJAR 163:109039, 2023.
 - Ryszard Janicki,
 On Some Generalization of Rough Sets,
 IJAR 163/164:109032:109046, 2023.
 - More to come.

- Granule: "a clump of objects (or points) which are drawn together by indistinguishability, similarity, proximity or functionality". (Zadeh 1997)
- Granules: Classes, Clusters

L.A. Zadeh (1997) Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets and Systems 90:111-127.

J.T. Yao, A.V. Vasilakos, W. Pedrycz (2013) Granular Computing: Perspectives and Challenges. IEEE Transactions on Cybernetics 43(6):1977-1989.

J.T. Yao Three-way Clustering 5/61

- Computer algorithms that imitate human learning techniques.
- Computers learn from data vs. Human learn from experiences.
- Learn patterns from old data to generate a model to be used for new data.
- Supervise learning vs. Unsupervised learning vs. Reinforcement learning.
- Classification vs. Clustering

Classification vs. Clustering

Classification

Three-way Clustering

- Group objects into predefined classes so that objects with same characteristics are in same classes.
- Clustering
 - Group objects in clusters so that objects in the same cluster are (more) similar (than objects in other groups/clusters).
 - No predefined class labels.
- Classification: "complete" knowledge vs. Clustering: unknown knowledge.

Clustering

Three-way Clustering

- Unsupervised learning as cluster labels are unknown (vs. Supervised learning)
- Two types of clustering: hard clustering, soft clustering.
 - Hard clustering: one data point belongs and only belongs to one cluster.
 - Soft clustering: one data point can belong to different clusters with a probability likelihood.
- Soft in nature: fuzzy, no clear cut, degree, continuous.
 - \Rightarrow Three-way Clustering
- Research problems
 - Similarity, distance
 - Inter-cluster vs. intra-cluster.
 - Software engineering: coupling vs. cohesion, functional dependency, density theory.

Three-way Decision Theory

Three-way Clustering

- Thinking in three, analyzing in three, computing in three.
- Initially for decisions: an extension of binary decision-making model with an added 3rd option.
- Thinking in three is natural and popular.
 - Political: Right, Left, Centre
 - Law: Plea guilty, Plea not guilty, Plea nolo contendere (Latin: I do not wish to contend or no contest)
 - Medical: no action, further test, treat (based on testing, test-treatment thresholds)

Yao Y.Y. (2009) Three-way decision: an interpretation of rules in rough set theory. RSKT 2009. LNCS 5589: 642-649. Yao Y.Y. (2021) The geometry of three-way decision. Applied Intelligence 51:6298-6325.

Three-way Philosophy

Three-way Clustering

- Sartre (萨特): Not to choose is impossible, as not to choose is choosing not to choose. (McCall, 1987)
- Decisions, classifications, clustering.
 - Three levels, three aspects, three approaches, three regions.
 - Three levels of government: federal, provincial and municipal.
 - Sternberg's triangular theory of love: passions, intimacy, and decision/commitment.
 (Sternberg, 1997)
- In granular computing
 - Multiple levels, Multiple views/angles, Multiple hierarchies/approaches
 - When multiple = three.
- Three means multiple
 - 三思而行,举一反三,事不过三。。。
 - Multiple authors
 - John Doe et al. OR John Doe, Richard Roe, Mary Moe, et al.

McCall, S. (1987). Decision. Canadian Journal of Philosophy 17(2):261-287.

Sternberg, R.J. (1997). Construct validation of a triangular love scale. European Journal of Social Psychology 27:313-335.

Three Types of Data Analytics to Improve Decision Making

- Descriptive Analytics: What happened?
 - Diagnostic Analytics: Why did this happen?
- Predictive Analytics: What might happen in the future?
- Prescriptive Analytics: What should we do next?

Three-way Classification

Three-way Clustering

- Multi-classification => Binary classification => Ternary classification or tripartition
- Partition approaches: how to partition.
- Partition criteria: what do we mean a good partition.
 - Accuracy?
 - Coverage?
 - Speed?
 - Rule size?
 - Class/region size?
 - Region shifting?

Three-way Classification (cont.)

Three-way Clustering

- What if the criteria are contradict each other?
 - Conflict analysis?
 - Using game theory?
- In the case of rough sets, especially probabilistic rough sets, determining α, β pair for positive, boundary, and negative regions.
- Game-theoretic rough sets.
- Shadowed sets, determining elevation and reduction operations
- Game-theoretic shadowed sets.
- Game-theoretic three-way decisions.

Zhang, Y and Yao, JT (2020) Game theoretic approach to shadowed sets: A three-way tradeoff perspective. Information Science 507:540-552.

Azam, N; Zhang, Y and Yao, JT (2017) Evaluation functions and decision conditions of three-way decisions with game-theoretic rough sets. European Journal of Operational Research 261: 704-714.

Khan, MT; Azam, N; Khalid, S; Yao, JT (2017)A three-way approach for learning rules in automatic knowledge-based topic models. International Journal of Approximate Reasoning 82:210-226

Zhang, Y and Yao, JT (2017) Gini objective functions for three-way classifications. International Journal of Approximate Reasoning

81:103-114.
Yao, JT and Azam, N (2015) Web-Based Medical Decision Support Systems for Three-Way Medical Decision Making With
University

Game-Theoretic Rough Sets. IEEE Transactions on Fuzzy Systems 23:3-15
Azam, N and Yao, JT (2014) Game-theoretic rough sets for recommender systems. Knowledge-based Systems 72:96-107.

Three-way Clustering

- 3WD applications: three-way classifications, three-way concept analysis, three-way clustering
- Modelling probability likelihood into three categories (three-way):
 - Inside, outside, partial
- Fuzzy membership function: Core: =1, support: > 0.
 - Within a distance = > yes, farther than a distance = > no
 - Distance => fuzzy
- Key issues: distance/similarity function, threshold of three-way cut off
- yes, no, partial, which distance function, similarity function, to what degree consider yes
- Evaluation-based approaches:
 - Based on evaluation functions to generate thresholds.
- Operation-based approach:
 - Generating three-way clustering without thresholds calculation.

University of **Regina**

- The universal $U = \{o_1, o_2, o_3, ..., o_n\}$ and its K distinct clusters $C = \{c_1, c_2, ..., c_K\}$.
- Each cluster c_k is depicted by core ($Core(c_k)$) and support ($Support(c_k)$) sets
- $Core(c_k) \subseteq Support(c_k)$ and $Core(c_k)$, $Support(c_k) \subset U$.
- Now we have three parts or regions,

$$Inside(c_k) = Core(c_k), \tag{1}$$

$$Partial(c_k) = Support(c_k) - Core(c_k), \tag{2}$$

$$Outside(c_k) = U - Support(c_k). \tag{3}$$

J.T. Yao

Three-way Clustering

Generating Three Regions Based on Thresholds

• With thresholds $0 \le \beta < \alpha \le 1$, the three regions are defined as,

$$Inside(c_k) = \{o_i \in U | e(c_k, o_i) \ge \alpha\},\tag{4}$$

$$Partial(c_k) = \{ o_i \in U | \beta < e(c_k, o_i) < \alpha \}, \tag{5}$$

$$Outside(c_k) = \{o_i \in U | e(c_k, o_i) \le \beta\}.$$
 (6)

University of **Regina**

Statistics of Three-way Clustering Publications

- Web of Science, Three-way Clustering
- "three-way decision*" AND clustering OR "three-way cluster*"
- Number of papers: 111(121), total citations 1,655, h-index 20,
- Average per item 14.91 Citing Articles 896
- A few early non CS ones, multi-labeled clustering.

J.T. Yao Three-way Clustering 17/61

A Bit History

Three-way Clustering

- The term three-way clustering was used in some domain for classification or clustering for three-valued/multi-label data.
- There are eesearch not under the term three-way clustering
- The concept of assigning an object to a cluster in three degrees has been studied in the way of clustering combined with
 - interval sets,
 - H. Yu, Q.F. Zhou, A cluster ensemble framework based on three-way decisions RSKT 2013, LNCS 8171:302-312, 2013.
 - rough sets,
 - M. Joshi, P. Lingras, Y.Y. Yao, C. B. Virendrakumar, Rough, fuzzy, interval clustering for web usage mining, 10th ISDA, pp.397-402, 2010.
 - P. Lingras, Rough set clustering for web mining, IEEE ICFS, pp.1039-1044, 2002.
 - three-way decision, etc.
 - H. Yu, T. Su, X.H. Zeng, A Three-way decisions clustering algorithm for incomplete data, RSKT 2014, LNCS 8818:765-776, 2014.

 University

in early publications.

With Three-way Decisions

Three-way Clustering

A few examples of applying three-way decision concept in clustering including

- Using vote-based approach to coordinate hard or soft clusters to form three-way clusters.
 - H. Yu, Q.F. Zhou, A cluster ensemble framework based on three-way decisions RSKT 2013, LNCS 8171:302-312, 2013.
- Using a relation-graph based clustering algorithm to obtain different overlapping region types,
 - H. Yu, C. Zhang, F. Hu, An Incremental Clustering Approach Based on Three-Way Decisions, RSCTC 2014 LNCS 8536:152-159, 2014.
- Using 3WD to re-cluster new data to deal with data change,
 - H. Yu, P. Jiao, G.Y. Wang, Y.Y. Yao, Categorizing Overlapping Regions in Clustering Analysis Using Three-way Decisions. WI 2014 Vol. 2: 350-357, 2014.
- Using attribute significance and miss rate to form three region intervals.
 - H. Yu, T. Su, X.H. Zeng, A Three-way decisions clustering algorithm for incomplete data, RSKT 2014, LNCS 8818:765-776, 2014.

WoS Highly Cited Papers

Three-way Clustering

000000000000000000000

- Yu, H; Zhang, C; Wang, GY (2016) A tree-based incremental overlapping clustering method using the three-way decision theory. KBS 91:189-203, highly cited*
 - Proposing a tree-based incremental overlapping clustering method using the three-way decision theory.
 - Considering both new data and multiple cluster objects.
- Yu, H; Wang, XC; Wang, GY; Zeng XH (2020) An active three-way clustering method via low-rank matrices for multi-view

data. IS 507:823-839. highly cited

- Using low-rank matrices dealing with multi-view data.
- Based on consensus of low-rank matrix to form three-way.
 Proposing an active learning strategy.
- Wang, PX and Yao, YY (2018) CE3: A three-way clustering method based on mathematical morphology. KBS 155:54-65.
 - Operation based 3WC.
 - Using contraction and expansion operators inspired from math erosion and dilation.
 - significance and miss rate to form three region intervals.
 - CE3 k-means and CE3 spectral clustering algorithms.
- Afridi, MK; Azam, N; Yao, JT; Alanazi, E (2018) A three-way clustering approach for handling missing data using GTRS. IJAR 98:11-24.
 - Threshold determination is a key issue for evaluation-based 3WC.
 - Using game-theoretic rough sets to determine thresholds.
 - Experimented with missing data sets.

WoS Highly Cited Papers (Cont.)

- Zhou, J; Lai, ZH; Miao, DQ; Gao, C; Yue, XD (2020) Multigranulation rough-fuzzy clustering based on shadowed sets. IS 507:553-573.
 - Dealing with the uncertainties associated with rough set and fuzzy set-based clustering approaches
 - Using shadowed sets for boundary determination.
 - Optimizing multigranulation approximation regions.
- Yu, H; Jiao, P; Yao, YY; Wang, GY (2016) Detecting and refining overlapping regions in complex networks with three-way decisions. IS 373:21-41 (The term three-way clustering appeared here)
 - Starting with overlapping regions and refine them.
 - Using four macro types and eight micro types of nodes to form three-way regions.
 - · With an initial cluster core, expanding it according to a new fitness function, them merge trivial regions.
- Wang, PX; Shi, H; Yang, XB; Mi, JS (2019) Three-way k-means: integrating k-means and three-way decision. IJMLC 10:2767-2777.
 - · Resolving traditional k-means unambiguously assigns an object to a single cluster.
 - An overlap clustering is used to obtain the supports of the clusters.
 - Perturbation analysis is applied to separate the core regions from the supports.
- Zhang, QH; Xia, DY; Liu, KX; Wang, GY (2020) A general model of decision-theoretic three-way approximations of fuzzy sets based on a heuristic algorithm. IS 507:522-539
 - Modification of a decision-theoretic three-way model by replacing 0.5 fuzzy membership function to a variable value c where 0 < c < 1.
 - Using the elevation and reduction operations in shadowed sets as the loss function.
 - Using particle swarm optimization or PSO as a heuristic algorithm to optimize the loss function.

WoS Highly Cited Papers (3)

Three-way Clustering

- Yu, H; Chen, Y; Lingras, P; Wang, GY (2019) A three-way cluster ensemble approach for large-scale data. IJAR 115, pp.32-49
 - Proposing an efficient three-way cluster ensemble approach based on Spark which has the ability to deal with both hard clustering and soft clustering.
 - Developing a distributed three-way k-means clustering algorithm.
- Proposing a consensus clustering algorithm based on cluster units and devising various three-way decision strategies to
 assign small cluster units and no-unit objects.
- Yu. H; Chen, LY and Yao, JT (2021) A three-way density peak clustering method based on evidence theory. KBS 211:106532
 - Improving density peak clustering algorithm.
 - K-nearest with evidence theory to avoid error propagation.
 - 3W-DPET (Density Peak Evidence Theory) algorithm.

Three-way Clustering Research

Three-way Clustering

- Discretization of degree of the probability likelihood in soft clustering.
- Exploring various types of discretization functions other than core and support.
- Exploring various soft computing approaches.
- Determining threshold pair with evaluation-based or operation-based approaches
- Examining implications of a given threshold pair, game theory?

My Recent Three-way Clustering Papers

- Yu, H; Chen, LY and Yao, JT (2021) A three-way density peak clustering method based on evidence theory. Knowledge-Based Systems 211:106532.
- Jiang, CM; Li, ZC; Yao, JT (2022) A shadowed set-based three-way clustering ensemble approach. International Journal of Machine Learning and Cybernetics. 13(9):2545–2558.
 - Using possibilistic C-means clustering.
 - Generating three regions with shadowed sets.
 - Algorithm: S-M3WCE (Shadowed set-based Multi-granular Three-way Clustering Ensemble).
- Shah, JA; Azam, N; Alanazi, E; Yao, JT (2022) Image Blurring and Sharpening Inspired Three-way Clustering Approach. Applied Intelligence. 52:18131–18155.
 - Converting hard clusters into grey level images.
 - Applying cluster blur and cluster sharp operations.
 - Extracting three-way clusters based on results of blurring and sharpening operations.
 - Algorithm: BS3WC (blurring and sharpening based three-way clustering)

Three-way Clustering

My Recent Three-way Clustering Papers (cont.)

- Ali, B; Azam, N; Shah, A; Yao, JT (2021) A spatial filtering inspired three-way clustering approach with application to outlier detection. International Journal of Approximate Reasoning 130:1-21.
 - Adopting minimum and maximum filters.
 - RE3WC: reduction and elevation based three-way clustering.
 - Using RE3WC to detect outliers.
- Afridi, MK; Azam, N and Yao, JT (2020) Variance based three-way clustering approaches for handling overlapping clustering. International Journal of Approximate Reasoning 118:47-63.
 - Using different variance based criteria to determine thresholds.
 - Proposing 3WC-OR algorithm (overlapping region).
 - GTRS and GA.
- Ali, B; Azam, N; Yao, JT (2022) A three-way clustering approach using image enhancement operations. International Journal
 of Approximate Reasoning. 149:1-38.
 - Using an evaluation function to depict the relationship between an object and a cluster.
 - Using blur and sharp options to form three regions.
 - Algorithm: BS3 (blurring and sharpening inspired three-way clustering)
- Afridi, MK; Azam, N; Yao, JT; Alanazi, E (2018) A three-way clustering approach for handling missing data using GTRS.
 International Journal of Approximate Reasoning 98:11-24.

Three-way Clustering

A Three-way Density Peak Clustering Method based on Evidence Theory

- Improving density peak clustering algorithm.
- K-nearest with evidence theory to avoid error propagation.
- 3W-DPET (3-Way Density Peak Evidence Theory)

Yu, H; Chen, LY and Yao, JT (2021) A three-way density peak clustering method based on evidence theory. Knowledge-Based Systems 211:106532.

J.T. Yao Three-way Clustering 26/61

Density Peak Clustering

Density peak

Three-way Clustering

- Using density level as a measure.
- A cluster centre has a higher local density than its neighbours.
- and a relatively large distance from the other centres.
- Local density

$$\rho_i = \sum_j \chi \left(d_{ij} - d_c \right)$$

$$\rho_i = \sum_{j} \exp\left(-\frac{d_{ij}^2}{d_c^2}\right)$$

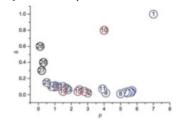
Distance

$$\delta_{i} = \begin{cases} \min_{j:\rho_{j} > \rho_{i}} \left(d_{ij} \right) & if \exists \rho_{j}, \rho_{j} > \rho_{i} \\ \max d_{ij} & Otherwise \end{cases}$$

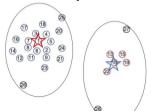
mini: to find short distance & high density points.

University of **Regina**

• Using decision graph (density, distance) to find cluster centres.

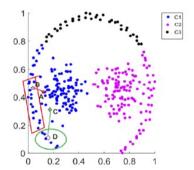


• Assign objects to clusters based on density levels.



Propagation Errors in Density Peak Clustering Algorithm

- If an object is wrongly labeled, it will be propagated in the subsequent assignment.
- no correction mechanism can be implemented to modify it.



- Local and neighbour information should be considered.
- Not just the label of the nearest object with higher density.

University of **Regin**a

J.T. Yao Three-way Clustering 29/61

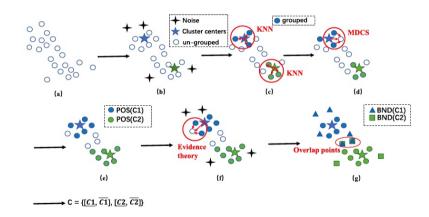
3W-DPET (3-Way Density Peak Evidence Theory)

Following DPC while improving the assignment strategy of non-centre points.

- Determine cluster centres and noises. (b).
- Remove noises and assign points to centres based on kNN. (c). Merge other neighbour points into the positive regions using a midrange distance comparison scheme. (d), (e).
- Allocate remaining points to the boundary regions or negative regions with evidence theory. (f), (g).
 - Apply evidence theory to deal with these objects.
 - For an non-grouped object p, its K-nearest neighbors are actually K pieces of information (or evidence) to assign p into the most possible cluster.

J.T. Yao

A 3W-DPET Demo Example



Evidence Theory

Three-way Clustering

- Also called Dempster-Shafer theory, reasoning with uncertainty.
- ullet The proposition space Θ includes all possible answers to a problem.
- Each element in 2^{Θ} represents a proposition.
- Mass function: $m = 2^{\Theta} \rightarrow [0, 1]$ while

$$\sum_{A\in 2^{\Theta}} m(A) = 1, m(\varnothing) = 0.$$

m(A) is the confidence level to the proposition A. A is a focal element if m(A) > 0.

• Combining two pieces of independent evidence with Dempster's combination rule.

$$m(A) = m_1(B_1) \oplus m_2(B_2)$$

$$= \begin{cases} \frac{\sum_{B_1 \cap B_2 = A} m_1(B_1) m_2(B_2)}{Y} & \text{if } B_1 \cap B_2 \neq \emptyset \\ 0 & \text{if } B_1 \cap B_2 = \emptyset \end{cases}$$

Algorithm 1: Detect and Assign Core Points using Midrange Distance

```
Input: cluster centers \tau = \{\tau_1, \dots, \tau_k\}, the set V - \Omega
    Output: positive regions \{POS(C_1), POS(C_2), \dots, POS(C_k)\}
 1 for i = 1, i < k do
         find K-nearest neighbors of \tau_i \longrightarrow KNN_{\tau_i}; POS(C_i) = [\tau_i; KNN_{\tau_i}];
         Initialize Q = KNN_{\tau_i};
 3
         while O is not empty do
               Select the head point p;
               find its K-nearest neighbors KNN_n = \{q_1, \dots, q_i, \dots, q_K\};
 6
               d_p^{Kmax} = max(d_{pq_1}, d_{pq_2}, \dots, d_{pq_K});
 7
               d_p^{Kmin} = min(d_{pq_1}, d_{pq_2}, \ldots, d_{pq_K});
 8
 9
               for each point q_i in KNN_p do
10
                    if d_{pq_i} \leq d_p^{mid} then
11
                         POS(C_i) = POS(C_i) \bigcup q_i;
12
                         Add q_i to the end of Q;
13
               Remove p from the head of Q;
14
15 return to \{POS(C_1), POS(C_2), \dots, POS(C_k)\}:
```

University of **Regina**

J.T. Yao

Algorithm 2: Assign Fringe Points based on Evidence Theory

```
Input: The set of h fringe points V - \{POS(C_1), POS(C_2), \dots, POS(C_k)\}
    Output: \{BND(C_1), BND(C_2), \dots, BND(C_k)\}
 1 for each fringe point pi do
         generate K mass functions m^{p_i,q_j} using Eqs. (12)-(13);
         fuse K mass functions: m^{p_i} = m^{p_i,q_1} \oplus m^{p_i,q_2} \oplus \dots \oplus m^{p_i,q_K} using
          Eq. (14):
         transform m^{p_i} to the probability distribution \mu_{p_i} using Eq. (15);
 5 construct an allocation matrix AM = [u_{n_i}^J]_{h \times k};
 6 while the maximum \mu_{p_i}^J in AM is larger than 1/k do
         x, y \leftarrow arg \max_{i \in [1,h], j \in [1,k]} u_{p_i}^j;
         BND(C_v) = BND(C_v) \cap p_v:
         for each unassigned point q satisfying p_x \in KNN_q do
               construct the new mass function m_{new}^{q,p_\chi} using Eqs. (12)-(13);
10
               m_{new}^q = m_{new}^{q,p_X} \oplus m^q using Eq. (14);
               transform m_{n_1}^q into the probability distribution using Eq. (15):
12
               update the related values in the matrix AM;
14 for each fringe point pi do
         generate K mass functions m^{p_i,q_j} using Eqs. (12)-(13):
         fuse K mass functions: m^{p_i} = m^{p_i,q_1} \oplus m^{p_i,q_2} \oplus \dots \oplus m^{p_i,q_K} using
          Eq. (14):
         transform m^{p_i} to the probability distribution \mu_{p_i} using Eq. (15);
         y \leftarrow \arg \max_{j \in [1,k]} \mu_{p_i}^j;
         BND(C_v) = BND(C_v) \cap p_i;
         if \exists t \in [1, k], t \neq y, abs(\mu_{n_t}^y - \mu_{n_t}^t) < \Delta then
               BND(C_t) = BND(C_t) \cap p_i;
22 if the point p is still not assigned then
         Find the assigned point a which is nearest to p:
         Assign p to the boundary region of the same cluster as q located:
25 return to {BND(C1), BND(C2), ..., BND(Ck)}:
26 return to C = \{[C_1, \overline{C_1}], [C_2, \overline{C_2}], \dots, [C_k, \overline{C_k}]\};
```

Flame	Par	ACC	ARI	NMI	Spiral	Par	ACC	ARI	NMI
3W-DPET	7	1.000	1.000	1.000	3W-DPET	8	1.000	1.000	1.000
DPCSA	/	1.000	1.000	1.000	DPCSA	1	1.000	1.000	1.000
DPC-KNN	3	1.000	1.000	1.000	DPC-KNN	5	1.000	1.000	1.000
DPC	0.1	1.000	1.000	1.000	DPC	0.06	1.000	1.000	1.000
K-means	2	0.848	0.483	0.436	K-means	3	0.345	-0.006	0.001
FCM	/	0.850	0.488	0.442	FCM	1	0.340	-0.006	0.000
Path-based	Par	ACC	ARI	NMI	Compound	Par	ACC	ARI	NMI
3W-DPET	8	0.993	0.980	0.970	3W-DPET	5	0.880	0.846	0.859
DPCSA	/	0.823	0.613	0.731	DPCSA	/	0.840	0.828	0.844
DPC-KNN	7	0.760	0.480	0.561	DPC-KNN	2	0.870	0.809	0.852
DPC	0.08	0.753	0.472	0.555	DPC	0.28	0.830	0.833	0.857
K-means	3	0.743	0.462	0.547	K-means	6	0.614	0.544	0.703
FCM	/	0.747	0.465	0.550	FCM	/	0.501	0.406	0.619
R15	Par	ACC	ARI	NMI	Aggregation	Par	ACC	ARI	NMI
3W-DPET	10	0.998	0.996	0.997	3W-DPET	15	1.000	1.000	1.000
DPCSA	/	0.993	0.986	0.989	DPCSA	/	0.973	0.958	0.958
DPC-KNN	5	0.997	0.993	0.994	DPC-KNN	20	0.997	0.996	0.992
DPC	0.04	0.997	0.993	0.994	DPC	0.09	0.998	0.996	0.992
K-means	15	0.892	0.886	0.952	K-means	7	0.788	0.707	0.831
FCM	/	0.997	0.993	0.994	FCM	/	0.778	0.684	0.825
D31	Par	ACC	ARI	NMI	S1	Par	ACC	ARI	NMI
3W-DPET	15	0.993	0.985	0.989	3W-DPET	19	0.998	0.995	0.995
DPCSA	/	0.968	0.935	0.957	DPCSA	/	0.994	0.988	0.988
DPC-KNN	20	0.970	0.940	0.960	DPC-KNN	8	0.995	0.990	0.990
DPC	0.03	0.968	0.936	0.958	DPC	0.03	0.995	0.990	0.990
K-means	31	0.866	0.847	0.934	K-means	15	0.904	0.902	0.957
FCM	1	0.891	0.862	0.936	FCM	1	0.915	0.899	0.955

3W-DPET achieved relatively the best amongst all algorithms.

J.T. Yao Three-way Clustering 35/61

Experimental Results with Real-world Data

Iris	Par	ACC	ARI	NMI	Libras	Par	ACC	ARI	NMI
3W-DPET	7	0.987(1)	0.960	0.941	3W-DPET	7	0.508(1)	0.376	0.628
DPCSA	/	0.967(2)	0.904	0.885	DPCSA	/	0.458(3)	0.309	0.626
DPC-KNN	2	0.960(3.5)	0.886	0.862	DPC-KNN	11	0.497(2)	0.361	0.634
DPC	0.17	0.960(3.5)	0.886	0.862	DPC	0.53	0.453(4)	0.317	0.601
K-means	3	0.847(6)	0.678	0.716	K-means	15	0.443(5)	0.300	0.583
FCM	/	0.893(5)	0.729	0.743	FCM	/	0.133(6)	0.069	0.276
Wine	Par	ACC	ARI	NMI	Parksins	Par	ACC	ARI	NMI
3W-DPET	7	0.978(1)	0.931	0.909	3W-DPET	6	0.862(1)	0.432	0.396
DPCSA	/	0.910(4)	0.741	0.753	DPCSA	/	0.821(4)	0.269	0.274
DPC-KNN	16	0.904(5)	0.727	0.743	DPC-KNN	1	0.851(2.5)	0.391	0.365
DPC	0.42	0.882(6)	0.672	0.710	DPC	0.06	0.851(2.5)	0.391	0.365
K-means	3	0.942(3)	0.838	0.826	K-means	2	0.628(6)	0.049	0.234
FCM	/	0.949(2)	0.850	0.834	FCM	. /	0.672(5)	0.111	0.235
Seeds	Par	ACC	ARI	NMI	Credit	Par	ACC	ARI	NMI
3W-DPET	4	0.933(1)	0.815	0.794	3W-DPET	8	0.419(3)	0.021	0.010
DPCSA	/	0.881(6)	0.687	0.667	DPCSA	/	0.428(1.5)	0.020	0.010
DPC-KNN	3	0.914(2)	0.766	0.734	DPC-KNN	3	0.428(1.5)	0.020	0.010
DPC	0.08	0.905(3)	0.745	0.719	DPC	0.43	0.404(4)	0.032	0.026
K-means	3	0.888(5)	0.700	0.671	K-means	3	0.398(5)	0.021	0.027
FCM	/	0.900(4)	0.727	0.691	FCM	/	0.387(6)	0.024	0.028
Thyroid	Par	ACC	ARI	NMI	Waveform	Par	ACC	ARI	NMI
3W-DPET	2	0.823(3)	0.421	0.446	3W-DPET	3	0.663(1)	0.309	0.370
DPCSA	/	0.749(6)	0.212	0.291	DPCSA	/	0.524(5)	0.135	0.152
DPC-KNN	1	0.781(4)	0.273	0.317	DPC-KNN	2	0.635(3)	0.223	0.218
DPC	0.6	0.763(5)	0.220	0.285	DPC	0.48	0.645(2)	0.255	0.256
K-means	3	0.884(2)	0.619	0.598	K-means	3	0.512(6)	0.252	0.364
FCM	1	0.907(1)	0.693	0.666	FCM	1	0.628(4)	0.353	0.374

3W-DPET achieved the highest on 6 out of 8 datasets.

J.T. Yao

A Shadowed Set-based Three-way Clustering Ensemble Approach

• Using possibilistic C-means clustering.

Three-way Clustering

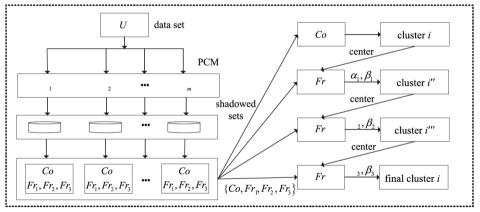
- Generating three regions with shadowed sets.
- Algorithm: S-M3WCE (Shadowed set-based Multi-granular Three-way Clustering Ensemble).

Jiang, CM; Li, ZC; Yao, JT (2022) A shadowed set-based three-way clustering ensemble approach. International Journal of Machine Learning and Cybernetics. 13(9):2545–2558.

Shadowed set-based Multi-granular Three-way Clustering Ensemble

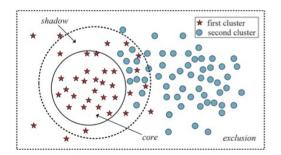
- Generate a set of clustering results with Possibilistic C-means Clustering (PCM).
- Map PCM membership degree into the set {0, [0, 1], 1} (shadowed sets).
- Divided objects into different approximation regions by analyzing the uncertainty relationship between objects and clusters.
- Determine cluster centres by the objects in the core region $C_o(Ci)$.
- Assign objects in fringe regions, $F_{r_1}(C_i)$, $F_{r_2}(C_i)$, and $F_{r_3}(C_i)$ to the $C_o(C_i)$ by shadowed sets.
- Objects that cannot be divided are left in fringe regions.

The Framework of S-M3WCE



Construct Three-way Clustering through Shadowed Sets

- Use the possibilistic C-means clustering or PCM.
- Each cluster contains two subsets/regions: core and shadowed regions.



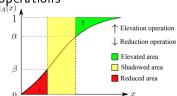
Shadowed Sets

Three-way Clustering

- Shadowed sets are symbolic representation of numeric fuzzy sets
- A shadowed set: a mapping from the universe $U\{0,[0,1],1\}$ based on a membership function $\mu_A(x)$ and a pair of thresholds (α,β) , i.e., $S:U\to\{0,[0,1],1\}$,

$$S_{\mu_A}(x) = \begin{cases} 1, & \mu_A(x) \ge \alpha, \\ 0, & \mu_A(x) \le \beta, \\ [0, 1], & \beta < \mu_A(x) < \alpha. \end{cases}$$

Elevation and reduction operations



Zhang, Y; Yao, JT (2020) Game theoretic approach to shadowed sets: a three-way tradeoff perspective. Information Sciences. University of Reginal

Construct Three-way Clustering through Shadowed Sets

- Given a set of data $U = \{1, 2, ..., n\}$, objects in U are partitioned into k clusters, $C = \{C_1, C_2, ..., C_k\}$ by PCM.
- The $C_i(x)$ denotes the membership degree between x and C_i .
- With a therehod pair (α, β) , three operations are defined as

$$\begin{split} EO &= \left\{ \mu_{C_j}(x) = 1 \mid \mu_{C_j}(x) \geq \alpha \right\}, \\ RO &= \left\{ \mu_{C_j}(x) = 0 \mid \mu_{C_j}(x) \leq \beta \right\}, \\ SO &= \left\{ \mu_{C_j}(x) = [0,1] \mid \beta < \mu_{C_j}(x) < \alpha \right\} \end{split}$$

Three regions are formed.

$$\begin{aligned} &\operatorname{core}\left(C_{j}\right) = \left\{x \in U \mid \mu_{C_{j}}(x) = 1\right\},\\ &\operatorname{shadow}\left(C_{j}\right) = \left\{x \in U \mid \mu_{C_{j}}(x) = [0, 1]\right\},\\ &\operatorname{exclusion}\left(C_{j}\right) = \left\{x \in U \mid \mu_{C_{j}}(x) = 0\right\}. \end{aligned}$$

University of **Regina**

Uncertainty Analysis of Attribution Relationship

Construct two kinds of shadowed set-based multi-granulation models.

• The pessimistic multi-granulation lower approximation set is constructed as,

$$\sum_{i=1}^{m} \pi_{i}^{p}(C_{j}) = \bigcap_{i=1}^{m} \underline{apr}^{\pi_{i}^{p}}(C_{j})$$

$$= \left\{ x \in U \middle| core_{\pi_{1}}(C_{j}) \wedge core_{\pi_{2}}(C_{j}) \wedge \cdots \wedge core_{\pi_{m}}(C_{j}) \right\}$$

$$= \left\{ x \in U \middle| \mu_{C_{j}}^{\pi_{1}}(x) = 1 \wedge \mu_{C_{j}}^{\pi_{2}}(x) = 1 \wedge \cdots \wedge \mu_{C_{j}}^{\pi_{m}}(x) = 1 \right\}.$$

The optimistic multi-granulation lower approximation set is constructed as,

$$\begin{split} \sum_{i=1}^{m} \pi_{i}^{o}\left(C_{j}\right) &= \bigcup_{i=1}^{m} \underline{apr}^{\pi_{i}^{o}}\left(C_{j}\right) \\ &= \left\{x \in U \middle| core_{\pi_{1}}\left(C_{j}\right) \lor core_{\pi_{2}}\left(C_{j}\right) \lor \cdots \lor core_{\pi_{m}}\left(C_{j}\right)\right\} \\ &= \left\{x \in U \middle| \mu_{C_{j}}^{\pi_{1}}(x) = 1 \lor \mu_{C_{j}}^{\pi_{2}}(x) = 1 \lor \cdots \lor \mu_{C_{j}}^{\pi_{m}}(x) = 1\right\}. \end{split}$$

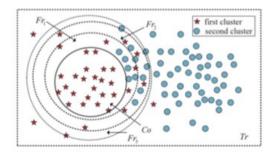
University of **Regina**

J.T. Yao

Partial Order of Four Approximation Sets

$$Co(C_j) \succ Fr_1(C_j) \succ Fr_2(C_j) \succ Fr_3(C_j)$$

- Fr₁: the difference between optimistic upper set and pessimistic lower set.
- Fr₂: the difference between optimistic upper set and optimistic lower set.
- Fr₃: the difference between optimistic lower set and pessimistic upper set.



Formation of Four Approximation Sets

$$Co(C_{j}) = \sum_{i=1}^{m} \pi_{i}^{p}(C_{j}),$$

$$Fr_{1}(C_{j}) = \sum_{i=1}^{m} \pi_{i}^{o}(C_{j}) - \sum_{i=1}^{m} \pi_{i}^{p}(C_{j})$$

$$= \{x \in U \mid x \in \sum_{i=1}^{m} \pi_{i}^{o}(C_{j}) \land x \notin \sum_{i=1}^{m} \pi_{i}^{p}(C_{j})\},$$

$$Fr_{2}(C_{j}) = \sum_{i=1}^{m} \pi_{i}^{o}(C_{j}) - \sum_{i=1}^{m} \pi_{i}^{o}(C_{j})$$

$$= \{x \in U \mid x \in \sum_{i=1}^{m} \pi_{i}^{o}(C_{j}) \land x \notin \sum_{i=1}^{m} \pi_{i}^{o}(C_{j})\},$$

$$Fr_{3}(C_{j}) = \sum_{i=1}^{m} \pi_{i}^{p}(C_{j}) - \sum_{i=1}^{m} \pi_{i}^{o}(C_{j})$$

$$= \{x \in U \mid x \in \sum_{i=1}^{m} \pi_{i}^{p}(C_{j}) \land x \notin \sum_{i=1}^{m} \pi_{i}^{o}(C_{j})\}.$$

University of **Regina**

• Calculate cluster centre with objects in the core region.

$$v_j = \frac{\sum_{k=1}^N x_k}{\left| C_j \right|}.$$

• Calculate membership degree $\mu_{C_k}(x_i)$ between objects x_i and cluster C_k where d_{ik} denotes distance between object x_i and cluster C_k

$$\mu_{C_k}(x_i) = \frac{1}{\sum_{j=1}^{C} (\frac{d_{ik}}{d_{ik}})^{\frac{2}{m-1}}}.$$

University of **Regina**

ar end

S-M3WCE Algorithm

```
Input: A set of objects U = \{x_1, x_2, ..., x_n\} and the number of clusters k.
    Output: The results of three-way clustering ensemble.
 1 Generate a set of individual clustering \Pi = \{\pi_1, \pi_2, ..., \pi_m\} using PCM algorithm.
        for C_i in \pi do
 3
              Calculate optimal threshold \alpha, and \beta, according to Formula 7.
              for x in U do
 6
                   if \mu_{C_i}(x) \ge \alpha_i then
                        Divide x into core(C_i).
 8
                   else if \mu_{C_i}(x) \leq \beta_i then
10
                        Divide x into exclusion(C_1).
**
                   else if \beta_i : uc_i(x) : \alpha_i then
12
                        Divide x into shadow(C_1).
13
14
                   // Determine the lower approximation region and upper
                     approximation region of C_t.
                    apr(C_1) = core(C_1).
16
17
                   \overline{apr}(C_1) = core(C_1) \cup shadow(C_1).
18
              end
19
        and
       Uncertainty analysis of attribution relationship.
as for C. in C. do.
             \pi_i^p(C_j) = \bigcap_{i=1}^m \underline{apr}^{\pi_i^p}(C_j), \sum_{j=1}^m \pi_i^p(C_j) = \bigcup_{j=1}^m \underline{apr}^{\pi_i^p}(C_j),
             \pi_i^o(C_j) = \bigcup_{i=1}^m \frac{apr^{\pi_i^o}(C_j)}{i}, \sum_{i=1}^m \pi_i^o(C_j) = \bigcap_{i=1}^m \overline{apr^{\pi_i^o}(C_j)}.
24
         // Divide all objects into four different approximation regions Co(C<sub>i</sub>).
          Fr_1(C_t), Fr_2(C_t) and Fr_2(C_t) using Formula 12.
        for Fr_1(C_1) in \{Fr_1(C_1), Fr_2(C_1), Fr_3(C_1)\} do
26
2+
             Calculate new centers and membership degree using Formula 14 and
              Calculate the optimal thresholds \alpha_i and \beta_i using Formula 7.
28
               // Divide object in Fr<sub>t</sub>(C<sub>t</sub>) using shadowed sets.
29
30
              for x in Fr_i(C_i) do
31
                   if \mu_{C_i}(x) \ge \alpha_i then
                        Divide x into Co(C_t).
32
33
34
                  Fr'_{i}(C_{i}) = Fr_{i}(C_{i}) - Co(C_{i}), Fr_{i+1}(C_{i}) = Fr'_{i}(C_{i}) \vee Fr_{i+1}(C_{i}).
             and
35
         end
36
```


Experimental Results

- Experimented 12 datasets, including 4 synthetic sets sets and 8 real-world sets.
- Three evaluation criteria: clustering accuracy (ACC), adjusted rand index (ARI), and normalized mutual information (NMI).
- Algorithms for comparison: voting-based approach, similarity partition (CSPA), weighted shared nearest neighbor
 graph (WSNNG), evidence accumulation (EA), the voting-based three-way clustering ensemble algorithm (TWCE), and the
 rough set-based incremental fuzzy clustering ensemble learning algorithm (IFCERS).
- S-M3WCE achieved highest ACC amongst 3 out 4 synthetic sets and 7 out 8 real-world sets. The overall average was the first.
- The average ranking with statistic analysis of ACC, ARI, and NMI, suggested that S-M3WCE outperformed comparison algorithms.

Image Blurring and Sharpening Inspired Three-way Clustering Approach

- An operation-based approach.
- Using image inspired cluster blur and sharp operators.
- Three-way clusters are constructed without threshold determination.
- Three steps

Three-way Clustering

- Converting hard clusters into grey level images.
- Applying cluster blur and cluster sharp operations.
- Extracting three-way clusters based on results of blurring and sharpening operations.

Shah, JA; Azam, N; Alanazi, E; Yao, JT (2022) Image Blurring and Sharpening Inspired Three-way Clustering Approach, Applied Intelligence. 52:18131-18155

J.T. Yao Three-way Clustering 49/61

Blurring and Sharpening Operations

Three-way Clustering

- Let f(x, y) represent the grey scale intensity at coordinates (x, y).
- The blurring operation of pixel (x, y) is defined as,

$$f_{Blur}(x,y) = \frac{1}{mn} \sum_{(s,t) \in S_{xy}} f(s,t)$$
 (7)

where S_{xy} is a neighborhood of size $m \times n$ centered at pixel (x, y).

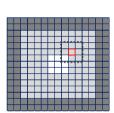
- The blurring operation will change the pixel (x, y) to an average pixel value of the neighborhood pixels S_{xy} .
- The sharpening operation of pixel (x, y) is defined as,

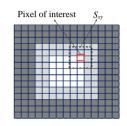
$$f_{Sharp}(x,y) = f(x,y) + k \times [f(x,y) - f_{Blur}(x,y)]$$
 (8)

k is a scaling factor for controlling the sharpening effect.

- Sharpening operation: subtracting the blurred image from the original image University
- Sharp images are produced when the edges are added to the original image. of Reginal

Blurring and Sharpening Operations





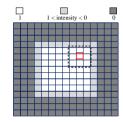


Figure: After blurring

Figure: Input image

Figure: After sharpening

- The light grey boxes correspond to the blurry or unclear part of the object while the dark grey boxes are assumed to be the background.
- The blurring operation reduces the sharp/clear details and results in reduced size of the clear part of the object.
- The sharpening operation increases the sharp/clear details and results in a reduced blurry regionsity
 and an increased size of the clear part of the object.

Three-way Clustering using Blurring and Sharpening

- Step 1: Conversion of hard clusters into images.
- Step 2: Applying cluster blur and cluster sharp operations.
- Step 3: Extraction of three-way clustering using cluster blur and cluster sharp operations.

J.T. Yao Three-way Clustering 52/61

Step 1: Conversion of Hard Clusters into Images

- $U = \{o_1, o_2, o_3, \ldots, o_n\}$: a finite set of data points with N attributes.
- $C = \{c_1, c_2, \ldots, c_K\}$: a partition of the data points.
- There will be s^N samples if we divide each attribute into s number of equidistant parts or samples.
- Each sample is treated as a pixel of an image (x_1, \ldots, x_N) .
- The set P: the set of all pixels of the image.
- The intensity of the pixel $(x_1, x_2, x_3, \dots, x_n)$ to cluster c_k ,

$$Image_{c_{k}}(x_{1},...,x_{n}) = \frac{|O_{(x_{1},...,x_{n})}|}{\max\limits_{(x_{1},...,x_{n})\in P}(|O_{(x_{1},...,x_{n})}|)} \times \frac{|O_{(x_{1},...,x_{n})}\cap c_{k}|}{|O_{(x_{1},...,x_{n})}|}$$
(9)

• The relative density of data points associated with the pixel X The relationship of the same data points with that of cluster c_k .

Converting Data Points to Grey Scale Image

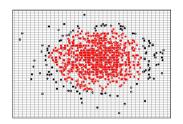


Figure: Data Points on a Grid

Figure: Gray Scale Image

- The central white pixels: the clear part of a cluster; the outer light grey pixels: the unclear or outer sparse region of the cluster.
- A subspace has a high density and high association with a cluster, then it will be assigned an intensity reflecting a lighter shade of grey (a colour close to white).
- A subspace has a low density or low association with a cluster, then it will be assigned an University intensity reflecting a darker shade of grey (a colour close to black).

Step 2: Applying Cluster Blur and Cluster Sharp Operations

- $Neig_q(x_1, ..., x_n)$: the set of q neighbouring pixels of a pixel $(x_1, ..., x_n)$.
- The cluster blur operation on an image pixel corresponding to cluster c_k is defined as,

$$CB_{c_k}(x_1,\ldots,x_n) = \frac{1}{q} \sum_{(y_1,\ldots,y_n)\in Neig_q(x_1,\ldots,x_n)} (Image_{c_k}(x_1,\ldots,x_n))$$
(10)

• The blurring operation for a pixel will be1 when all the neighbours of the same pixel have a grey level intensity of 1,

$$CB_{c_k}(x_1,\ldots,x_n) = \begin{cases} 1 & \forall_{(y_1,\ldots,y_n) \in Neig_q(x_1,\ldots,x_n)} & Image_{c_k}(x_1,\ldots,x_n) = 1 \\ < 1 & otherwise \end{cases}$$
(11)

University of **Regina**

J.T. Yao Three-way Clustering 55/61

• The cluster sharp operation on an image pixel to cluster c_k is defined as,

$$CS_{c_k}(x_1,\ldots,x_n) = Image_{c_k}(x_1,\ldots,x_n) + \left(Image_{c_k}(x_1,\ldots,x_n) - CB_{c_k}(x_1,\ldots,x_n)\right)$$

$$(12)$$

- The cluster sharp for a pixel produce a value of 1 in any one of the following three
 cases.
 - Case 1: When the cluster blur for the same pixel produces a value of 1, $CB_{C_1}(x_1,...,x_n)=1$.
 - Case 2: The pixel itself has an intensity of 1. The value of $CS_{c_k}(x_1,...,x_n)$ will always be greater than 1 which is truncated to obtain a value of 1.
 - Case 3: If the pixel intensity is greater than the mean intensity of its neighbouring pixels.

 University

J.T. Yao Three-way Clustering 56/61

Step 3: Extraction of 3WC using Cluster Blur and Cluster Sharp Operations

• The core set consists of only those objects whose corresponding pixel after the cluster blur operation results in a value of 1.

$$Core(c_k) = \{o_i \in U | o_i \in O_{(x_1, \dots, x_n)} \land CB_{c_k}(x_1, \dots, x_n) = 1\}$$
 (13)

• The support set consists of those objects whose corresponding pixel value after cluster sharp operation results in a value of 1.

$$Support(c_k) = \{o_i \in U | o_i \in O_{(x_1, x_2, \dots, x_n)} \land CS_{c_k}(x_1, x_2, \dots, x_n) = 1\}$$
 (14)

J.T. Yao Three-way Clustering 57/61

• The three regions of 3WC based on the sets of $Core(c_k)$ and $Support(c_k)$ are defined as.

$$Inside(c_{k}) = Core(c_{k})$$

$$= \{o_{i} \in U | o_{i} \in O_{(x_{1},...,x_{n})} \land CB_{c_{k}}(x_{1},...,x_{n}) = 1\}$$

$$Outside(c_{k}) = U - Support(c_{k})$$

$$= \{o_{i} \in U | o_{i} \in O_{(x_{1},...,x_{n})} \land CS_{c_{k}}(x_{1},...,x_{n}) \neq 1\}$$

$$Partial(c_{k}) = Support(c_{k}) - Core(c_{k})$$

$$= \{o_{i} \in U | o_{i} \in O_{(x_{1},...,x_{n})} \land CS_{c_{k}}(x_{1},...,x_{n}) = 1 \land$$

$$CB_{c_{k}}(x_{1},...,x_{n}) \neq 1\}$$

$$(15)$$

University of **Regina**

J.T. Yao Three-way Clustering 58/61

Blurring and Sharpening based Three-way Clustering Algorithm

```
Algorithm 1 BS3WC Algorithm
                                                                                         A universal set U = \{o_1, o_2, o_3, \ldots, o_n\}, sampling parameter s > 1
                        Input
                                                                                                                     and initial partition C = \{c_1, c_2, \dots, c_K\}
                        Output A set of family of three-way clusters C'.
      1: for each c_k \in C do
                                          Obtain Image_{c_k} corresponding to cluster c_k
                                          Apply cluster blur and cluster sharp operations on Image_{c_k}
                                                                                                                    = \{o_i \in U | o_i \in O_{(x_1, \dots, x_n)} \land Blur_{c_k}(x_1, \dots, x_n) = 1\}
                                          Support(c_k) = \{o_i \in U | o_i \in O_{(x_1, x_2, ..., x_n)} \land Sharp_{c_k}(x_1, x_2, ..., x_n) = 1\}
                                          Inside(c_k) = \{o_i \in U | o_i \in O_{(x_1, \dots, x_n)} \land Blur_{c_k}(x_1, \dots, x_n) = 1\}
                                          Outside(c_k) = \{o_i \in U | o_i \in O_{(x_1, \dots, x_n)} \land Sharp_{c_k}(x_1, \dots, x_n) \neq 1\}
                                          Partial(c_k) = \{o_i \in U | o_i \in O_{(x_1, \dots, x_n)} \land Sharp_{c_k}(x_1, \dots, x_n) = 1\}
                                                                                                                                             \land Blur_{c_1}(x_1,\ldots,x_n)\neq 1
     9: end for
10: C' = \{ (\operatorname{Inside}(c_1), \operatorname{Partial}(c_1), \operatorname{Outside}(c_1)), \ldots, (\operatorname{Inside}(c_K), \operatorname{Partial}(c_K), \ldots, (\operatorname{Inside}(c_K), \operatorname{Partial}(c_K), \ldots, (\operatorname{Inside}(c_K), \ldots, (\operatorname{I
                                                                                                  Outside(c_K)
```


Concluding Remarks

- Granular computing => Granules => Clusters = Three-way clustering.
- Three-way clustering:
 - Evaluation-based
 - Operation-based
- Rough sets, fuzzy sets, shadowed sets, interval sets ...
- Image inspired, math inspired, density peak, evidence theory, k-means
- Game theoretic approaches.
- Three-way clustering is a hot research topic.

Three-way Clustering: An Advanced Soft Clustering Approach

JingTao Yao 姚静涛

Department of Computer Science University of Regina jingtao.yao@uregina.ca

J.T. Yao