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Introduction
Topic of the talk

During this talk we will focus mainly on two important notions in
theory of Banach spaces:

I Szlenk index

I Szlenk power type

There are a few ways of understanding the importance and
motivation of these two notions:

(A) the Szlenk index measures ‘how far’ is the norm topology on
X ∗ from the weak∗ topology;

(B) it provides a Banach-space theoretic analogue of the
Cantor–Bendixson index from classical topology;

(C) the Szlenk power type is a quantity which carries information
about asymptotic structure/geometry of a given Banach
space.
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Introduction
Brief review of topologies on a dual space

Norm topology on a dual space:

I (X , ‖ · ‖) a Banach space over R

I X ∗ the dual space, i.e. X ∗ consists of all norm-continuous
linear functionals f : X → R

I X ∗ also forms a Banach space when equipped with the norm:

‖f ‖ = sup{|f (x)| : x ∈ X , ‖x‖ ≤ 1}.

I In other words, the norm of f is the supremum of values of f
over the unit ball BX . Notation: BX = {x ∈ X : ‖x‖ ≤ 1}

I fn → f with respect to the norm topology if and only if (fn)
converges to f uniformly on BX (equivalently, on any
bounded subset of X )
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Introduction
Brief review of topologies on a dual space

Weak∗ topology on a dual space:

I (X ∗, ‖ · ‖) is a Banach space, hence we can think of the
second dual X ∗∗

I Important: Each x ∈ X can be regarded as an element ι(x)
of X ∗∗, namely, ι(x)(x∗) = x∗(x) for any x∗ ∈ X ∗.

I Thus, we have the canonical embedding ι : X → X ∗∗. If it is
surjective, we call the space X reflexive (e.g. Hilbert spaces).

I The weakest topology on X ∗ with respect to which all the
functionals ι(x) are continuous is called the weak∗ topology.

I fn
w∗−−→ f (convergence in the weak∗ topology) if and only if

(fn) converges to f pointwise on X

Note: The weak∗ topology is strictly weaker than the norm
topology unless X is finite-dimensional.
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Introduction
The origins

A simple question

Let X be a Banach space and BX∗ be the dual unit ball. When is
it possible to find nonempty open subsets of BX∗ in the relative
weak∗ topology with arbitrarily small diameter? In other words, we
want that for each ε > 0 there exists a weak∗ open set U ⊂ X ∗

with
diam(U ∩ BX∗) < ε.

I X = `1: NO. Every nonempty relatively weak∗ open subset of
B`∞ has diameter 2.

I X = C [0, 1]: NO. Every measure µ in the unit ball of
C [0, 1]∗ =M[0, 1] can be weak∗ approximated by a sequence
of measures all being at distance at least 1 from µ.
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I For example, for the Lebesgue measure λ we have

µn :=
1

n

n∑
j=1

δj/n
w∗−−→ λ

and ‖µn − λ‖ = |µn − λ|([0, 1]) = 2.

I X = c0: YES. Although every weak∗ neighbourhood of zero in
B`1 has diameter 2, we can consider elements f ∈ B`1 with
‖f ‖ > 1− ε

2 which have weak∗ neighbourhoods in B`1 of
diameter smaller than ε. Indeed, we can take a weak∗

neighbourhood U of f in such a way that there is N ∈ N such
that for every g = (ηn) ∈ U all the coordinates η1, . . . , ηN
‘almost’ agree with the corresponding coordinates of f and∑N

j=1 |ηj | > 1− ε
2 . Then, for g ∈ U ∩ B`1 we have∑

j>N |ηj | <
ε
2 and hence ‖g − h‖1 < ε for all g , h ∈ U ∩ B`1 .
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Introduction
Namioka–Phelps theorems

In general, if X ∗ is separable, then BX∗ contains nonempty
relatively weak∗ open subsets of arbitrarily small diameter.

I. Namioka, R.R. Phelps, Banach spaces which are Asplund spaces,
Duke Math. J. 42 (1975), 735–750.

Define D = {x∗ ∈ BX∗ : ‖x∗‖ ≤ ε/2} and notice that the whole of
BX∗ can be covered by countably many translations of D. By the
Baire Category Theorem, one of them contains a nonempty weak∗

open set.

Theorem (Namioka and Phelps)

If X is a Banach space with X ∗ separable, then every nonempty
bounded subset B of X ∗ contains nonempty weak∗ slices
S(B; x , α) of arbitrarily small diameter, where

S(B; x , α) =
{
x∗ ∈ B : x∗(x) ≥ sup

z∗∈B
z∗(x)− α

}
.
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Theorem (Namioka and Phelps)

Let X be a Banach space. Then X is Asplund if and only if every
nonempty weak∗ compact subset of X ∗ contains nonempty weak∗

relatively open subsets of arbitrarily small diameter.

Let K be a compact Hausdorff space. It is known that X = C (K )
is an Asplund space if and only if K is scattered, i.e. every
nonempty set L ⊆ K has a (relatively) isolated point.

Observe that if K is not scattered, then BC(K)∗ does not contain
nonempty relatively weak∗ open sets of arbitrarily small diameter.
Indeed, if p ∈ K is not isolated and (pn) ⊂ K \ {p} converges to p,
then

δpn
w∗−−→ δp and ‖δpn − δp‖ = 2.
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The Szlenk index
Basic definitions

W. Szlenk, The non-existence of a separable reflexive Banach
space universal for all separable reflexive Banach spaces, Studia
Math. 30 (1968), 53–61.

Let X be a Banach space, K ⊂ X ∗ a weak∗ compact set. For any
ε > 0 we define its εth Szlenk derivation by

sε(K ) =
{
x∗ ∈ K : diam(V ∩ K ) > ε for every weak∗ open

neighborhood of x∗
}
,

and transfinite derivations by

s0ε (K ) = K , sξ+1
ε (K ) = sε(s

ξ
ε (K ))

and
sξε (K ) =

⋂
ζ<ξ

sζε (K )

for ξ being a limit ordinal.
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The Szlenk index
Basic definitions

We define the ε-Szlenk index of K as the minimal ordinal ξ (if

exists) for which sξε (K ) = ∅, and we denote it by Sz(K , ε).

Next, we set
Sz(K ) = sup

ε>0
Sz(K , ε).

Finally,

Sz(X , ε) = Sz(BX∗ , ε), Sz(X ) = Sz(BX∗).

Remark (follows from the Namioka–Phelps theorem)

The Szlenk index Sz(X ) is properly defined if and only if X is
an Asplund space, that is, the dual of each separable subspace of
X is separable.
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The Szlenk index
The universality problem

Let X be a separable Banach space. Then Sz(X ) is well-defined if
and only if X ∗ is separable, and then we must have Sz(X ) < ω1.

Indeed, just observe that (sξεBX∗)ξ is a strictly decreasing family of
weak∗ closed subsets of the separable (Polish) space (BX∗ ,w

∗).

Szlenk’s idea: To define a transfinite sequence of separable
reflexive Banach spaces whose Szlenk indices form a cofinal
sequence in ω1.

I X1 = `2

I Xα+1 = Xα ⊕1 `2

I Xα =
(⊕

β<α Xβ
)
2

for α limit

Then
0 ∈ sα1 BX∗α for every α < ω1.
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The Szlenk index
The universality problem

Theorem (Szlenk)

There is no separable reflexive Banach space Z such that every
separable reflexive Banach space embeds isomorphically into Z .

J. Bourgain, On separable Banach spaces universal for all separable
reflexive spaces, Proc. Amer. Math. Soc. 79 (1980), 241–246.

Theorem (Bourgain)

If Z is any Banach universal for all separable reflexive Banach
spaces (in the above sense), then Z contains an isomorphic copy of
C [0, 1].
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The Szlenk index
Examples

I Sz(X ) = 1 if and only if dimX <∞;

I Sz(c0) = Sz(`p) = ω for 1 < p <∞;

I Sz(C [0, ωω
α

]) = ωα+1 for every countable ordinal α (Samuel,
1983);

I for any α < ω1 there exists a separable reflexive Banach space
X with Sz(X ) > α (Szlenk, 1968);

I Sz(X ⊗̂εY ) = ω provided that max{Sz(X ),Sz(Y )} = ω
(Causey, 2013); for example, Sz(K(`p, `q)) = ω for any
1 < p, q <∞;

I Sz(C (K )) = Γ(i(K )), the least ordinal of the form ωα, greater
or equal to the Cantor–Bendixson index of K (Causey, 2017).

Remark
The Szlenk index (if correctly defined) is always of the form ωα.
Note also that, by a compactness argument, the ε-Szlenk indices
cannot be limit ordinals.
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The Szlenk power type
Submultiplicativity

G. Lancien, A survey on the Szlenk index and some of its
applications, Rev. R. Acad. Cien. Serie A. Mat. 100 (2006),
209–235.

Observation (Lancien)

For any Banach space X and any ε, η > 0 we have

sα·Sz(X ,η)εη (BX∗) ⊆ sαε (BX∗)

and hence Sz(X , εη) ≤ Sz(X , ε)Sz(X , η), i.e. the function
(0, 1) 3 ε 7→ Sz(X , ε) is submultiplicative.

If Sz(X ) = ω, then all the ε-indices Sz(X , ε) are just natural
numbers, as they are at most ω and cannot be limit ordinals.
Hence, if Sz(X ) = ω, we have a subadditive function

(0,∞) 3 t 7−→ log Sz(X , e−t) =: φ(t).
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The Szlenk power type
Submultiplicativity

By the classical Fekete’s lemma, there exists a finite limit

lim
t→+∞

φ(t)

t
= inf

t≥α

φ(t)

t
(α > 0).

Definition
Let X be a Banach space with Sz(X ) = ω. We define its Szlenk
power type p(X ) ∈ [1,∞) by the formulas:

p(X ) = lim
ε→0+

log Sz(X , ε)

| log ε|

= inf
{
q ≥ 1: sup

ε∈(0,1)
εq · Sz(X , ε) <∞

}
.



The Szlenk power type
Submultiplicativity

We can interpret the Szlenk power type as follows: It is the
optimal exponent which describes the rate of cutting out the dual
unit ball by iterates of Szlenk derivations.

p(X ) = inf
{
q ≥ 1: sup

ε∈(0,1)
εq · Sz(X , ε) <∞

}
In general, the infimum may not be attained. However, for every
δ > 0 there exists C <∞ such that

Sz(X , ε) ≤ Cε−p(X )−δ (0 < ε ≤ 1).

Moreover, if X and Y are isomorphic of Szlenk index ω, and d is
the Banach–Mazur distance between X and Y , then
Sz(X , dε) ≤ Sz(Y , ε), whence

p(Y ) = lim
ε→0+

log Sz(Y , ε)

| log ε|
≥ lim

ε→0+

log Sz(X , dε)

| log ε|
= p(X ).

Thus, the Szlenk power type is an isomorphic invariant.
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Detour to Tsirelson’s space
No simple structural theory!

A long standing open problem going back to Banach’s book:

Does every infinite-dimensional Banach space contain a subspace
isomorphic to either c0 or `p for some 1 ≤ p <∞?

B.S. Tsirelson, Not every Banach space contains `p or c0, Funct.
Anal. Appl. 8 (1974), 138–141.

Tsirelson’s theorem
There is a separable reflexive infinite-dimensional Banach space T
such that `p 6↪→ T for 1 ≤ p <∞.

The Figiel–Johnson version

The dual space T∗ enjoys the same properties, it is the completion
of c00 under a norm ‖·‖ defined implicitely as

‖ξ‖ = ‖ξ‖0 ∨
1

2
sup

{
m∑
j=1

‖Ijξ‖ : m < I1 < I2 < . . . < Im

}
.
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The Szlenk power type
Examples

Recall that the Szlenk power type p(X ) is well-defined for any
Banach space X with Sz(X ) = ω and then p(X ) ∈ [1,∞).

Examples.

I p(c0) = 1 and p(`p) = p
p−1 for any 1 < p <∞;

I p(T) = 1, where T is the orginal Tsirelson’s space (Knaust,
Odell and Schlumprecht, Positivity 1999);

I p(T(c0)) = 1 (Draga and K., J. Funct. Anal. 2016). An
example showing that the infimum in the definition of the
Szlenk index may not be attained;

I p(X ⊗̂εY ) = max{p(X ), p(Y )} whenever Sz(X ),Sz(Y ) ≤ ω
(Draga and K., Proc. Amer. Math. Soc. 2017). In particular,
p(K(`p, `q)) = max{p, q

q−1}.
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Stability properties of the Szlenk power type
Tensor products

R. Causey, Estimation of the Szlenk index of Banach spaces via
Schreier spaces

Remark (Th. Schlumprecht)

Since there are the names of three Polish mathematicians in this
title, the paper must have appeared in Studia Mathematica.

Theorem (Causey)

Let X and Y be nonzero separable Banach spaces with Sz(X ) and
Sz(Y ) at most ω. Then

Sz(X ⊗̂εY ) = max{Sz(X ),Sz(Y )}.

Consequently, it makes sense to ask about the Szlenk power of the
injective tensor product of two Banach spaces with Szlenk index ω.
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Asymptotic geometry
Milman’s moduli

V.D. Milman, Geometric theory of Banach spaces. II. Geometry of
the unit ball (Russian), Uspehi Mat. Nauk 26 (1971), 73–149.

In 1971, V.D. Milman initiated the study of asymptotic geometry
of Banach spaces by introducing the notions of moduli of
asymptotic smoothness/convexity.

Definition
I ρX (t) = supx∈SX infdim(X/Y )<∞ supy∈SY ‖x + ty‖ − 1

(the modulus of asymptotic uniform smoothness);

I δX (t) = infx∈SX supdim(X/Y )<∞ infy∈SY ‖x + ty‖ − 1
(the modulus of asymptotic uniform convexity);

I δ
∗
X (t) = infx∗∈SX∗ supE infy∗∈SE ‖x∗ + ty∗‖ − 1, where E

runs through all weak∗-closed subspaces of X ∗ with finite
codimension
(the modulus of weak∗ asymptotic uniform convexity).
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Asymptotic geometry
Milman’s moduli

Example. If Fn are finite-dimensional (n ∈ N) and
X = (

⊕∞
n=1 Fn)p, then ρX (t) = δX (t) = (1 + tp)1/p − 1.

Definition
A Banach space X is called asymptotically uniformly smooth
(convex) provided that

ρX (t) = o(t) as t → 0 (δX (t) > 0 for each t > 0).

For instance, `1 is asymptotically uniformly convex although it is
not uniformly convexifiable (as it is not superreflexive; recall
Enflo’s theorem).
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Asymptotic geometry
Connections with the Szlenk power type

H. Knaust, E. Odell, Th. Schlumprecht, On asymptotic structure,
the Szlenk index and UKK properties in Banach spaces, Positivity
3 (1999)

G. Godefroy, N.J. Kalton, G. Lancien, Szlenk indices and uniform
homeomorphisms, Trans. Amer. Math. Soc. 353 (2001),
3895–3918.

Theorem (G. Godefroy, N.J. Kalton, G. Lancien)

If X is a separable Banach space with Sz(X ) ≤ ω, then

p(X ) = inf
{
p ≥ 1: ∃equiv. norm |·| on X ∃c>0 ∀t>0 δ

∗
|·|(t) ≥ ctp

}
= inf

{
q ≥ 1: ∃equiv. norm |·| on X ∃C>0 ∀t>0 ρ|·|(t) ≤ Ctp,

where p−1 + q−1 = 1
}
.
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Asymptotic structures
Definition in terms of games

V.D. Milman, N. Tomczak-Jaegermann (Contemp. Math. 1993)

Mn the family of all normalized monotone basic sequences of
length n with basis constant ≤ 2, where we identify all
1-equivalent sequences. We equip it with the metric log db, where
db is the ‘equivalence constant’.

Definition
Let X be a Banach space and n ∈ N. We say that a sequence
(ej)

n
j=1 ∈Mn is an element of the nth asymptotic structure of X ,

and then we write (ej)
n
j=1 ∈ {X}n, provided that

∀ ε > 0 ∀Y1 ∈ cof(X ) ∃ y1 ∈ SY1 . . . ∀Yn ∈ cof(X ) ∃ yn ∈ SYn

db((yj)
n
j=1, (ej)

n
j=1) < 1 + ε.

In other words, (ej)
n
j=1 ∈ {X}n if and only if for every δ > 0

Player II has a winning strategy in the Aδ-game, where Aδ is
the ball in Mn with center (ej)

n
j=1 and radius δ.
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Asymptotic structures
Krivine’s theorem

Although an infinite-dimensional Banach space may not contain c0
and `p, for any 1 ≤ p <∞, it must do so ‘asymptotically’. There
is a famous theorem by Krivine (1976) which can be formulated as
follows:

Krivine’s theorem
For any infinite-dimensional Banach space X , there exists
1 ≤ p ≤ ∞ such that

`np ∈ {X}n for each n ∈ N.

Therefore, one can naturally associate with any
infinite-dimensional Banach space X its Krivine spectrum defined
as the set of all corresponding p’s.
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Asymptotic structures
`q-estimates

E. Odell, Th. Schlumprecht, Embedding into Banach spaces with
finite dimensional decompositions, Rev. R. Acad. Cien. Serie
A. Mat. 100 (2006), 295–323.

Theorem (Odell and Schlumprecht)

Let X be a Banach space with X ∗ separable. Then, the following
conditions are equivalent:

(i) Sz(X ) = ω;

(ii) there exists q > 1 and K <∞ so that for every sequence
(ei )
∞
i=1 ∈ {X}n (the nth asymptotic structure of X ) and every

sequence of scalars (ai )
n
i=1 we have

∥∥∥ n∑
i=1

aiei

∥∥∥ ≤ K
( n∑
i=1

|ai |q
)1/q

.



Asymptotic structures
`q-estimates

Theorem (Draga and K.)

In fact, the said q (occuring in upper `q-estimates) may be taken
to be arbitrarily close to the conjugate of the Szlenk power type
p(X ).

In other words, the supremum over all such q equals p(X )′.

The lower bound of Krivine’s spectrum is at least equal to p(X )′.
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