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Curse of Dimensionality

ε error demand

d the (large) number of variables

n(ε, d) the minimal cost, to be defined

Many problems suffer from

the curse of dimensionality

n(ε, d) ≥ c (1 + C) d

for infinitely many d with c, C > 0.

2
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Multivariate Approximation

Fd the space of d-variate real infinitely differentiable functions

f : [0, 1]d → R with the norm

‖f‖Fd
= sup

α
‖Dαf‖L∞(0,1]d

Here, α = [α1, α2, . . . , αd] with αj = 0, 1, . . . and

Dα f =
∂α1+···+αd

∂xα1
1 · · · ∂xαd

d

f

Is the unit ball of Fd large ?

We want to approximate

APPd : Fd → L∞([0, 1]d), APPdf = f, ‖APPd‖ = 1
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Algorithms

APPdf = f ≈ An,d(f) := φn,d(L1(f), L2(f), . . . , Ln(f)), Lj ∈ F ∗
d

Worst Case Setting

algorithm error e(An,d) = sup
‖f‖Fd

≤1

‖f −An,d(f)‖L∞([0,1]d)

nth minimal error e(n, d) = inf
An,d

e(An,d)

information complexity n(ε, d) = min {n : e(n, d) ≤ ε }
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Theorem

Rate of Convergence – Excellent !!!

For all r we have

e(n, d) = O(n−r)

n(ε, d) = O(ε−1/r)

But how long do we have to wait for this excellent rates ?

Remember:

the factors in the big O notation may depend on d and r.
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Curse is present !!!

e(n, d) = 1 for all n = 0, 1, . . . , 2⌊d/2⌋ − 1

n(ε, d) ≥ 2⌊d/2⌋ for all ε ∈ (0, 1) and d = 1, 2, . . .

So we have to wait exponentially long

to enjoy excellent rates !!!!
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Remarks

• holds for Lp([0, 1]
d)

• holds even if Fd is the space of d-variate polynomials of first

degree in each variable

• proof based on identifying two functions f and −f for which

Lj(f) = 0 for j = 1, 2, . . . , n and ‖f‖Fd
= 1

• Novak and W [2009], Weimar [2012], Werschulz and W [2009]

• but if

‖f‖Fd
:= sup

α
‖Dαf‖ ≤ 1 is replaced by

∑

|α|≥0

[α!]−1‖Dαf‖ ≤ 1

then the curse is not present, Vybiral [2014].
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Multivariate Integration

For f ∈ Fd we want to approximate

Id(f) :=

∫

[0,1]d
f(t) dt ≈ An,d(f)

• Algorithms:

An,d(f) = φn,d(f(x1), f(x2), . . . , f(xn)) with xj ∈ [0, 1]d

• Minimal Worst Case Error:

e(n, d) = inf
An,d

sup
‖f‖Fd

≤1

|Id(f)−An,d(f)|

• Worst Case Information Complexity:

n(ε, d) = min{n | e(n, d) ≤ ε }
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Multivariate Integration for Smooth Functions

K = {Kd} Kd > 0

Fd = Cr
d(K) := {f : [0, 1]d → R : ‖f‖max ≤ 1, ‖Dαf‖max ≤ Kd ∀ |α| ∈ [1, r]}

Bakhvalov [1959]

n(ε, d) = Θ(ε−d/r)

but factors in the Θ-notation depend on d and r. Curse?

Sukharev [1979]: The curse holds for r = 1 and Kd ≡ 1.

Otherwise, curse?
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Multivariate Integration for Smooth Functions

Cr
d(K) := {f : [0, 1]d → R : |f(x)| ≤ 1, |Dαf(x)| ≤ Kd ∀ |α| ∈ [1, r]}

What are necessary and sufficient conditions for {Kd}
to have the curse of dimensionality for multivariate integration?

Theorem (Hinrichs, Novak, Ullrich, W [2012])

The curse holds for Cr
d(K) iff lim infd→∞ Kd

√
d > 0
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Multivariate Integration for Korobov Spaces

r = {rj} with 1 ≤ r1 ≤ r2 ≤ · · ·

Hrj : 1-periodic f : [0, 1] → C, f (rj−1) abs. cont, f (rj) ∈ L2

‖f‖2Hrj
=

∣

∣

∣

∣

∫ 1

0

f(t) dt

∣

∣

∣

∣

2

+

∫ 1

0

∣

∣

∣
f (rj)(t)

∣

∣

∣

2

dt

For d ≥ 1,

Fd = Hd,r = Hr1 ⊗Hr2 ⊗ · · · ⊗Hrd

Usually, it is assumed that rj ≡ r

11
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Theorem

Let rj ≡ r. Then there exists cr, Cr > 0 such that

n(ε, d) > cr (1 + Cr)
d

Based on Hickernell+W [2001] and Novak+W[2001], see also Sloan+W[2001]

Multivariate integration for Korobov space

with arbitrarily smooth functions

suffers from the curse of dimensionality
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How to cope with the curse of dimensionality

• switch to spaces of increased smoothness

with respect to successive variables

• switch to weighted spaces, i.e., groups of variables are of

varying importance

• switch to a more lenient setting, i.e, from the worst case

setting to the randomized or average case setting
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Increasing Smoothness

Multivariate integration for Korobov spaces in the worst case setting with r1 ≤ r2 ≤ · · · .

But we now allow to increase rj

Let

R := lim sup
k→∞

ln k

rk

Theorem

If R < 2 ln 2π then

• no curse

• n(ε, d) ≤ C ε−p(1+p/2)
with p := max(r−1

1 , R/ ln 2π) < 2,

i.e., strong polynomial tractability

Based on Papageorgiou+W [09], Kuo, Wasilkowski+W[09]
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Weighted Spaces

Major research activities in last 20 years...

In particular, for rj ≡ r and γ = {γj}, redefine Hrj ,γj
with

‖f‖2Hrj,γj
=

∣

∣

∣

∣

∫ 1

0

f(t) dt

∣

∣

∣

∣

2

+
1

γj

∫ 1

0

∣

∣

∣
f (rj)(t)

∣

∣

∣

2

dt

For d ≥ 1,

Hd,r = Hr1,γ1 ⊗Hr2,γ2 ⊗ · · · ⊗Hrd,γd
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Theorem

• Gnewuch+W[08]

limd→∞

∑d
j=1 γj

d = 0 iff no curse,

• Hickernell+W[01]

lim supd→∞

∑d
j=1 γj

ln d < ∞ iff polynomial tractability,

i.e., n(ε, d) ≤ C dq ε−p

• Hickernell+W[01]

∑∞
j=1 γj < ∞ iff strong polynomial tractability,

i.e., n(ε, d) ≤ C ε−p
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More Lenient Settings

From Worst Case Setting to

• Randomized Setting

• Average Case Setting

Average Case Setting ≤ Randomized Setting
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Randomized Setting

• Algorithms:

Aω
n,d(f) = φω

n,d(f(x1,ω), f(x2,ω), . . . , f(xn(ω),ω)) for a random ω

• Minimal Randomized Error:

e(n, d) = inf
Aω

n,d

sup
‖f‖Hd,r

≤1

[

E |Id(f)−Aω
n,d(f)|2

]1/2

• Randomized Information Complexity:

n(ε, d) = min{n | e(n, d) ≤ ε }
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Monte Carlo Algorithm

An,ω(f) =
1

n

n
∑

j=1

f(xj,ω)

with

xj,ω iid with uniform distribution over [0, 1]d

Sloan+W[01] for Korobov spaces, obvious for Cr
d
(K) spaces

• n(ε, d) ≤ ε−2

• no curse and strong polynomial tractability
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Conclusions

• Many multivariate problems suffer from the curse of

dimensionality in the worst case setting

• We may sometimes break the curse of dimensionality by

– switching to spaces of increased smoothness

with respect to successive variables

– switching to weighted spaces, i.e., groups of variables are of

varying importance

– switching to a more lenient setting, i.e., from the worst

case setting to the randomized or average case setting
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Book

More can be found in

Tractability of Multivariate Problems

Erich Novak and Henryk Woźniakowski

• Volume I: Linear Information (2008)

• Volume II: Standard Information for Functionals (2010)

• Volume III: Standard Information for Operators (2012)

European Mathematical Society, Zürich
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