The automorphism group of the random poset

Aleksandra Kwiatkowska

joint work with Aristotelis Panagiotopoulos

January 27, 2021

Aleksandra Kwiatkowska Automorphism groups

Let G be a Polish group.

Proposition

The following conditions are equivalent:

- G is a closed subgroup of $S_{\infty} = \text{Sym}(X)$ topological group of all bijections of a countable set X, equipped with the pointwise convergence topology;
- G has a neighbourhood basis of the identity that consists of open subgroups;
- G is an automorphism group of a countable first-order structure;
- G is an automorphism group of a countable ultrahomogeneous relational first-order structure.

A countable first-order structure M is ultrahomogeneous if every automorphism between finitely generated substructures of M can be extended to an automorphism of the whole M.

Example

- rationals with the ordering
- the random graph
- the random poset
- the rational Urysohn metric space

A countable family \mathcal{F} of finitely generated structures is a Fraïssé family if:

- (F1) (hereditary property: HP) if $A \in \mathcal{F}$ and $B \subseteq A$ is finitely generated then $B \in \mathcal{F}$;
- (F2) (joint embedding property: JEP) for any A, B ∈ F there is C ∈ F and embeddings from A to C and from B to C;
- (F3) (amalgamation property: AP) for A, B₁, B₂ ∈ F and embeddings φ₁: A → B₁ and φ₂: A → B₂, there exist C, and embeddings ψ₁: B₁ → C and ψ₂: B₂ → C such that ψ₁ ∘ φ₁ = ψ₂ ∘ φ₂.

Theorem (Fraïssé)

For every Fraïssé family \mathcal{F} there is a unique countable ultrahomogeneous structure M (called Fraïssé limit), such that the set of finitely generated substructures of M is equal to \mathcal{F} .

Example

- \mathcal{F} = the family of finite linear orders Fraïssé limit = rationals with the ordering
- \mathcal{F} = the family of finite graphs Fraïssé limit = the random graph
- \mathcal{F} = the family of finite partially ordered sets (posets) Fraïssé limit = the random poset
- \mathcal{F} = the family of finite metric spaces with rational distances Fraïssé limit = the rational Urysohn metric space

A Polish group G is automatically continuous if every abstract homomorphism from G to a separable topological group is continuous.

Definition

A Polish group G has the small index property if any subgroup of index $<2^{\aleph_0}$ is open.

A topological group G has ample generics if for every n the diagonal conjugacy action of G on G^n given by $(g, (h_1, \ldots, h_n)) \mapsto (gh_1g^{-1}, \ldots, gh_ng^{-1})$ has a comeager orbit.

Example

- (Hrushovski, 1992) automorphism group of the random graph
- (Solecki, 2005) automorphism group of the rational Urysohn space
- (Kwiatkowska, 2012) homeomorphism group of the Cantor set

(日本) (日本)

A family \mathcal{F} of finite structures in a given signature has the extension property for partial automorphisms (EPPA) if for every $A \in \mathcal{F}$, there exists $B \in \mathcal{F}$ containing A as a substructure such that every partial automorphism of A extends to an automorphism of B.

Theorem (Siniora-Solecki, 2019)

Suppose that L is a finite relational language. Then any free amalgamation class of finite L-structures has coherent EPPA.

The proof uses the Herwig–Lascar theorem.

Corollary

Automorphism groups of relational free amalgamation structures have ample generics.

Theorem (Kwiatkowska-Malicki, 2019)

Let M be a countable structure such that for any finite $X \subseteq M$ the stabilizer $\operatorname{Aut}_X(M)$ fixes only finitely many points, and let $G = \operatorname{Aut}(M)$. Suppose that G has ample generics. Then for every n and a generic n-tuple (f_1, \ldots, f_n) in G^n :

1
$$\overline{\langle f_1, \ldots, f_n \rangle}$$
 is discrete, or

$$\ 2 \ \overline{\langle f_1,\ldots,f_n\rangle} \ \, is \ \, compact.$$

Example

I discrete case: homeomorphism group of the Cantor set

② compact case: EPPA

Let *M* be an ultrahomogeneous structure and let $\mathcal{K} = \operatorname{Age}(M)$. Let

 $\mathcal{K}_n = \{(A, p_1^A, \dots, p_n^A) \colon A \in \mathcal{K} \text{ and } p_i^A \text{ is a partial automorphism of } A\}$

Theorem (Ivanov 1999, Kechris-Rosendal 2007)

There exists a comeager n-conjugacy class in Aut(M) iff \mathcal{K}_n has JEP and WAP.

Definition (JEP)

For every $\bar{p} = (p_1, \ldots, p_n)$ and $\bar{q} = (q_1, \ldots, q_n)$ there exists $\bar{r} = (r_1, \ldots, r_n)$ which embeds \bar{p} and \bar{q} .

Definition (no 2-WAP)

There is $\bar{p} = (p_1, p_2)$ such that for every $\bar{q} = (q_1, q_2)$ and an embedding $\delta : \bar{p} \to \bar{q}$ there are embeddings $\alpha_1 : \bar{q} \to \bar{r_1}$ and $\alpha_2 : \bar{q} \to \bar{r_2}$ such that we cannot amalgamate $\bar{r_1}$ and $\bar{r_2}$ over \bar{p} . That is, there is no \bar{s} and $\beta_1 : \bar{r_1} \to \bar{s}$ and $\beta_2 : \bar{r_2} \to \bar{s}$ such that $\beta_1 \circ \alpha_1 \circ \delta = \beta_2 \circ \alpha_2 \circ \delta$

▲□ ▶ ▲ 国 ▶ ▲ 国 ▶ →

Theorem (Glass-McCleary-Rubin, 1993)

The automorphism group of the random poset is simple.

Theorem (Kuske-Truss, 2001)

The automorphism group of the random poset has a comeager conjugacy class.

The generic automorphism of the random poset

Let $f \in Aut(\mathbb{P})$. Let \sim_f be the binary relation on \mathbb{P} :

 $x \sim_f y \iff \exists i, j \in \mathbb{Z} \text{ such that } f^i(x) \leq y \leq f^j(x).$

Equivalence classes are called orbitals. The orbital of $x \in \mathbb{P}$ denote by $\mathcal{O}_f(x)$. We have the partial order on orbitals given by:

$$\mathcal{O}_f(x) <^{\mathsf{s}}_f \mathcal{O}_f(y) \iff \forall x' \sim_f x \, \forall y' \sim_f y(x' < y').$$

Theorem (Ihli)

For the generic $f \in Aut(\mathbb{P})$, the partial order $<_f^s$ on $\mathcal{O}_f(\mathbb{P})$ is isomorphic to the partial order on \mathbb{P} . Moreover, for every $\sigma \in \{-1,1\}$ and $1 \le n \le \infty$, the sets $\{\mathcal{O}_f(x) : par(x,f) = \sigma\}$ and $\{\mathcal{O}_f(x) : par(x,f) = 0 \land sp(x,f) = n\}$ are dense in $\mathcal{O}_f(\mathbb{P})$.

Let G be a topological group. A pair $(f_1, f_2) \in G^2$ is a generic pair if the conjugacy class $\{(gf_1g^{-1}, gf_2g^{-1}) : g \in G\}$ of (f_1, f_2) is comeager in G^2 .

Question (Truss 2007, Kuske-Truss 2001)

Does the automorphism group of the random poset has a generic pair?

Theorem (Kwiatkowska-Panagiotopoulos, 2020)

The automorphism group $\operatorname{Aut}(\mathbb{P})$ of the random poset \mathbb{P} does not have a generic pair. In fact, for every $(f_1, f_2) \in \operatorname{Aut}(\mathbb{P})^2$ the diagonal conjugacy class $\{(gf_1g^{-1}, gf_2g^{-1}) : g \in \operatorname{Aut}(\mathbb{P})\}$ of (f_1, f_2) is meager in $\operatorname{Aut}(\mathbb{P})^2$. Let $(B, <_B, f_B)$ be a partial automorphism and let $a, b \in B$ with $a <_B b$. We say that f_B is free in (a, b), if whenever $(B, <_B) \preceq (C, <_C)$ and $c_1, \ldots, c_\ell \in C$, with $a <_C c_1 <_C \cdots <_C c_\ell <_C b$, then $(C, <_C, f_C)$ is a partial automorphism, where

$$f_C := f_B \cup \{(a, c_1), (c_1, c_2), \dots, (c_{\ell-1}, c_{\ell})\}.$$

Lemma (Kwiatkowska-Panagiotopoulos, 2020)

Let $(A, <_A, f_A)$ be a partial automorphism and let $s \in A$ with $s <_A f_A(s)$. Then, there is an extension $(A, <_A, f_A) \preceq (B, <_B, f_B)$, some $n \in \mathbb{N}$, and $a, b \in B$ with $a <_B b$, so that $f_B^n(s) = a$ and f_B is free in (a, b).

< 同 ト < 三 ト < 三 ト

A Polish group G has the automatic continuity property if for every Polish group H every abstract homomorphism $\phi: G \to H$ is continuous.

Question

• Does the automorphim group of the random poset has the automatic continuity property or the small index property?