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Automorphism groups of countable structures

Let G be a Polish group.

Proposition

The following conditions are equivalent:

1 G is a closed subgroup of S∞ = Sym(X ) – topological group
of all bijections of a countable set X , equipped with the
pointwise convergence topology;

2 G has a neighbourhood basis of the identity that consists of
open subgroups;

3 G is an automorphism group of a countable first-order
structure;

4 G is an automorphism group of a countable
ultrahomogeneous relational first-order structure.
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Ultrahomogeneous structures

Definition

A countable first-order structure M is ultrahomogeneous if every
automorphism between finitely generated substructures of M can
be extended to an automorphism of the whole M.

Example

rationals with the ordering

the random graph

the random poset

the rational Urysohn metric space
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How do we obtain countable ultrahomogeneous structures?

A countable family F of finitely generated structures is a Fräıssé
family if:

1 (F1) (hereditary property: HP) if A ∈ F and B ⊆ A is finitely
generated then B ∈ F ;

2 (F2) (joint embedding property: JEP) for any A,B ∈ F there
is C ∈ F and embeddings from A to C and from B to C ;

3 (F3) (amalgamation property: AP) for A,B1,B2 ∈ F and
embeddings ϕ1 : A→ B1 and ϕ2 : A→ B2, there exist C , and
embeddings ψ1 : B1 → C and ψ2 : B2 → C such that
ψ1 ◦ ϕ1 = ψ2 ◦ ϕ2.
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Fräıssé’s Theorem

Theorem (Fräıssé)

For every Fräıssé family F there is a unique countable
ultrahomogeneous structure M (called Fräıssé limit), such that the
set of finitely generated substructures of M is equal to F .
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Examples

Example

F = the family of finite linear orders
Fräıssé limit = rationals with the ordering

F = the family of finite graphs
Fräıssé limit = the random graph

F = the family of finite partially ordered sets (posets)
Fräıssé limit = the random poset

F = the family of finite metric spaces with rational distances
Fräıssé limit = the rational Urysohn metric space
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Automatic continuity, small index property

Definition

A Polish group G is automatically continuous if every abstract
homomorphism from G to a separable topological group is
continuous.

Definition

A Polish group G has the small index property if any subgroup of
index < 2ℵ0 is open.
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Ample generics 1

Definition

A topological group G has ample generics if for every n the
diagonal conjugacy action of G on Gn given by
(g , (h1, . . . , hn)) 7→ (gh1g

−1, . . . , ghng
−1) has a comeager orbit.

Example

(Hrushovski, 1992) automorphism group of the random graph

(Solecki, 2005) automorphism group of the rational
Urysohn space

(Kwiatkowska, 2012) homeomorphism group of the Cantor set
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EPPA (Hrushovski property)

Definition

A family F of finite structures in a given signature has the
extension property for partial automorphisms (EPPA) if for every
A ∈ F , there exists B ∈ F containing A as a substructure such
that every partial automorphism of A extends to an automorphism
of B.

Theorem (Siniora-Solecki, 2019)

Suppose that L is a finite relational language. Then any free
amalgamation class of finite L-structures has coherent EPPA.

The proof uses the Herwig–Lascar theorem.

Corollary

Automorphism groups of relational free amalgamation structures
have ample generics.
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Ample generics 2

Theorem (Kwiatkowska-Malicki, 2019)

Let M be a countable structure such that for any finite X ⊆ M the
stabilizer AutX (M) fixes only finitely many points, and let
G = Aut(M). Suppose that G has ample generics. Then for every
n and a generic n-tuple (f1, . . . , fn) in Gn:

1 〈f1, . . . , fn〉 is discrete, or

2 〈f1, . . . , fn〉 is compact.

Example

1 discrete case: homeomorphism group of the Cantor set

2 compact case: EPPA
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The criterion

Let M be an ultrahomogeneous structure and let K = Age(M). Let

Kn = {(A, pA1 , . . . , pAn ) : A ∈ K and pAi is a partial automorphism of A}

Theorem (Ivanov 1999, Kechris-Rosendal 2007)

There exists a comeager n-conjugacy class in Aut(M) iff Kn has
JEP and WAP.
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JEP and WAP

Definition (JEP)

For every p̄ = (p1, . . . , pn) and q̄ = (q1, . . . , qn) there exists
r̄ = (r1, . . . , rn) which embeds p̄ and q̄.

Definition (no 2-WAP)

There is p̄ = (p1, p2) such that for every q̄ = (q1, q2) and an
embedding δ : p̄ → q̄ there are embeddings α1 : q̄ → r̄1 and
α2 : q̄ → r̄2 such that we cannot amalgamate r̄1 and r̄2 over p̄.
That is, there is no s̄ and β1 : r̄1 → s̄ and β2 : r̄2 → s̄ such that
β1 ◦ α1 ◦ δ = β2 ◦ α2 ◦ δ
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The automorphism group of the random poset

Theorem (Glass-McCleary-Rubin, 1993)

The automorphism group of the random poset is simple.

Theorem (Kuske-Truss, 2001)

The automorphism group of the random poset has a comeager
conjugacy class.
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The generic automorphism of the random poset

Let f ∈ Aut(P). Let ∼f be the binary relation on P:

x ∼f y ⇐⇒ ∃i , j ∈ Z such that f i (x) ≤ y ≤ f j(x).

Equivalence classes are called orbitals. The orbital of x ∈ P denote
by Of (x). We have the partial order on orbitals given by:

Of (x) <s
f Of (y) ⇐⇒ ∀x ′ ∼f x ∀y ′ ∼f y(x ′ < y ′).

Theorem (Ihli)

For the generic f ∈ Aut(P), the partial order <s
f on Of (P) is

isomorphic to the partial order on P. Moreover, for every
σ ∈ {−1, 1} and 1 ≤ n ≤ ∞, the sets {Of (x) : par(x , f ) = σ} and
{Of (x) : par(x , f ) = 0 ∧ sp(x , f ) = n} are dense in Of (P).
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Main question

Definition

Let G be a topological group. A pair (f1, f2) ∈ G 2 is a generic pair
if the conjugacy class {(gf1g−1, gf2g−1) : g ∈ G} of (f1, f2) is
comeager in G 2.

Question (Truss 2007, Kuske-Truss 2001)

Does the automorphism group of the random poset has a generic
pair?
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Main Theorem

Theorem (Kwiatkowska-Panagiotopoulos, 2020)

The automorphism group Aut(P) of the random poset P does not
have a generic pair. In fact, for every (f1, f2) ∈ Aut(P)2 the
diagonal conjugacy class {(gf1g−1, gf2g−1) : g ∈ Aut(P)} of
(f1, f2) is meager in Aut(P)2.
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Main Lemma

Let (B, <B , fB) be a partial automorphism and let a, b ∈ B with
a <B b. We say that fB is free in (a, b), if whenever
(B, <B) � (C , <C ) and c1, . . . , c` ∈ C , with
a <C c1 <C · · · <C c` <C b, then (C , <C , fC ) is a partial
automorphism, where

fC := fB ∪ {(a, c1), (c1, c2), . . . , (c`−1, c`)}.

Lemma (Kwiatkowska-Panagiotopoulos, 2020)

Let (A, <A, fA) be a partial automorphism and let s ∈ A with
s <A fA(s). Then, there is an extension (A, <A, fA) � (B, <B , fB),
some n ∈ N, and a, b ∈ B with a <B b, so that f nB (s) = a and fB
is free in (a, b).
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Questions

Definition

A Polish group G has the automatic continuity property if for every
Polish group H every abstract homomorphism φ : G → H is
continuous.

Question

Does the automorphim group of the random poset has the
automatic continuity property or the small index property?
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