
Sparse graphs

Michał Pilipczuk

Faculty of Mathematics, Informatics, and Mechanics
University of Warsaw

January 9th, 2020



Graphs

Graph: a set of vertices connected in pairs by edges

Finite for the purpose of this talk.
Simple: no two edges connect the same pair of vertices.
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Graphs in practice

Graphs may model:

− Transportation networks

− Infrastructure

− Social networks

− Relations in data

Graphs tend to be sparse.

− Transportation networks are (roughly) planar.

− Facebook graph has average degree 338 and median degree 200.

What does it mean sparse?

− Bounded degree?

− Planar-like? Tree-like?

− Fixed degree distribution?
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Objectives of Sparsity

Goal. A theory of sparse graphs that is:

1. general and robust;

2. mathematically elegant and interesting;

3. useful in applications.

Sparsity: a young area of graph theory that ± achieves all the above.

− Focus: Abstract notions of local and uniform sparseness.

− Initiated ∼2008 by Jaroslav Nešetřil and Patrice Ossona de Mendez.

− Since then, tremendous development of techniques and concepts.

Now: a very brief introduction to the area.

�estion: What does it mean that a graph is sparse?
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Measuring sparsity

A�empt 1. A graph G is sparse if it has a linear number of edges.

− Formally, |E(G)| 6 c · |V (G)| for some constant c.

avgdeg(G) =

∑
u∈V (G) deg(u)

|V (G)|
=

2|E(G)|
|V (G)|

− Equivalently, average degree in G is bounded by 2c.

Ex 1. Maximum degree 6 d ⇒ Average degree 6 d .

Ex 2. Planar graph has 6 3n− 6 edges ⇒ Average degree < 6.

Issue: A complete graph on k vertices plus k2 isolated vertices.

− Average degree smaller than 1.

− Contains a dense subgraph.
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Measuring sparsity

A�empt 2. Every subgraph of G has a linear number of edges.

−We define maximum average degree of G as

mad(G) := max
H⊆G

avgdeg(H).

− G is sparse if mad(G) 6 c for some constant c.

Ex 1. G has maximum degree 6 d ⇒ mad(G) 6 d .

Ex 2. G is planar ⇒ mad(G) < 6.

Issue: A subdivided complete graph.

− Exc: Every subgraph has avgdeg 6 4.

− Is this graph really sparse?
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Measuring sparsity

Option 1. We decide that a subdivided complete graph is sparse.

−We can construct a theory around the parameter mad(·).
− mad(·) is essentially equivalent to arboricity and degeneracy.

− These connections are useful, but not really very deep.

Option 2. We decide that a subdivided complete graph is dense.

− Reason: It contains a dense substructure visible at “depth” 1.

− Need: A notion of embedding that would capture this.
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Minor order

Definition

H is a minor of G ⇔
H is obtained from a subgraph of G by contracting connected subgraphs

HG

Theorem (Kuratowski; Wagner)

Planar graphs are exactly {K5,K3,3}-minor-free graphs.

Theorem (Robertson and Seymour)

For every t ∈ N, every Kt-minor-free graph looks like this:
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Shallow minors

A�empt 3. Graphs excluding Kt as a minor, for some t ∈ N.

Issue: Graphs with maxdeg 3 admit all complete graphs as minors.

Ergo: Excluding minors leads to an interesting theory,

but this is not the theory we are a�er.

Idea: Think about local minors.

Definition

H is a depth-d minor of G ⇔
H is obtained from a subgraph of G by contracting subgraphs of radius 6 d

HG

HG
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Notions of sparsity

Intuition: Sparsity⇔ Exclusion of dense structures at every fixed depth

Definition

∇d(G) := sup{ avgdeg(H) : H is a depth-d minor of G }
ωd(G) := sup{ t : Kt is a depth-d minor of G }.

Note: depth-0 minors = subgraphs  ∇0(G) = mad(G).

For a class of graphs C, we write:

∇d(C) := sup
G∈C
∇d(G) and ωd(C) := sup

G∈C
ωd(G).

Definition

C has bounded expansion if∇d(C) is finite for all d ∈ N.

C is nowhere dense if ωd(C) is finite for all d ∈ N.
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Notions of sparsity

Equivalently:

C has bounded expansion if for every d ∈ N there is c(d) ∈ N s.t.

avgdeg(H) 6 c(d) whenever H is a depth-d minor of some G ∈ C.

C is nowhere dense if for every d ∈ N there is t(d) ∈ N s.t.

Kt(d) is not a depth-d minor of any G ∈ C.

Key idea: Sparsity is a property of a class of graphs.

− It is a limit property of graphs from the class.

− Can be formalized using standard limit constructions (P, Toruńczyk).

Every class with bnd degree, or excluding a minor, has bounded expansion.

Every class of bounded expansion is nowhere dense, but not vice versa.

Graphs from nowhere dense classes are somewhat sparse w.r.t. ∇d(·).
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The World of Sparsity

Star forests

Bounded treedepth

Bounded treewidth

Excluding a minor

Excluding a 
topological minor

Bounded expansion

Outerplanar

Planar

Bounded 
genus

Linear forests

Bounded degree

Locally bounded 
treewidth

Locally excluding 
a minor

Forests

r

rr

∇∇ Locally bounded 
expansion

Nowhere dense
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r

ωω
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Equivalent characterizations

Sparsity of shallow minors

Degeneracy

Weak coloring number

Generalized coloring numbers

Uniform quasi-wideness Neighborhood complexity

Low treedepth colorings

Fraternal augmentations

k-Helly property

Neighborhood covers

Spli�er game

Sparsity of shallow top-minors

Stability
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Working with Sparsity

Many characterizations of bnd expansion and nowhere denseness.

− Equivalence shows that we are working with fundamental notions.

− Di�erent characterizations present di�erent perspectives on Sparsity.

− Each characterization is a tool applicable in di�erent se�ings.

Original idea: Study the combinatorics of sparse graphs.

− Goal: Describe structural properties implied by sparsity.

These properties can be used to design e�icient algorithms.

− Areas: Parameterized, approximation, and distributed algorithms.

− Applicable to problems of local nature.

Sparsity delimits tractability of First Order logic on graphs.

− Provides connections with (algorithmic) finite model theory.

Now: Example algorithmic application.
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Distance-d Dominating Set

Distance-d dominating set:
set of vertices s.t. every vertex is at distance 6 d from one of them

Here: A distance-3 dominating set of size 4.
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Distance-d Dominating Set
Problem (Distance-d Dominating Set)

Given G and k ∈ N, does G admit a distance-d dominating set of size k?

Ex 1. Can one place 4 police stations to cover the center of Cracow?

Ex 2. Can one divide Poland into 16 voivodeships so that every place

is at distance 100km from the capital of its voivodeship?

The problem is NP-hard, so probably no polytime algorithm.

Our se�ing: d is a fixed constant, k is small, G is sparse.

Naive: O(nk) time, where n = |V (G)|.
− For arbitrary G, no O(nk−ε)-time algorithm for any ε > 0.

Now: For any nowhere dense class C,

a kO(k) · ‖G‖-time algorithm for G ∈ C.

‖G‖ = |V (G)|+ |E(G)|

− Distinction between XP and FPT running times.

− Joint work with Fabiański, Siebertz, and Toruńczyk.
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The Algorithm

D1

Round 1: Take any k-tuple of vertices D1.

If D1 dominates the whole graph, terminate and return YES.

Otherwise, some w1 is not dominated.

w1

D2

Round 2: Take any k-tuple of vertices D2 that dominates w1.

If D2 dominates the whole graph, terminate and return YES.

Otherwise, some w2 is not dominated.

w2

D3

Round 3: Take any k-tuple of vertices D3 that dominates {w1,w2}.
If D3 dominates the whole graph, terminate and return YES.

Otherwise, some w3 is not dominated.

w3

Dt−1 wt−1

...
...

Round t: Try to find any k-tuple Dt that dominates {w1, . . . ,wt−1}.
If there is none, terminate and return NO.

Otherwise, take any such k-tuple Dt .

Dt

If Dt dominates G, terminate and return YES.
Otherwise, some wt is not dominated, and Proceed.

wt

Michał Pilipczuk Sparse graphs 16 / 25



The Algorithm

D1

Round 1: Take any k-tuple of vertices D1.

If D1 dominates the whole graph, terminate and return YES.

Otherwise, some w1 is not dominated.

w1

D2

Round 2: Take any k-tuple of vertices D2 that dominates w1.

If D2 dominates the whole graph, terminate and return YES.

Otherwise, some w2 is not dominated.

w2

D3

Round 3: Take any k-tuple of vertices D3 that dominates {w1,w2}.
If D3 dominates the whole graph, terminate and return YES.

Otherwise, some w3 is not dominated.

w3

Dt−1 wt−1

...
...

Round t: Try to find any k-tuple Dt that dominates {w1, . . . ,wt−1}.
If there is none, terminate and return NO.

Otherwise, take any such k-tuple Dt .

Dt

If Dt dominates G, terminate and return YES.
Otherwise, some wt is not dominated, and Proceed.

wt

Michał Pilipczuk Sparse graphs 16 / 25



The Algorithm

D1

Round 1: Take any k-tuple of vertices D1.

If D1 dominates the whole graph, terminate and return YES.

Otherwise, some w1 is not dominated.

w1

D2

Round 2: Take any k-tuple of vertices D2 that dominates w1.

If D2 dominates the whole graph, terminate and return YES.

Otherwise, some w2 is not dominated.

w2

D3

Round 3: Take any k-tuple of vertices D3 that dominates {w1,w2}.
If D3 dominates the whole graph, terminate and return YES.

Otherwise, some w3 is not dominated.

w3

Dt−1 wt−1

...
...

Round t: Try to find any k-tuple Dt that dominates {w1, . . . ,wt−1}.
If there is none, terminate and return NO.

Otherwise, take any such k-tuple Dt .

Dt

If Dt dominates G, terminate and return YES.
Otherwise, some wt is not dominated, and Proceed.

wt

Michał Pilipczuk Sparse graphs 16 / 25



The Algorithm

D1

Round 1: Take any k-tuple of vertices D1.

If D1 dominates the whole graph, terminate and return YES.

Otherwise, some w1 is not dominated.

w1

D2

Round 2: Take any k-tuple of vertices D2 that dominates w1.

If D2 dominates the whole graph, terminate and return YES.

Otherwise, some w2 is not dominated.

w2

D3

Round 3: Take any k-tuple of vertices D3 that dominates {w1,w2}.
If D3 dominates the whole graph, terminate and return YES.

Otherwise, some w3 is not dominated.

w3

Dt−1 wt−1

...
...

Round t: Try to find any k-tuple Dt that dominates {w1, . . . ,wt−1}.
If there is none, terminate and return NO.

Otherwise, take any such k-tuple Dt .

Dt

If Dt dominates G, terminate and return YES.
Otherwise, some wt is not dominated, and Proceed.

wt

Michał Pilipczuk Sparse graphs 16 / 25



The Algorithm

D1

Round 1: Take any k-tuple of vertices D1.

If D1 dominates the whole graph, terminate and return YES.

Otherwise, some w1 is not dominated.

w1

D2

Round 2: Take any k-tuple of vertices D2 that dominates w1.

If D2 dominates the whole graph, terminate and return YES.

Otherwise, some w2 is not dominated.

w2

D3

Round 3: Take any k-tuple of vertices D3 that dominates {w1,w2}.
If D3 dominates the whole graph, terminate and return YES.

Otherwise, some w3 is not dominated.

w3

Dt−1 wt−1

...
...

Round t: Try to find any k-tuple Dt that dominates {w1, . . . ,wt−1}.
If there is none, terminate and return NO.

Otherwise, take any such k-tuple Dt .

Dt

If Dt dominates G, terminate and return YES.
Otherwise, some wt is not dominated, and Proceed.

wt

Michał Pilipczuk Sparse graphs 16 / 25



The Algorithm

D1

Round 1: Take any k-tuple of vertices D1.

If D1 dominates the whole graph, terminate and return YES.

Otherwise, some w1 is not dominated.

w1

D2

Round 2: Take any k-tuple of vertices D2 that dominates w1.

If D2 dominates the whole graph, terminate and return YES.

Otherwise, some w2 is not dominated.

w2

D3

Round 3: Take any k-tuple of vertices D3 that dominates {w1,w2}.
If D3 dominates the whole graph, terminate and return YES.

Otherwise, some w3 is not dominated.

w3

Dt−1 wt−1

...
...

Round t: Try to find any k-tuple Dt that dominates {w1, . . . ,wt−1}.
If there is none, terminate and return NO.

Otherwise, take any such k-tuple Dt .

Dt

If Dt dominates G, terminate and return YES.
Otherwise, some wt is not dominated, and Proceed.

wt

Michał Pilipczuk Sparse graphs 16 / 25



The Algorithm

D1

Round 1: Take any k-tuple of vertices D1.

If D1 dominates the whole graph, terminate and return YES.

Otherwise, some w1 is not dominated.

w1

D2

Round 2: Take any k-tuple of vertices D2 that dominates w1.

If D2 dominates the whole graph, terminate and return YES.

Otherwise, some w2 is not dominated.

w2

D3

Round 3: Take any k-tuple of vertices D3 that dominates {w1,w2}.
If D3 dominates the whole graph, terminate and return YES.

Otherwise, some w3 is not dominated.

w3

Dt−1 wt−1

...
...

Round t: Try to find any k-tuple Dt that dominates {w1, . . . ,wt−1}.
If there is none, terminate and return NO.

Otherwise, take any such k-tuple Dt .

Dt

If Dt dominates G, terminate and return YES.
Otherwise, some wt is not dominated, and Proceed.

wt

Michał Pilipczuk Sparse graphs 16 / 25



The Algorithm

D1

Round 1: Take any k-tuple of vertices D1.

If D1 dominates the whole graph, terminate and return YES.

Otherwise, some w1 is not dominated.

w1

D2

Round 2: Take any k-tuple of vertices D2 that dominates w1.

If D2 dominates the whole graph, terminate and return YES.

Otherwise, some w2 is not dominated.

w2

D3

Round 3: Take any k-tuple of vertices D3 that dominates {w1,w2}.

If D3 dominates the whole graph, terminate and return YES.

Otherwise, some w3 is not dominated.

w3

Dt−1 wt−1

...
...

Round t: Try to find any k-tuple Dt that dominates {w1, . . . ,wt−1}.
If there is none, terminate and return NO.

Otherwise, take any such k-tuple Dt .

Dt

If Dt dominates G, terminate and return YES.
Otherwise, some wt is not dominated, and Proceed.

wt

Michał Pilipczuk Sparse graphs 16 / 25



The Algorithm

D1

Round 1: Take any k-tuple of vertices D1.

If D1 dominates the whole graph, terminate and return YES.

Otherwise, some w1 is not dominated.

w1

D2

Round 2: Take any k-tuple of vertices D2 that dominates w1.

If D2 dominates the whole graph, terminate and return YES.

Otherwise, some w2 is not dominated.

w2

D3

Round 3: Take any k-tuple of vertices D3 that dominates {w1,w2}.
If D3 dominates the whole graph, terminate and return YES.

Otherwise, some w3 is not dominated.

w3

Dt−1 wt−1

...
...

Round t: Try to find any k-tuple Dt that dominates {w1, . . . ,wt−1}.
If there is none, terminate and return NO.

Otherwise, take any such k-tuple Dt .

Dt

If Dt dominates G, terminate and return YES.
Otherwise, some wt is not dominated, and Proceed.

wt

Michał Pilipczuk Sparse graphs 16 / 25



The Algorithm

D1

Round 1: Take any k-tuple of vertices D1.

If D1 dominates the whole graph, terminate and return YES.

Otherwise, some w1 is not dominated.

w1

D2

Round 2: Take any k-tuple of vertices D2 that dominates w1.

If D2 dominates the whole graph, terminate and return YES.

Otherwise, some w2 is not dominated.

w2

D3

Round 3: Take any k-tuple of vertices D3 that dominates {w1,w2}.
If D3 dominates the whole graph, terminate and return YES.

Otherwise, some w3 is not dominated.

w3

Dt−1 wt−1

...
...

Round t: Try to find any k-tuple Dt that dominates {w1, . . . ,wt−1}.
If there is none, terminate and return NO.

Otherwise, take any such k-tuple Dt .

Dt

If Dt dominates G, terminate and return YES.
Otherwise, some wt is not dominated, and Proceed.

wt

Michał Pilipczuk Sparse graphs 16 / 25



The Algorithm

D1

Round 1: Take any k-tuple of vertices D1.

If D1 dominates the whole graph, terminate and return YES.

Otherwise, some w1 is not dominated.

w1

D2

Round 2: Take any k-tuple of vertices D2 that dominates w1.

If D2 dominates the whole graph, terminate and return YES.

Otherwise, some w2 is not dominated.

w2

D3

Round 3: Take any k-tuple of vertices D3 that dominates {w1,w2}.
If D3 dominates the whole graph, terminate and return YES.

Otherwise, some w3 is not dominated.

w3

Dt−1 wt−1

...
...

Round t:

Try to find any k-tuple Dt that dominates {w1, . . . ,wt−1}.
If there is none, terminate and return NO.

Otherwise, take any such k-tuple Dt .

Dt

If Dt dominates G, terminate and return YES.
Otherwise, some wt is not dominated, and Proceed.

wt

Michał Pilipczuk Sparse graphs 16 / 25



The Algorithm

D1

Round 1: Take any k-tuple of vertices D1.

If D1 dominates the whole graph, terminate and return YES.

Otherwise, some w1 is not dominated.

w1

D2

Round 2: Take any k-tuple of vertices D2 that dominates w1.

If D2 dominates the whole graph, terminate and return YES.

Otherwise, some w2 is not dominated.

w2

D3

Round 3: Take any k-tuple of vertices D3 that dominates {w1,w2}.
If D3 dominates the whole graph, terminate and return YES.

Otherwise, some w3 is not dominated.

w3

Dt−1 wt−1

...
...

Round t: Try to find any k-tuple Dt that dominates {w1, . . . ,wt−1}.

If there is none, terminate and return NO.
Otherwise, take any such k-tuple Dt .

Dt

If Dt dominates G, terminate and return YES.
Otherwise, some wt is not dominated, and Proceed.

wt

Michał Pilipczuk Sparse graphs 16 / 25



The Algorithm

D1

Round 1: Take any k-tuple of vertices D1.

If D1 dominates the whole graph, terminate and return YES.

Otherwise, some w1 is not dominated.

w1

D2

Round 2: Take any k-tuple of vertices D2 that dominates w1.

If D2 dominates the whole graph, terminate and return YES.

Otherwise, some w2 is not dominated.

w2

D3

Round 3: Take any k-tuple of vertices D3 that dominates {w1,w2}.
If D3 dominates the whole graph, terminate and return YES.

Otherwise, some w3 is not dominated.

w3

Dt−1 wt−1

...
...

Round t: Try to find any k-tuple Dt that dominates {w1, . . . ,wt−1}.
If there is none, terminate and return NO.

Otherwise, take any such k-tuple Dt .

Dt

If Dt dominates G, terminate and return YES.
Otherwise, some wt is not dominated, and Proceed.

wt

Michał Pilipczuk Sparse graphs 16 / 25



The Algorithm

D1

Round 1: Take any k-tuple of vertices D1.

If D1 dominates the whole graph, terminate and return YES.

Otherwise, some w1 is not dominated.

w1

D2

Round 2: Take any k-tuple of vertices D2 that dominates w1.

If D2 dominates the whole graph, terminate and return YES.

Otherwise, some w2 is not dominated.

w2

D3

Round 3: Take any k-tuple of vertices D3 that dominates {w1,w2}.
If D3 dominates the whole graph, terminate and return YES.

Otherwise, some w3 is not dominated.

w3

Dt−1 wt−1

...
...

Round t: Try to find any k-tuple Dt that dominates {w1, . . . ,wt−1}.
If there is none, terminate and return NO.

Otherwise, take any such k-tuple Dt .

Dt

If Dt dominates G, terminate and return YES.
Otherwise, some wt is not dominated, and Proceed.

wt

Michał Pilipczuk Sparse graphs 16 / 25



The Algorithm

D1

Round 1: Take any k-tuple of vertices D1.

If D1 dominates the whole graph, terminate and return YES.

Otherwise, some w1 is not dominated.

w1

D2

Round 2: Take any k-tuple of vertices D2 that dominates w1.

If D2 dominates the whole graph, terminate and return YES.

Otherwise, some w2 is not dominated.

w2

D3

Round 3: Take any k-tuple of vertices D3 that dominates {w1,w2}.
If D3 dominates the whole graph, terminate and return YES.

Otherwise, some w3 is not dominated.

w3

Dt−1 wt−1

...
...

Round t: Try to find any k-tuple Dt that dominates {w1, . . . ,wt−1}.
If there is none, terminate and return NO.

Otherwise, take any such k-tuple Dt .

Dt

If Dt dominates G, terminate and return YES.

Otherwise, some wt is not dominated, and Proceed.

wt

Michał Pilipczuk Sparse graphs 16 / 25



The Algorithm

D1

Round 1: Take any k-tuple of vertices D1.

If D1 dominates the whole graph, terminate and return YES.

Otherwise, some w1 is not dominated.

w1

D2

Round 2: Take any k-tuple of vertices D2 that dominates w1.

If D2 dominates the whole graph, terminate and return YES.

Otherwise, some w2 is not dominated.

w2

D3

Round 3: Take any k-tuple of vertices D3 that dominates {w1,w2}.
If D3 dominates the whole graph, terminate and return YES.

Otherwise, some w3 is not dominated.

w3

Dt−1 wt−1

...
...

Round t: Try to find any k-tuple Dt that dominates {w1, . . . ,wt−1}.
If there is none, terminate and return NO.

Otherwise, take any such k-tuple Dt .

Dt

If Dt dominates G, terminate and return YES.
Otherwise, some wt is not dominated, and Proceed.

wt

Michał Pilipczuk Sparse graphs 16 / 25



Analysis

Problem in round t :

Find k vertices that distance-d dominate {w1, . . . ,wt−1}.
This problem can be solved in time tO(k) · ‖G‖.
Ergo: Running time LO(k) · ‖G‖, where L is the total number of rounds.

�estion: Why the number of rounds should be bounded?

Theorem (Fabiański, P, Siebertz, Toruńczyk)

For every nowhere dense class C and d ∈ N, there is a polynomial p(·)
such that the algorithm run on any G ∈ C and k, performs 6 p(k) rounds.

Cor: Runtime p(k)O(k) · ‖G‖ = kO(k) · ‖G‖ on any nowhere dense C.
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Proof sketch

The Algorithm constructs a semi-ladder of length L.

− Every Di dominates all wj with j < i, but not wi.

Uniform quasi-wideness ⇒ Such a structure cannot be too long.
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Generalizing problems

Distance-d Dominating Set is a problem with local constraints.

Q: What other problems have this locality property?

A: Problems expressible in First Order Logic on graphs.

Ex 1. δd(x, y) expresses that dist(x, y) 6 d .

δ3(x, y) := δ2(x, y) ∨ ∃z ∃w adj(x, z) ∧ adj(z,w) ∧ adj(w, y).

x

z

w

y

Ex 2. ϕd,k expresses that there is a distance-d dominating set of size k.

ϕd,k := ∃x1 ∃x2 . . . ∃xk ∀y
k∨

i=1

δd(y, xi).
x1 x2 x3 x4 x5

y

Theorem (Gaifman)

First Order Logic on graphs is local:

It cannot express much more than the above.

Q: Can we solve e�iciently all FO-expressible problems on sparse graphs?

Michał Pilipczuk Sparse graphs 19 / 25



Generalizing problems

Distance-d Dominating Set is a problem with local constraints.

Q: What other problems have this locality property?

A: Problems expressible in First Order Logic on graphs.

Ex 1. δd(x, y) expresses that dist(x, y) 6 d .

δ3(x, y) := δ2(x, y) ∨ ∃z ∃w adj(x, z) ∧ adj(z,w) ∧ adj(w, y).

x

z

w

y

Ex 2. ϕd,k expresses that there is a distance-d dominating set of size k.

ϕd,k := ∃x1 ∃x2 . . . ∃xk ∀y
k∨

i=1

δd(y, xi).
x1 x2 x3 x4 x5

y

Theorem (Gaifman)

First Order Logic on graphs is local:

It cannot express much more than the above.

Q: Can we solve e�iciently all FO-expressible problems on sparse graphs?

Michał Pilipczuk Sparse graphs 19 / 25



Generalizing problems

Distance-d Dominating Set is a problem with local constraints.

Q: What other problems have this locality property?

A: Problems expressible in First Order Logic on graphs.

Ex 1. δd(x, y) expresses that dist(x, y) 6 d .

δ3(x, y) := δ2(x, y) ∨ ∃z ∃w adj(x, z) ∧ adj(z,w) ∧ adj(w, y).

x

z

w

y

Ex 2. ϕd,k expresses that there is a distance-d dominating set of size k.

ϕd,k := ∃x1 ∃x2 . . . ∃xk ∀y
k∨

i=1

δd(y, xi).
x1 x2 x3 x4 x5

y

Theorem (Gaifman)

First Order Logic on graphs is local:

It cannot express much more than the above.

Q: Can we solve e�iciently all FO-expressible problems on sparse graphs?

Michał Pilipczuk Sparse graphs 19 / 25



Generalizing problems

Distance-d Dominating Set is a problem with local constraints.

Q: What other problems have this locality property?

A: Problems expressible in First Order Logic on graphs.

Ex 1. δd(x, y) expresses that dist(x, y) 6 d .

δ3(x, y) := δ2(x, y) ∨ ∃z ∃w adj(x, z) ∧ adj(z,w) ∧ adj(w, y).

x

z

w

y

Ex 2. ϕd,k expresses that there is a distance-d dominating set of size k.

ϕd,k := ∃x1 ∃x2 . . . ∃xk ∀y
k∨

i=1

δd(y, xi).
x1 x2 x3 x4 x5

y

Theorem (Gaifman)

First Order Logic on graphs is local:

It cannot express much more than the above.

Q: Can we solve e�iciently all FO-expressible problems on sparse graphs?

Michał Pilipczuk Sparse graphs 19 / 25



Generalizing problems

Distance-d Dominating Set is a problem with local constraints.

Q: What other problems have this locality property?

A: Problems expressible in First Order Logic on graphs.

Ex 1. δd(x, y) expresses that dist(x, y) 6 d .

δ3(x, y) := δ2(x, y) ∨ ∃z ∃w adj(x, z) ∧ adj(z,w) ∧ adj(w, y).

x

z

w

y

Ex 2. ϕd,k expresses that there is a distance-d dominating set of size k.

ϕd,k := ∃x1 ∃x2 . . . ∃xk ∀y
k∨

i=1

δd(y, xi).
x1 x2 x3 x4 x5

y

Theorem (Gaifman)

First Order Logic on graphs is local:

It cannot express much more than the above.

Q: Can we solve e�iciently all FO-expressible problems on sparse graphs?

Michał Pilipczuk Sparse graphs 19 / 25



Generalizing problems

Distance-d Dominating Set is a problem with local constraints.

Q: What other problems have this locality property?

A: Problems expressible in First Order Logic on graphs.

Ex 1. δd(x, y) expresses that dist(x, y) 6 d .

δ3(x, y) := δ2(x, y) ∨ ∃z ∃w adj(x, z) ∧ adj(z,w) ∧ adj(w, y).

x

z

w

y

Ex 2. ϕd,k expresses that there is a distance-d dominating set of size k.

ϕd,k := ∃x1 ∃x2 . . . ∃xk ∀y
k∨

i=1

δd(y, xi).
x1 x2 x3 x4 x5

y

Theorem (Gaifman)

First Order Logic on graphs is local:

It cannot express much more than the above.

Q: Can we solve e�iciently all FO-expressible problems on sparse graphs?

Michał Pilipczuk Sparse graphs 19 / 25



Generalizing problems

Distance-d Dominating Set is a problem with local constraints.

Q: What other problems have this locality property?

A: Problems expressible in First Order Logic on graphs.

Ex 1. δd(x, y) expresses that dist(x, y) 6 d .

δ3(x, y) := δ2(x, y) ∨ ∃z ∃w adj(x, z) ∧ adj(z,w) ∧ adj(w, y).

x

z

w

y

Ex 2. ϕd,k expresses that there is a distance-d dominating set of size k.

ϕd,k := ∃x1 ∃x2 . . . ∃xk ∀y
k∨

i=1

δd(y, xi).
x1 x2 x3 x4 x5

y

Theorem (Gaifman)

First Order Logic on graphs is local:

It cannot express much more than the above.

Q: Can we solve e�iciently all FO-expressible problems on sparse graphs?

Michał Pilipczuk Sparse graphs 19 / 25



FO model checking

Problem (FO model checking)

Given a graph G and an FO sentence ϕ, does ϕ hold in G?

Naive: Running time O(‖G‖‖ϕ‖).
− Degree of the polynomial has to depend on ‖ϕ‖, unless FPT = AW[?].

Q: Can we do be�er in sparse graphs?

Theorem (Grohe, Kreutzer, Siebertz)

For every nowhere dense class C, FO model checking on graphs from C
can be done in time f (ϕ) · ‖G‖1+ε, for some function f and any ε > 0.

Theorem (Dvořák, Král’, Thomas)

If C is not nowhere dense, and is closed under taking subgraphs,

then FO model checking on C is as hard as on general graphs.

Cor: Nowhere denseness exactly delimits tractability of First Order Logic.
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Stability

Idea: Generalize the bound on semi-ladders to other properties?

− Distance-d domination! ψd,k(x̄, y) = x̄ distance-d dominates y .

Definition

x̄, ȳ : tuples of variables, ϕ(x̄, ȳ): an FO formula

A ϕ-ladder of length ` in G consists of evaluations

ā1, . . . , ā` and b̄1, . . . , b̄`
of x̄ and ȳ , respectively, such that

ϕ(āi, b̄j) holds ⇔ i > j.

ā1 ā2 ā3 ā4 ā5

b̄1 b̄2 b̄3 b̄4 b̄5

NB: M
ore restrictive than semi-ladders!

Michał Pilipczuk Sparse graphs 21 / 25



Stability

Idea: Generalize the bound on semi-ladders to other properties?

− Distance-d domination! ψd,k(x̄, y) = x̄ distance-d dominates y .

Definition
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A ϕ-ladder of length ` in G consists of evaluations
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of x̄ and ȳ , respectively, such that

ϕ(āi, b̄j) holds ⇔ i > j.
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Stability

Definition

Ladder index of ϕ on C :=

supremum of lengths of ϕ-ladders in graphs from C.

Definition

A class C is stable if every FO formula has a finite ladder index on C.

Intuition: In stable classes one cannot define arbitrary long linear orders.

Theorem (Adler and Adler)

A subgraph-closed graph class C is nowhere dense if and only if it is stable.

Note: There are plenty of stable classes that are not nowhere dense.

− They consist of well-structured, dense graphs.
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Stability and Sparsity

Stability is an established area of model theory.

− Focus: dividing lines between simple and complex theories.

− Many concepts and techniques have analogues in Sparsity.

− Reason: Stability projects to Sparsity under subgraph-closeness.

− Enables a transfer of ideas and techniques.

Current direction: A theory for well-structured dense graphs.

− Objective: Structural understanding of stable classes of graphs.

− Algorithmic applications in arbitrary stable classes?
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