Sparse graphs

Michał Pilipczuk

Faculty of Mathematics, Informatics, and Mechanics University of Warsaw

January 9th, 2020

Graph: a set of vertices connected in pairs by edges

Graph: a set of vertices connected in pairs by edges

Finite for the purpose of this talk.

Simple: no two edges connect the same pair of vertices.

Graphs may model:

Transportation networks

- Transportation networks
- Infrastructure

- Transportation networks
- Infrastructure
- Social networks

- Transportation networks
- Infrastructure
- Social networks
- Relations in data

Graphs may model:

- Transportation networks
- Infrastructure
- Social networks
- Relations in data

Graphs tend to be sparse.

Graphs may model:

- Transportation networks
- Infrastructure
- Social networks
- Relations in data

Graphs tend to be **sparse**.

- Transportation networks are (roughly) planar.

Graphs may model:

- Transportation networks
- Infrastructure
- Social networks
- Relations in data

Graphs tend to be **sparse**.

- Transportation networks are (roughly) planar.
- Facebook graph has average degree 338 and median degree 200.

Graphs may model:

- Transportation networks
- Infrastructure
- Social networks
- Relations in data

Graphs tend to be sparse.

- Transportation networks are (roughly) planar.
- Facebook graph has average degree 338 and median degree 200.

What does it mean **sparse**?

Graphs may model:

- Transportation networks
- Infrastructure
- Social networks
- Relations in data

Graphs tend to be **sparse**.

- Transportation networks are (roughly) planar.
- Facebook graph has average degree 338 and median degree 200.

What does it mean **sparse**?

– Bounded degree?

Graphs may model:

- Transportation networks
- Infrastructure
- Social networks
- Relations in data

Graphs tend to be **sparse**.

- Transportation networks are (roughly) planar.
- Facebook graph has average degree 338 and median degree 200.

What does it mean **sparse**?

- Bounded degree?
- Planar-like? Tree-like?

Graphs may model:

- Transportation networks
- Infrastructure
- Social networks
- Relations in data

Graphs tend to be sparse.

- Transportation networks are (roughly) planar.
- Facebook graph has average degree 338 and median degree 200.

What does it mean **sparse**?

- Bounded degree?
- Planar-like? Tree-like?
- Fixed degree distribution?

Goal. A theory of sparse graphs that is:

Goal. A theory of sparse graphs that is:

1. general and robust;

Goal. A theory of sparse graphs that is:

- 1. general and robust;
- 2. mathematically elegant and interesting;

Goal. A **theory** of sparse graphs that is:

- 1. general and robust;
- 2. mathematically elegant and interesting;
- 3. useful in applications.

Goal. A **theory** of sparse graphs that is:

- 1. general and robust;
- 2. mathematically elegant and interesting;
- 3. useful in applications.

Sparsity: a young area of graph theory that \pm achieves all the above.

Goal. A theory of sparse graphs that is:

- 1. general and robust;
- 2. mathematically elegant and interesting;
- **3.** useful in applications.

Sparsity: a young area of graph theory that \pm achieves all the above.

Focus: Abstract notions of local and uniform sparseness.

Goal. A theory of sparse graphs that is:

- 1. general and robust;
- 2. mathematically elegant and interesting;
- **3.** useful in applications.

Sparsity: a young area of graph theory that \pm achieves all the above.

- Focus: Abstract notions of local and uniform sparseness.
- Initiated \sim 2008 by Jaroslav Nešetřil and Patrice Ossona de Mendez.

Goal. A theory of sparse graphs that is:

- 1. general and robust;
- 2. mathematically elegant and interesting;
- **3.** useful in applications.

Sparsity: a young area of graph theory that \pm achieves all the above.

- Focus: Abstract notions of local and uniform sparseness.
- Initiated \sim 2008 by Jaroslav Nešetřil and Patrice Ossona de Mendez.
- Since then, tremendous development of techniques and concepts.

Goal. A theory of sparse graphs that is:

- 1. general and robust;
- 2. mathematically elegant and interesting;
- **3.** useful in applications.

Sparsity: a young area of graph theory that \pm achieves all the above.

- Focus: Abstract notions of local and uniform sparseness.
- Initiated \sim 2008 by Jaroslav Nešetřil and Patrice Ossona de Mendez.
- Since then, tremendous development of techniques and concepts.

Now: a very brief introduction to the area.

Goal. A theory of sparse graphs that is:

- 1. general and robust;
- 2. mathematically elegant and interesting;
- **3.** useful in applications.

Sparsity: a young area of graph theory that \pm achieves all the above.

- Focus: Abstract notions of local and uniform sparseness.
- Initiated \sim 2008 by Jaroslav Nešetřil and Patrice Ossona de Mendez.
- Since then, tremendous development of techniques and concepts.

Now: a very brief introduction to the area.

Question: What does it mean that a graph is **sparse**?

Attempt 1. A graph *G* is **sparse** if it has a linear number of edges.

Attempt 1. A graph *G* is **sparse** if it has a linear number of edges.

− Formally, $|E(G)| \le c \cdot |V(G)|$ for some constant c.

Attempt 1. A graph *G* is **sparse** if it has a linear number of edges.

− Formally, $|E(G)| \le c \cdot |V(G)|$ for some constant c.

$$\operatorname{avgdeg}(G) = \frac{\sum_{u \in V(G)} \operatorname{deg}(u)}{|V(G)|} = \frac{2|E(G)|}{|V(G)|}$$

Attempt 1. A graph *G* is **sparse** if it has a linear number of edges.

− Formally, $|E(G)| \le c \cdot |V(G)|$ for some constant c.

$$\operatorname{avgdeg}(G) = \frac{\sum_{u \in V(G)} \operatorname{deg}(u)}{|V(G)|} = \frac{2|E(G)|}{|V(G)|}$$

— Equivalently, average degree in G is bounded by 2c.

Attempt 1. A graph *G* is **sparse** if it has a linear number of edges.

− Formally, $|E(G)| \le c \cdot |V(G)|$ for some constant c.

$$\operatorname{avgdeg}(G) = \frac{\sum_{u \in V(G)} \operatorname{deg}(u)}{|V(G)|} = \frac{2|E(G)|}{|V(G)|}$$

- Equivalently, average degree in G is bounded by 2c.

Ex 1. Maximum degree $\leq d$ \Rightarrow Average degree $\leq d$.

Attempt 1. A graph *G* is **sparse** if it has a linear number of edges.

− Formally, $|E(G)| \le c \cdot |V(G)|$ for some constant c.

$$\operatorname{avgdeg}(G) = \frac{\sum_{u \in V(G)} \operatorname{deg}(u)}{|V(G)|} = \frac{2|E(G)|}{|V(G)|}$$

- Equivalently, average degree in G is bounded by 2c.

- **Ex 1.** Maximum degree $\leq d$ \Rightarrow Average degree $\leq d$.
- **Ex 2.** Planar graph has $\leq 3n 6$ edges \Rightarrow Average degree < 6.

Attempt 1. A graph *G* is **sparse** if it has a linear number of edges.

− Formally, $|E(G)| \le c \cdot |V(G)|$ for some constant c.

$$\operatorname{avgdeg}(G) = \frac{\sum_{u \in V(G)} \operatorname{deg}(u)}{|V(G)|} = \frac{2|E(G)|}{|V(G)|}$$

— Equivalently, average degree in G is bounded by 2c.

Ex 1. Maximum degree $\leq d$ \Rightarrow Average degree $\leq d$.

Ex 2. Planar graph has $\leq 3n - 6$ edges \Rightarrow Average degree < 6.

Issue: A complete graph on k vertices plus k^2 isolated vertices.

Attempt 1. A graph *G* is **sparse** if it has a linear number of edges.

− Formally, $|E(G)| \le c \cdot |V(G)|$ for some constant c.

$$\operatorname{avgdeg}(G) = \frac{\sum_{u \in V(G)} \operatorname{deg}(u)}{|V(G)|} = \frac{2|E(G)|}{|V(G)|}$$

— Equivalently, average degree in G is bounded by 2c.

Ex 1. Maximum degree $\leq d$ \Rightarrow Average degree $\leq d$.

Ex 2. Planar graph has $\leq 3n - 6$ edges \Rightarrow Average degree < 6.

Issue: A complete graph on k vertices plus k^2 isolated vertices.

- Average degree smaller than 1.

Attempt 1. A graph *G* is **sparse** if it has a linear number of edges.

− Formally, $|E(G)| \le c \cdot |V(G)|$ for some constant c.

$$\operatorname{avgdeg}(G) = \frac{\sum_{u \in V(G)} \operatorname{deg}(u)}{|V(G)|} = \frac{2|E(G)|}{|V(G)|}$$

— Equivalently, average degree in G is bounded by 2c.

Ex 1. Maximum degree $\leq d$ \Rightarrow Average degree $\leq d$.

Ex 2. Planar graph has $\leq 3n - 6$ edges \Rightarrow Average degree < 6.

Issue: A complete graph on k vertices plus k^2 isolated vertices.

- Average degree smaller than 1.
- Contains a dense subgraph.

Attempt 2. Every **subgraph** of *G* has a linear number of edges.

Attempt 2. Every **subgraph** of *G* has a linear number of edges.

We define maximum average degree of G as

$$\operatorname{mad}(G) := \max_{H \subset G} \operatorname{avgdeg}(H).$$

Attempt 2. Every **subgraph** of *G* has a linear number of edges.

─ We define maximum average degree of G as

$$\operatorname{mad}(G) \coloneqq \max_{H \subseteq G} \operatorname{avgdeg}(H).$$

-G is **sparse** if mad(G) ≤ c for some constant c.

Attempt 2. Every **subgraph** of *G* has a linear number of edges.

− We define maximum average degree of G as

$$\operatorname{mad}(G) := \max_{H \subset G} \operatorname{avgdeg}(H).$$

-G is **sparse** if mad(G) ≤ c for some constant c.

Ex 1. *G* has maximum degree $\leqslant d \Rightarrow \operatorname{mad}(G) \leqslant d$.

Attempt 2. Every **subgraph** of *G* has a linear number of edges.

─ We define maximum average degree of *G* as

$$\operatorname{mad}(G) \coloneqq \max_{H \subseteq G} \operatorname{avgdeg}(H).$$

-G is **sparse** if mad(G) ≤ c for some constant c.

Ex 1. *G* has maximum degree $\leq d \implies \text{mad}(G) \leq d$.

Ex 2. G is planar \Rightarrow mad(G) < 6.

Attempt 2. Every **subgraph** of *G* has a linear number of edges.

─ We define maximum average degree of *G* as

$$mad(G) := \max_{H \subseteq G} avgdeg(H).$$

-G is **sparse** if mad(G) ≤ c for some constant c.

Ex 1. *G* has maximum degree $\leq d \implies \text{mad}(G) \leq d$.

Ex 2. G is planar \Rightarrow mad(G) < 6.

Issue: A subdivided complete graph.

Attempt 2. Every **subgraph** of *G* has a linear number of edges.

We define maximum average degree of G as

$$\operatorname{mad}(G) \coloneqq \max_{H \subseteq G} \operatorname{avgdeg}(H).$$

-G is **sparse** if mad(G) ≤ c for some constant c.

Ex 1. *G* has maximum degree $\leq d \implies \text{mad}(G) \leq d$.

Ex 2. G is planar \Rightarrow mad(G) < 6.

Issue: A subdivided complete graph.

– Exc: Every subgraph has avgdeg \leq 4.

Attempt 2. Every **subgraph** of *G* has a linear number of edges.

− We define maximum average degree of G as

$$\operatorname{mad}(G) \coloneqq \max_{H \subseteq G} \operatorname{avgdeg}(H).$$

-G is **sparse** if mad(G) ≤ c for some constant c.

Ex 1. *G* has maximum degree $\leq d \implies \text{mad}(G) \leq d$.

Ex 2. G is planar \Rightarrow mad(G) < 6.

Issue: A subdivided complete graph.

- Exc: Every subgraph has avgdeg \leq 4.
- Is this graph really sparse?

Option 1. We decide that a subdivided complete graph is **sparse**.

Option 1. We decide that a subdivided complete graph is **sparse**.

— We can construct a theory around the parameter $mad(\cdot)$.

Option 1. We decide that a subdivided complete graph is **sparse**.

- We can construct a theory around the parameter $mad(\cdot)$.
- $-\operatorname{mad}(\cdot)$ is essentially equivalent to **arboricity** and **degeneracy**.

Option 1. We decide that a subdivided complete graph is **sparse**.

- We can construct a theory around the parameter $mad(\cdot)$.
- $-\operatorname{mad}(\cdot)$ is essentially equivalent to **arboricity** and **degeneracy**.
- These connections are useful, but not really very deep.

Option 1. We decide that a subdivided complete graph is **sparse**.

- We can construct a theory around the parameter $mad(\cdot)$.
- $-\operatorname{mad}(\cdot)$ is essentially equivalent to **arboricity** and **degeneracy**.
- These connections are useful, but not really very deep.

Option 2. We decide that a subdivided complete graph is **dense**.

Option 1. We decide that a subdivided complete graph is **sparse**.

- We can construct a theory around the parameter $mad(\cdot)$.
- $-\operatorname{mad}(\cdot)$ is essentially equivalent to **arboricity** and **degeneracy**.
- These connections are useful, but not really very deep.

Option 2. We decide that a subdivided complete graph is **dense**.

Reason: It contains a dense substructure visible at "depth" 1.

Option 1. We decide that a subdivided complete graph is **sparse**.

- We can construct a theory around the parameter $mad(\cdot)$.
- $-\operatorname{mad}(\cdot)$ is essentially equivalent to **arboricity** and **degeneracy**.
- These connections are useful, but not really very deep.

Option 2. We decide that a subdivided complete graph is **dense**.

- Reason: It contains a dense substructure visible at "depth" 1.
- Need: A notion of embedding that would capture this.

Definition

H is a **minor** of $G \Leftrightarrow$

H is obtained from a subgraph of *G* by contracting connected subgraphs

Definition

H is a minor of $G \Leftrightarrow$

H is obtained from a subgraph of *G* by contracting connected subgraphs

Theorem (Kuratowski; Wagner)

Planar graphs are exactly $\{K_5, K_{3,3}\}$ -minor-free graphs.

Definition

H is a **minor** of $G \Leftrightarrow$

H is obtained from a subgraph of *G* by contracting connected subgraphs

Theorem (Kuratowski; Wagner)

Planar graphs are exactly $\{K_5, K_{3,3}\}$ -minor-free graphs.

Theorem (Robertson and Seymour)

For every $t \in \mathbb{N}$, every K_t -minor-free graph looks like this:

Attempt 3. Graphs excluding K_t as a minor, for some $t \in \mathbb{N}$.

Attempt 3. Graphs excluding K_t as a minor, for some $t \in \mathbb{N}$.

Issue: Graphs with maxdeg 3 admit all complete graphs as minors.

Attempt 3. Graphs excluding K_t as a minor, for some $t \in \mathbb{N}$.

Issue: Graphs with maxdeg 3 admit all complete graphs as minors.

Ergo: Excluding minors leads to an interesting theory,

but this is **not** the theory we are after.

Attempt 3. Graphs excluding K_t as a minor, for some $t \in \mathbb{N}$.

Issue: Graphs with maxdeg 3 admit all complete graphs as minors.

Ergo: Excluding minors leads to an interesting theory,

but this is **not** the theory we are after.

Idea: Think about local minors.

Attempt 3. Graphs excluding K_t as a minor, for some $t \in \mathbb{N}$.

Issue: Graphs with maxdeg 3 admit all complete graphs as minors.

Ergo: Excluding minors leads to an interesting theory,

but this is **not** the theory we are after.

Idea: Think about local minors.

Definition

H is a **depth**-d **minor** of $G \Leftrightarrow$

H is obtained from a subgraph of *G* by contracting subgraphs of radius $\leq d$

Attempt 3. Graphs excluding K_t as a minor, for some $t \in \mathbb{N}$.

Issue: Graphs with maxdeg 3 admit all complete graphs as minors.

Ergo: Excluding minors leads to an interesting theory,

but this is **not** the theory we are after.

Idea: Think about local minors.

Definition

H is a **depth-***d* **minor** of *G*

H is obtained from a subgraph of G by contracting subgraphs of radius $\leq d$

Intuition: Sparsity ⇔ Exclusion of **dense** structures at every fixed depth

Intuition: Sparsity ⇔ Exclusion of **dense** structures at every fixed depth

Definition

```
\nabla_d(G) := \sup\{ \operatorname{avgdeg}(H) : H \text{ is a depth-}d \text{ minor of } G \}

\omega_d(G) := \sup\{ t : K_t \text{ is a depth-}d \text{ minor of } G \}.
```

Intuition: Sparsity ⇔ Exclusion of **dense** structures at every fixed depth

Definition

$$\nabla_d(G) := \sup\{ \operatorname{avgdeg}(H) : H \text{ is a depth-}d \text{ minor of } G \}$$

 $\omega_d(G) := \sup\{ t : K_t \text{ is a depth-}d \text{ minor of } G \}.$

Note: depth-0 minors = subgraphs \rightsquigarrow $\nabla_0(G) = \operatorname{mad}(G)$.

Intuition: Sparsity ⇔ Exclusion of **dense** structures at every fixed depth

Definition

$$\nabla_d(G) := \sup\{ \operatorname{avgdeg}(H) : H \text{ is a depth-}d \text{ minor of } G \}$$

 $\omega_d(G) := \sup\{ t : K_t \text{ is a depth-}d \text{ minor of } G \}.$

Note: depth-0 minors = subgraphs \rightsquigarrow $\nabla_0(G) = \operatorname{mad}(G)$.

For a **class** of graphs C, we write:

$$abla_d(\mathcal{C})\coloneqq \sup_{G\in\mathcal{C}} \,
abla_d(G) \qquad ext{and} \qquad \omega_d(\mathcal{C})\coloneqq \sup_{G\in\mathcal{C}} \, \omega_d(G).$$

Intuition: Sparsity ⇔ Exclusion of **dense** structures at every fixed depth

Definition

$$\nabla_d(G) := \sup\{ \operatorname{avgdeg}(H) : H \text{ is a depth-}d \text{ minor of } G \}$$

 $\omega_d(G) := \sup\{ t : K_t \text{ is a depth-}d \text{ minor of } G \}.$

Note: depth-0 minors = subgraphs \rightsquigarrow $\nabla_0(G) = \operatorname{mad}(G)$.

For a **class** of graphs C, we write:

$$abla_d(\mathcal{C}) \coloneqq \sup_{G \in \mathcal{C}} \nabla_d(G) \quad \text{and} \quad \omega_d(\mathcal{C}) \coloneqq \sup_{G \in \mathcal{C}} \omega_d(G).$$

Definition

 \mathcal{C} has **bounded expansion** if $\nabla_d(\mathcal{C})$ is finite for all $d \in \mathbb{N}$.

 \mathcal{C} is **nowhere dense** if $\omega_d(\mathcal{C})$ is finite for all $d \in \mathbb{N}$.

Equivalently:

Equivalently:

 \mathcal{C} has **bounded expansion** if for every $d \in \mathbb{N}$ there is $c(d) \in \mathbb{N}$ s.t. avgdeg(H) $\leq c(d)$ whenever H is a depth-d minor of some $G \in \mathcal{C}$.

Equivalently:

 \mathcal{C} has **bounded expansion** if for every $d \in \mathbb{N}$ there is $c(d) \in \mathbb{N}$ s.t. avgdeg(H) $\leq c(d)$ whenever H is a depth-d minor of some $G \in \mathcal{C}$.

 \mathcal{C} is **nowhere dense** if for every $d \in \mathbb{N}$ there is $t(d) \in \mathbb{N}$ s.t. $K_{t(d)}$ is not a depth-d minor of any $G \in \mathcal{C}$.

Equivalently:

 \mathcal{C} has **bounded expansion** if for every $d \in \mathbb{N}$ there is $c(d) \in \mathbb{N}$ s.t. avgdeg(H) $\leq c(d)$ whenever H is a depth-d minor of some $G \in \mathcal{C}$.

 \mathcal{C} is **nowhere dense** if for every $d \in \mathbb{N}$ there is $t(d) \in \mathbb{N}$ s.t. $K_{t(d)}$ is not a depth-d minor of any $G \in \mathcal{C}$.

Key idea: Sparsity is a property of a **class** of graphs.

Equivalently:

 \mathcal{C} has **bounded expansion** if for every $d \in \mathbb{N}$ there is $c(d) \in \mathbb{N}$ s.t. avgdeg(H) $\leq c(d)$ whenever H is a depth-d minor of some $G \in \mathcal{C}$.

 \mathcal{C} is **nowhere dense** if for every $d \in \mathbb{N}$ there is $t(d) \in \mathbb{N}$ s.t. $K_{t(d)}$ is not a depth-d minor of any $G \in \mathcal{C}$.

Key idea: Sparsity is a property of a class of graphs.

It is a limit property of graphs from the class.

Equivalently:

 \mathcal{C} has **bounded expansion** if for every $d \in \mathbb{N}$ there is $c(d) \in \mathbb{N}$ s.t. avgdeg(H) $\leq c(d)$ whenever H is a depth-d minor of some $G \in \mathcal{C}$.

 \mathcal{C} is **nowhere dense** if for every $d \in \mathbb{N}$ there is $t(d) \in \mathbb{N}$ s.t. $K_{t(d)}$ is not a depth-d minor of any $G \in \mathcal{C}$.

Key idea: Sparsity is a property of a class of graphs.

- It is a limit property of graphs from the class.
- Can be formalized using standard limit constructions (P, Toruńczyk).

Equivalently:

 \mathcal{C} has **bounded expansion** if for every $d \in \mathbb{N}$ there is $c(d) \in \mathbb{N}$ s.t. avgdeg(H) $\leq c(d)$ whenever H is a depth-d minor of some $G \in \mathcal{C}$.

 \mathcal{C} is **nowhere dense** if for every $d \in \mathbb{N}$ there is $t(d) \in \mathbb{N}$ s.t. $K_{t(d)}$ is not a depth-d minor of any $G \in \mathcal{C}$.

Key idea: Sparsity is a property of a **class** of graphs.

- It is a limit property of graphs from the class.
- Can be formalized using standard limit constructions (P, Toruńczyk).

Every class with bnd degree, or excluding a minor, has bounded expansion.

Equivalently:

 \mathcal{C} has **bounded expansion** if for every $d \in \mathbb{N}$ there is $c(d) \in \mathbb{N}$ s.t. avgdeg(H) $\leq c(d)$ whenever H is a depth-d minor of some $G \in \mathcal{C}$.

 \mathcal{C} is **nowhere dense** if for every $d \in \mathbb{N}$ there is $t(d) \in \mathbb{N}$ s.t. $K_{t(d)}$ is not a depth-d minor of any $G \in \mathcal{C}$.

Key idea: Sparsity is a property of a **class** of graphs.

- It is a limit property of graphs from the class.
- Can be formalized using standard limit constructions (P, Toruńczyk).

Every class with bnd degree, or excluding a minor, has bounded expansion.

Every class of bounded expansion is nowhere dense, but not vice versa.

Equivalently:

 \mathcal{C} has **bounded expansion** if for every $d \in \mathbb{N}$ there is $c(d) \in \mathbb{N}$ s.t. avgdeg(H) $\leq c(d)$ whenever H is a depth-d minor of some $G \in \mathcal{C}$.

 \mathcal{C} is **nowhere dense** if for every $d \in \mathbb{N}$ there is $t(d) \in \mathbb{N}$ s.t. $K_{t(d)}$ is not a depth-d minor of any $G \in \mathcal{C}$.

Key idea: Sparsity is a property of a class of graphs.

- It is a limit property of graphs from the class.
- Can be formalized using standard limit constructions (P, Toruńczyk).

Every class with bnd degree, or excluding a minor, has bounded expansion. Every class of bounded expansion is nowhere dense, but **not** vice versa.

Graphs from nowhere dense classes are somewhat sparse w.r.t. $\nabla_d(\cdot)$.

The World of Sparsity

Sparsity of shallow minors

Generalized coloring numbers

Sparsity of shallow minors

Degeneracy

Weak coloring number

Generalized coloring numbers

Sparsity of shallow minors

Generalized coloring numbers

Sparsity of shallow minors

Uniform quasi-wideness

Neighborhood complexity

Generalized coloring numbers

Stability

Sparsity of shallow top-minors

Fraternal augmentations

Sparsity of shallow minors

Neighborhood covers

Low treedepth colorings

Uniform quasi-wideness

k-Helly property

Splitter game

Neighborhood complexity

Many characterizations of **bnd expansion** and **nowhere denseness**.

Many characterizations of **bnd expansion** and **nowhere denseness**.

- Equivalence shows that we are working with fundamental notions.

Many characterizations of **bnd expansion** and **nowhere denseness**.

- Equivalence shows that we are working with fundamental notions.
- Different characterizations present different perspectives on Sparsity.

Many characterizations of **bnd expansion** and **nowhere denseness**.

- Equivalence shows that we are working with fundamental notions.
- Different characterizations present different perspectives on Sparsity.
- Each characterization is a tool applicable in different settings.

Many characterizations of **bnd expansion** and **nowhere denseness**.

- Equivalence shows that we are working with fundamental notions.
- Different characterizations present different perspectives on Sparsity.
- Each characterization is a tool applicable in different settings.

Original idea: Study the **combinatorics** of sparse graphs.

Many characterizations of **bnd expansion** and **nowhere denseness**.

- Equivalence shows that we are working with fundamental notions.
- Different characterizations present different perspectives on Sparsity.
- Each characterization is a tool applicable in different settings.

Original idea: Study the **combinatorics** of sparse graphs.

Goal: Describe structural properties implied by sparsity.

Many characterizations of **bnd expansion** and **nowhere denseness**.

- Equivalence shows that we are working with fundamental notions.
- Different characterizations present different perspectives on Sparsity.
- Each characterization is a tool applicable in different settings.

Original idea: Study the **combinatorics** of sparse graphs.

Goal: Describe structural properties implied by sparsity.

These properties can be used to design efficient algorithms.

Many characterizations of **bnd expansion** and **nowhere denseness**.

- Equivalence shows that we are working with fundamental notions.
- Different characterizations present different perspectives on Sparsity.
- Each characterization is a tool applicable in different settings.

Original idea: Study the **combinatorics** of sparse graphs.

Goal: Describe structural properties implied by sparsity.

These properties can be used to design efficient algorithms.

- **Areas:** Parameterized, approximation, and distributed algorithms.

Many characterizations of **bnd expansion** and **nowhere denseness**.

- Equivalence shows that we are working with fundamental notions.
- Different characterizations present different perspectives on Sparsity.
- Each characterization is a tool applicable in different settings.

Original idea: Study the **combinatorics** of sparse graphs.

Goal: Describe structural properties implied by sparsity.

These properties can be used to design efficient algorithms.

- **Areas:** Parameterized, approximation, and distributed algorithms.
- Applicable to problems of **local** nature.

Many characterizations of **bnd expansion** and **nowhere denseness**.

- Equivalence shows that we are working with fundamental notions.
- Different characterizations present different perspectives on Sparsity.
- Each characterization is a tool applicable in different settings.

Original idea: Study the **combinatorics** of sparse graphs.

Goal: Describe structural properties implied by sparsity.

These properties can be used to design efficient algorithms.

- **Areas:** Parameterized, approximation, and distributed algorithms.
- Applicable to problems of **local** nature.

Sparsity delimits tractability of First Order logic on graphs.

Many characterizations of **bnd expansion** and **nowhere denseness**.

- Equivalence shows that we are working with fundamental notions.
- Different characterizations present different perspectives on Sparsity.
- Each characterization is a tool applicable in different settings.

Original idea: Study the **combinatorics** of sparse graphs.

Goal: Describe structural properties implied by sparsity.

These properties can be used to design efficient algorithms.

- Areas: Parameterized, approximation, and distributed algorithms.
- Applicable to problems of **local** nature.

Sparsity delimits tractability of First Order logic on graphs.

Provides connections with (algorithmic) finite model theory.

Many characterizations of **bnd expansion** and **nowhere denseness**.

- Equivalence shows that we are working with fundamental notions.
- Different characterizations present different perspectives on Sparsity.
- Each characterization is a tool applicable in different settings.

Original idea: Study the **combinatorics** of sparse graphs.

Goal: Describe structural properties implied by sparsity.

These properties can be used to design efficient algorithms.

- **Areas:** Parameterized, approximation, and distributed algorithms.
- Applicable to problems of **local** nature.

Sparsity delimits tractability of First Order logic on graphs.

Provides connections with (algorithmic) finite model theory.

Many characterizations of **bnd expansion** and **nowhere denseness**.

- Equivalence shows that we are working with fundamental notions.
- Different characterizations present different perspectives on Sparsity.
- Each characterization is a tool applicable in different settings.

Original idea: Study the **combinatorics** of sparse graphs.

Goal: Describe structural properties implied by sparsity.

These properties can be used to design efficient algorithms.

- Areas: Parameterized, approximation, and distributed algorithms.
- Applicable to problems of **local** nature.

Sparsity delimits tractability of First Order logic on graphs.

Provides connections with (algorithmic) finite model theory.

Now: Example algorithmic application.

Distance-*d* **dominating set**:

set of vertices s.t. every vertex is at distance $\leq d$ from one of them

Distance-*d* **dominating set**:

set of vertices s.t. every vertex is at distance $\leq d$ from one of them

Here: A distance-3 dominating set of size 4.

Problem (Distance-*d* Dominating Set)

Given G and $k \in \mathbb{N}$, does G admit a distance-d dominating set of size k?

Problem (Distance-*d* Dominating Set)

Given G and $k \in \mathbb{N}$, does G admit a distance-d dominating set of size k?

Ex 1. Can one place 4 police stations to cover the center of Cracow?

Problem (Distance-*d* Dominating Set)

Given G and $k \in \mathbb{N}$, does G admit a distance-d dominating set of size k?

- **Ex 1.** Can one place 4 police stations to cover the center of Cracow?
- **Ex 2.** Can one divide Poland into 16 voivodeships so that every place is at distance 100km from the capital of its voivodeship?

Problem (Distance-*d* Dominating Set)

Given G and $k \in \mathbb{N}$, does G admit a distance-d dominating set of size k?

- **Ex 1.** Can one place 4 police stations to cover the center of Cracow?
- **Ex 2.** Can one divide Poland into 16 voivodeships so that every place is at distance 100km from the capital of its voivodeship?

The problem is **NP-hard**, so probably no polytime algorithm.

Problem (Distance-*d* Dominating Set)

Given G and $k \in \mathbb{N}$, does G admit a distance-d dominating set of size k?

- **Ex 1.** Can one place 4 police stations to cover the center of Cracow?
- **Ex 2.** Can one divide Poland into 16 voivodeships so that every place is at distance 100km from the capital of its voivodeship?

The problem is NP-hard, so probably no polytime algorithm.

Our setting: *d* is a fixed constant, *k* is small, *G* is sparse.

Problem (Distance-*d* Dominating Set)

Given G and $k \in \mathbb{N}$, does G admit a distance-d dominating set of size k?

- **Ex 1.** Can one place 4 police stations to cover the center of Cracow?
- **Ex 2.** Can one divide Poland into 16 voivodeships so that every place is at distance 100km from the capital of its voivodeship?

The problem is **NP-hard**, so probably no polytime algorithm.

Our setting: *d* is a fixed constant, *k* is small, *G* is sparse.

Naive: $\mathcal{O}(n^k)$ time, where n = |V(G)|.

Problem (Distance-*d* Dominating Set)

Given G and $k \in \mathbb{N}$, does G admit a distance-d dominating set of size k?

- **Ex 1.** Can one place 4 police stations to cover the center of Cracow?
- **Ex 2.** Can one divide Poland into 16 voivodeships so that every place is at distance 100km from the capital of its voivodeship?

The problem is **NP-hard**, so probably no polytime algorithm.

Our setting: d is a fixed constant, k is small, G is sparse.

Naive: $\mathcal{O}(n^k)$ time, where n = |V(G)|.

- For arbitrary G, no $\mathcal{O}(n^{k-\varepsilon})$ -time algorithm for any $\varepsilon > 0$.

Problem (Distance-*d* Dominating Set)

Given G and $k \in \mathbb{N}$, does G admit a distance-d dominating set of size k?

- **Ex 1.** Can one place 4 police stations to cover the center of Cracow?
- **Ex 2.** Can one divide Poland into 16 voivodeships so that every place is at distance 100km from the capital of its voivodeship?

The problem is **NP-hard**, so probably no polytime algorithm.

Our setting: d is a fixed constant, k is small, G is sparse.

Naive: $\mathcal{O}(n^k)$ time, where n = |V(G)|.

— For arbitrary G, no $\mathcal{O}(n^{k-\varepsilon})$ -time algorithm for any $\varepsilon > 0$.

Now: For any nowhere dense class C,

a $k^{\mathcal{O}(k)} \cdot ||G||$ -time algorithm for $G \in \mathcal{C}$.

$$||G|| = |V(G)| + |E(G)|$$

Problem (Distance-*d* Dominating Set)

Given G and $k \in \mathbb{N}$, does G admit a distance-d dominating set of size k?

- **Ex 1.** Can one place 4 police stations to cover the center of Cracow?
- **Ex 2.** Can one divide Poland into 16 voivodeships so that every place is at distance 100km from the capital of its voivodeship?

The problem is **NP-hard**, so probably no polytime algorithm.

Our setting: *d* is a fixed constant, *k* is small, *G* is sparse.

Naive: $\mathcal{O}(n^k)$ time, where n = |V(G)|.

- For arbitrary G, no $\mathcal{O}(n^{k-\varepsilon})$ -time algorithm for any $\varepsilon > 0$.

Now: For any nowhere dense class C,

a $k^{\mathcal{O}(k)} \cdot ||G||$ -time algorithm for $G \in \mathcal{C}$.

$$||G|| = |V(G)| + |E(G)|$$

Distinction between XP and FPT running times.

Problem (Distance-*d* Dominating Set)

Given G and $k \in \mathbb{N}$, does G admit a distance-d dominating set of size k?

- **Ex 1.** Can one place 4 police stations to cover the center of Cracow?
- **Ex 2.** Can one divide Poland into 16 voivodeships so that every place is at distance 100km from the capital of its voivodeship?

The problem is **NP-hard**, so probably no polytime algorithm.

Our setting: *d* is a fixed constant, *k* is small, *G* is sparse.

Naive: $\mathcal{O}(n^k)$ time, where n = |V(G)|.

- For arbitrary G, no $\mathcal{O}(n^{k-\varepsilon})$ -time algorithm for any $\varepsilon > 0$.

Now: For any nowhere dense class C,

a $k^{\mathcal{O}(k)} \cdot ||G||$ -time algorithm for $G \in \mathcal{C}$.

$$||G|| = |V(G)| + |E(G)|$$

Distinction between XP and FPT running times.

Round 1: Take any k-tuple of vertices D_1 .

Round 1: Take any k-tuple of vertices D_1 .

If D_1 dominates the whole graph, terminate and return YES.

Round 1: Take any k-tuple of vertices D_1 .

If D_1 dominates the whole graph, terminate and return YES.

Otherwise, some w_1 is not dominated.

Round 2: Take any k-tuple of vertices D_2 that dominates w_1 .

Round 2: Take any k-tuple of vertices D_2 that dominates w_1 . If D_2 dominates the whole graph, terminate and return **YES**.

Round 2: Take any k-tuple of vertices D_2 that dominates w_1 . If D_2 dominates the whole graph, terminate and return **YES**. Otherwise, some w_2 is not dominated.

Round 3: Take any *k*-tuple of vertices D_3 that dominates $\{w_1, w_2\}$.

Round 3: Take any k-tuple of vertices D_3 that dominates $\{w_1, w_2\}$. If D_3 dominates the whole graph, terminate and return **YES**.

Round 3: Take any k-tuple of vertices D_3 that dominates $\{w_1, w_2\}$. If D_3 dominates the whole graph, terminate and return **YES**. Otherwise, some w_3 is not dominated.

Round *t*:

Round *t*: Try to find any *k*-tuple D_t that dominates $\{w_1, \ldots, w_{t-1}\}$.

Round *t*: Try to find any *k*-tuple D_t that dominates $\{w_1, \ldots, w_{t-1}\}$. If there is none, terminate and return **NO**.

Round *t*: Try to find any *k*-tuple D_t that dominates $\{w_1, \ldots, w_{t-1}\}$. If there is none, terminate and return NO. Otherwise, take any such *k*-tuple D_t .

Round *t*: Try to find any *k*-tuple D_t that dominates $\{w_1, \ldots, w_{t-1}\}$. If there is none, terminate and return NO. Otherwise, take any such *k*-tuple D_t . If D_t dominates G, terminate and return YES.

Round *t*: Try to find any *k*-tuple D_t that dominates $\{w_1, \ldots, w_{t-1}\}$. If there is none, terminate and return **NO**.

Otherwise, take any such k-tuple D_t .

If D_t dominates G, terminate and return **YES**.

Otherwise, some w_t is not dominated, and **Proceed**.

Problem in round *t*:

Find k vertices that distance-d dominate $\{w_1, \ldots, w_{t-1}\}$.

Problem in round *t*:

Find k vertices that distance-d dominate $\{w_1, \ldots, w_{t-1}\}$.

This problem can be solved in time $t^{\mathcal{O}(k)} \cdot ||G||$.

Problem in round *t*:

Find k vertices that distance-d dominate $\{w_1, \ldots, w_{t-1}\}$.

This problem can be solved in time $t^{\mathcal{O}(k)} \cdot ||G||$.

Ergo: Running time $L^{O(k)} \cdot ||G||$, where L is the total number of rounds.

Problem in round *t*:

Find k vertices that distance-d dominate $\{w_1, \ldots, w_{t-1}\}$.

This problem can be solved in time $t^{\mathcal{O}(k)} \cdot ||G||$.

Ergo: Running time $L^{O(k)} \cdot ||G||$, where L is the total number of rounds.

Question: Why the number of rounds should be bounded?

Problem in round *t*:

Find k vertices that distance-d dominate $\{w_1, \ldots, w_{t-1}\}$.

This problem can be solved in time $t^{\mathcal{O}(k)} \cdot ||G||$.

Ergo: Running time $L^{O(k)} \cdot ||G||$, where L is the total number of rounds.

Question: Why the number of rounds should be bounded?

Theorem (Fabiański, P, Siebertz, Toruńczyk)

For every nowhere dense class C and $d \in \mathbb{N}$, there is a polynomial $p(\cdot)$ such that the algorithm run on any $G \in C$ and k, performs $\leq p(k)$ rounds.

Problem in round *t*:

Find k vertices that distance-d dominate $\{w_1, \ldots, w_{t-1}\}$.

This problem can be solved in time $t^{\mathcal{O}(k)} \cdot ||G||$.

Ergo: Running time $L^{O(k)} \cdot ||G||$, where L is the total number of rounds.

Question: Why the number of rounds should be bounded?

Theorem (Fabiański, P, Siebertz, Toruńczyk)

For every nowhere dense class C and $d \in \mathbb{N}$, there is a polynomial $p(\cdot)$ such that the algorithm run on any $G \in C$ and k, performs $\leq p(k)$ rounds.

Cor: Runtime $p(k)^{\mathcal{O}(k)} \cdot ||G|| = k^{\mathcal{O}(k)} \cdot ||G||$ on any nowhere dense \mathcal{C} .

The Algorithm constructs a **semi-ladder** of length *L*.

The Algorithm constructs a **semi-ladder** of length *L*.

- Every D_i dominates all w_j with j < i, but not w_i .

The Algorithm constructs a **semi-ladder** of length *L*.

- Every D_i dominates all w_i with j < i, but not w_i .

Uniform quasi-wideness \Rightarrow Such a structure cannot be too long.

Generalizing problems

Distance-*d* **Dominating Set** is a problem with **local** constraints.

Distance-*d* **Dominating Set** is a problem with **local** constraints.

Q: What other problems have this **locality** property?

Distance-*d* **Dominating Set** is a problem with **local** constraints.

Q: What other problems have this **locality** property?

A: Problems expressible in First Order Logic on graphs.

Distance-*d* **Dominating Set** is a problem with **local** constraints.

Q: What other problems have this **locality** property?

A: Problems expressible in First Order Logic on graphs.

Ex 1.
$$\delta_d(x, y)$$
 expresses that $\operatorname{dist}(x, y) \leq d$.

$$\delta_3(x,y) := \delta_2(x,y) \vee \exists_z \exists_w \operatorname{adj}(x,z) \wedge \operatorname{adj}(z,w) \wedge \operatorname{adj}(w,y).$$

Distance-*d* **Dominating Set** is a problem with **local** constraints.

Q: What other problems have this **locality** property?

A: Problems expressible in First Order Logic on graphs.

$$X \qquad W$$

$$\delta_3(x,y) := \delta_2(x,y) \vee \exists_z \exists_w \operatorname{adj}(x,z) \wedge \operatorname{adj}(z,w) \wedge \operatorname{adj}(w,y).$$

Ex 2. $\varphi_{d,k}$ expresses that there is a distance-d dominating set of size k.

$$X_1$$
 X_2 X_3 X_4 X_5

$$\varphi_{d,k} := \exists_{x_1} \exists_{x_2} \ldots \exists_{x_k} \forall_y \bigvee_{i=1}^k \delta_d(y, x_i).$$

Distance-*d* **Dominating Set** is a problem with **local** constraints.

Q: What other problems have this locality property?

A: Problems expressible in First Order Logic on graphs.

$$\delta_3(x,y) := \delta_2(x,y) \vee \exists_z \exists_w \operatorname{adj}(x,z) \wedge \operatorname{adj}(z,w) \wedge \operatorname{adj}(w,y).$$

Ex 2. $\varphi_{d,k}$ expresses that there is a distance-d dominating set of size k.

$$\varphi_{d,k} := \exists_{x_1} \exists_{x_2} \ldots \exists_{x_k} \forall_y \bigvee_{i=1}^k \delta_d(y,x_i).$$

Theorem (Gaifman)

First Order Logic on graphs is local:

It cannot express much more than the above.

Distance-*d* **Dominating Set** is a problem with **local** constraints.

Q: What other problems have this locality property?

A: Problems expressible in First Order Logic on graphs.

Ex 1.
$$\delta_d(x, y)$$
 expresses that $\operatorname{dist}(x, y) \leq d$.

$$\delta_3(x,y) := \delta_2(x,y) \vee \exists_z \exists_w \operatorname{adj}(x,z) \wedge \operatorname{adj}(z,w) \wedge \operatorname{adj}(w,y).$$

Ex 2. $\varphi_{d,k}$ expresses that there is a distance-d dominating set of size k.

$$\varphi_{d,k} := \exists_{x_1} \exists_{x_2} \ldots \exists_{x_k} \forall_y \bigvee_{i=1}^k \delta_d(y,x_i).$$

Theorem (Gaifman)

First Order Logic on graphs is local:

It cannot express much more than the above.

Q: Can we solve efficiently all FO-expressible problems on sparse graphs?

Problem (FO model checking)

Given a graph G and an FO sentence φ , does φ hold in G?

Problem (FO model checking)

Given a graph G and an FO sentence φ , does φ hold in G?

Naive: Running time $\mathcal{O}(\|G\|^{\|\varphi\|})$.

Problem (FO model checking)

Given a graph G and an FO sentence φ , does φ hold in G?

Naive: Running time $\mathcal{O}(\|G\|^{\|\varphi\|})$.

— Degree of the polynomial has to depend on $\|\varphi\|$, unless $\mathsf{FPT} = \mathsf{AW}[\star]$.

Problem (FO model checking)

Given a graph G and an FO sentence φ , does φ hold in G?

Naive: Running time $\mathcal{O}(\|G\|^{\|\varphi\|})$.

- Degree of the polynomial has to depend on $\|\varphi\|$, unless $FPT = AW[\star]$.

Q: Can we do better in sparse graphs?

Problem (FO model checking)

Given a graph G and an FO sentence φ , does φ hold in G?

Naive: Running time $\mathcal{O}(\|G\|^{\|\varphi\|})$.

— Degree of the polynomial has to depend on $\|\varphi\|$, unless $\mathsf{FPT} = \mathsf{AW}[\star]$.

Q: Can we do better in sparse graphs?

Theorem (Grohe, Kreutzer, Siebertz)

For every nowhere dense class C, FO model checking on graphs from C can be done in time $f(\varphi) \cdot ||G||^{1+\varepsilon}$, for some function f and any $\varepsilon > 0$.

Problem (FO model checking)

Given a graph G and an FO sentence φ , does φ hold in G?

Naive: Running time $\mathcal{O}(\|G\|^{\|\varphi\|})$.

— Degree of the polynomial has to depend on $\|\varphi\|$, unless $\mathsf{FPT} = \mathsf{AW}[\star]$.

Q: Can we do better in sparse graphs?

Theorem (Grohe, Kreutzer, Siebertz)

For every nowhere dense class C, FO model checking on graphs from C can be done in time $f(\varphi) \cdot ||G||^{1+\varepsilon}$, for some function f and any $\varepsilon > 0$.

Theorem (Dvořák, Král', Thomas)

If C is **not** nowhere dense, and is closed under taking subgraphs, then FO model checking on C is as hard as on general graphs.

Problem (FO model checking)

Given a graph G and an FO sentence φ , does φ hold in G?

Naive: Running time $\mathcal{O}(\|G\|^{\|\varphi\|})$.

- Degree of the polynomial has to depend on $\|\varphi\|$, unless $FPT = AW[\star]$.

Q: Can we do better in sparse graphs?

Theorem (Grohe, Kreutzer, Siebertz)

For every nowhere dense class C, FO model checking on graphs from C can be done in time $f(\varphi) \cdot ||G||^{1+\varepsilon}$, for some function f and any $\varepsilon > 0$.

Theorem (Dvořák, Král', Thomas)

If C is **not** nowhere dense, and is closed under taking subgraphs, then FO model checking on C is as hard as on general graphs.

Cor: Nowhere denseness exactly delimits tractability of First Order Logic.

Idea: Generalize the bound on semi-ladders to other properties?

Idea: Generalize the bound on semi-ladders to other properties?

- Distance-d domination $\longleftrightarrow \psi_{d,k}(\bar{x},y) = \bar{x}$ distance-d dominates y.

Idea: Generalize the bound on semi-ladders to other properties?

— Distance-d domination $\longleftrightarrow \psi_{d,k}(\bar{x},y) = \bar{x}$ distance-d dominates y.

Definition

 \bar{x}, \bar{y} : tuples of variables, $\varphi(\bar{x}, \bar{y})$: an FO formula

Idea: Generalize the bound on semi-ladders to other properties?

- Distance-d domination $\longleftrightarrow \psi_{d,k}(\bar{x},y) = \bar{x}$ distance-d dominates y.

Definition

 \bar{x}, \bar{y} : tuples of variables, $\varphi(\bar{x}, \bar{y})$: an FO formula

A φ -ladder of length ℓ in G consists of evaluations

 $ar{a}_1,\ldots,ar{a}_\ell$ and $ar{b}_1,\ldots,ar{b}_\ell$

of \bar{x} and \bar{y} , respectively, such that

$$\varphi(\bar{a}_i, \bar{b}_j)$$
 holds $\Leftrightarrow i > j$.

Idea: Generalize the bound on semi-ladders to other properties?

- Distance-d domination $\longleftrightarrow \psi_{d,k}(\bar{x},y) = \bar{x}$ distance-d dominates y.

Definition

 \bar{x}, \bar{y} : tuples of variables, $\varphi(\bar{x}, \bar{y})$: an FO formula

A φ -ladder of length ℓ in G consists of evaluations

 $ar{a}_1,\ldots,ar{a}_\ell$ and $ar{b}_1,\ldots,ar{b}_\ell$

of \bar{x} and \bar{y} , respectively, such that

$$\varphi(\bar{a}_i, \bar{b}_j)$$
 holds $\Leftrightarrow i > j$.

Definition

Ladder index of φ on \mathcal{C} :=

supremum of lengths of φ -ladders in graphs from $\mathcal{C}.$

Definition

Ladder index of φ on \mathcal{C} := supremum of lengths of φ -ladders in graphs from \mathcal{C} .

Definition

A class C is **stable** if every FO formula has a finite ladder index on C.

Definition

Ladder index of φ on \mathcal{C} := supremum of lengths of φ -ladders in graphs from \mathcal{C} .

Definition

A class C is **stable** if every FO formula has a finite ladder index on C.

Intuition: In stable classes one cannot define arbitrary long **linear orders**.

Definition

Ladder index of φ on \mathcal{C} := supremum of lengths of φ -ladders in graphs from \mathcal{C} .

Definition

A class C is **stable** if every FO formula has a finite ladder index on C.

Intuition: In stable classes one cannot define arbitrary long linear orders.

Theorem (Adler and Adler)

A subgraph-closed graph class $\ensuremath{\mathcal{C}}$ is nowhere dense if and only if it is stable.

Definition

Ladder index of φ on \mathcal{C} := supremum of lengths of φ -ladders in graphs from \mathcal{C} .

Definition

A class C is **stable** if every FO formula has a finite ladder index on C.

Intuition: In stable classes one cannot define arbitrary long **linear orders**.

Theorem (Adler and Adler)

A subgraph-closed graph class $\mathcal C$ is nowhere dense if and only if it is stable.

Note: There are plenty of stable classes that are not nowhere dense.

Definition

Ladder index of φ on \mathcal{C} := supremum of lengths of φ -ladders in graphs from \mathcal{C} .

Definition

A class C is **stable** if every FO formula has a finite ladder index on C.

Intuition: In stable classes one cannot define arbitrary long linear orders.

Theorem (Adler and Adler)

A subgraph-closed graph class C is nowhere dense if and only if it is stable.

Note: There are plenty of stable classes that are not nowhere dense.

- They consist of well-structured, dense graphs.

Stability is an established area of **model theory**.

Focus: dividing lines between simple and complex theories.

- Focus: dividing lines between simple and complex theories.
- Many concepts and techniques have analogues in Sparsity.

- Focus: dividing lines between simple and complex theories.
- Many concepts and techniques have analogues in Sparsity.
- Reason: Stability projects to Sparsity under subgraph-closeness.

- Focus: dividing lines between simple and complex theories.
- Many concepts and techniques have analogues in Sparsity.
- Reason: Stability projects to Sparsity under subgraph-closeness.
- Enables a transfer of ideas and techniques.

Stability is an established area of **model theory**.

- Focus: dividing lines between simple and complex theories.
- Many concepts and techniques have analogues in Sparsity.
- Reason: Stability projects to Sparsity under subgraph-closeness.
- Enables a transfer of ideas and techniques.

Current direction: A theory for well-structured dense graphs.

Stability is an established area of **model theory**.

- Focus: dividing lines between simple and complex theories.
- Many concepts and techniques have analogues in Sparsity.
- Reason: Stability projects to Sparsity under subgraph-closeness.
- Enables a transfer of ideas and techniques.

Current direction: A theory for well-structured dense graphs.

Objective: Structural understanding of stable classes of graphs.

Stability is an established area of **model theory**.

- Focus: dividing lines between simple and complex theories.
- Many concepts and techniques have analogues in Sparsity.
- Reason: Stability projects to Sparsity under subgraph-closeness.
- Enables a transfer of ideas and techniques.

Current direction: A theory for well-structured dense graphs.

- Objective: Structural understanding of stable classes of graphs.
- Algorithmic applications in arbitrary stable classes?

Marcin Pilipczuk

Sebastian Siebertz

Szymon Toruńczyk

Marcin Pilipczuk

Sebastian Siebertz

Szymon Toruńczyk

Marcin Pilipczuk

Sebastian Siebertz

Szymon Toruńczyk

Berlin

Bremen

Graduated students: Grzegorz Fabiański, Wojciech Nadara, Adam Paszke

Marcin Pilipczuk

Sebastian Siebertz

Szymon Toruńczyk

Berlin —

Bremen

Marcin Pilipczuk

Sebastian Siebertz

Szymon Toruńczyk

Berlin ————— Bremen

Graduated students: Grzegorz Fabiański, Wojciech Nadara, Adam Paszke **Sparsity** course offered for master students in CS

- Three editions: Winter semesters 2012/13, 2017/18, and 2019/20

Marcin Pilipczuk

Szymon Toruńczyk

Berlin ————— Bremen

- Three editions: Winter semesters 2012/13, 2017/18, and 2019/20
- Webpages: www.mimuw.edu.pl/~mp248287/sparsity and /sparsity2

Marcin Pilipczuk

Sebastian Siebertz

Szymon Toruńczyk

Berlin Bremen

- Three editions: Winter semesters 2012/13, 2017/18, and 2019/20
- Webpages: www.mimuw.edu.pl/~mp248287/sparsity and /sparsity2
- Extensive lecture notes on the topic

Marcin Pilipczuk

Sebastian Siebertz

Szymon Toruńczyk

Berlin ————— Bremen

- Three editions: Winter semesters 2012/13, 2017/18, and 2019/20
- Webpages: www.mimuw.edu.pl/~mp248287/sparsity and /sparsity2
- Extensive lecture notes on the topic
- New: Video recordings of lectures on Youtube.

Marcin Pilipczuk

Szymon Toruńczyk

Berlin Bremen

Graduated students: Grzegorz Fabiański, Wojciech Nadara, Adam Paszke **Sparsity** course offered for master students in CS

- Three editions: Winter semesters 2012/13, 2017/18, and 2019/20
- Webpages: www.mimuw.edu.pl/~mp248287/sparsity and /sparsity2
- Extensive lecture notes on the topic
- New: Video recordings of lectures on Youtube.

In two weeks, a one-week crash course as part of ALGOMANET.

A big **Thank You** to:

all my Sparsity coauthors, especially Marcin, Sebi, and Szymon

Felix Reidl, for all the pretty figures in this talk

Michał Skrzypczak, for BeamerikZ

A big **Thank You** to:

all my Sparsity coauthors, especially Marcin, Sebi, and Szymon

Felix Reidl, for all the pretty figures in this talk

Michał Skrzypczak, for BeamerikZ

Thank you for your attention!

