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Erlangen Program

According to the Erlangen Program (1872) of Felix Klein various
geometries study invariants of the corresponding transformation
groups.
For example,

topology studies properties, preserved by homeomorphisms;

uniform topology studied properties preserved by uniform
homeomorphisms (= microform bijections);

large-scale topology is intersted in properties preserved by
coarse isomorphisms (= macroform bijections).
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Microform and macroform functions

Let R+ denote the open half-line (0,+∞).

A function f : X → Y between metric spaces (X , dX ) and (Y , dY )
is called

• microform (= uniformly continuous) if
∀ε ∈ R+ ∃δ ∈ R+ ∀x , x ′ ∈ X (dX (x , y) < δ ⇒ dY (f (x), f (y)) < ε)

• macroform (= coarse) if
∀δ ∈ R+ ∃ε ∈ R+ ∀x , x ′ ∈ X (dX (x , y) < δ ⇒ dY (f (x), f (y)) < ε)

Example: Any Lipschitz map is both microform and macroform.

Remark: The half-line R+ has two ends.
Microform and macroform maps are interested each by its own end.
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Micro-bijections and macro-bijections

A bijective function f : X → Y between metric spaces (X , dX ) and
(Y , dY ) is called

• a homeomorphism if both maps f and f −1 are continuous;

• a micro-bijection if both maps f and f −1 are microform;

• a macro-bijection if both maps f and f −1 are macroform.

Example: Any bi-Lipschitz bijection is both micro-bijection and
macro-bijection.
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Structures preserved by corresponding isomorphisms

Which structure of a metric space is preserved by
homeomorphisms?
The answer is known: the topology.

Which structure of a metric space is preserved by micro-bijections
(=uniform homeomorphisms)?
The answer is also known: the uniform structure.

Which structure of a metric space is preserved by macro-bijections?
The answer: the coarse structure.

In fact, uniform and coarse structures are the two “ends” of a
common structure called the duoform structure.

All these structures are introduced with the help of entourages.

T.Banakh Small uncountable cardinals in Asymptology 5 / 58



Structures preserved by corresponding isomorphisms

Which structure of a metric space is preserved by
homeomorphisms?
The answer is known: the topology.

Which structure of a metric space is preserved by micro-bijections
(=uniform homeomorphisms)?
The answer is also known: the uniform structure.

Which structure of a metric space is preserved by macro-bijections?
The answer: the coarse structure.

In fact, uniform and coarse structures are the two “ends” of a
common structure called the duoform structure.

All these structures are introduced with the help of entourages.

T.Banakh Small uncountable cardinals in Asymptology 5 / 58



Structures preserved by corresponding isomorphisms

Which structure of a metric space is preserved by
homeomorphisms?
The answer is known: the topology.

Which structure of a metric space is preserved by micro-bijections
(=uniform homeomorphisms)?
The answer is also known: the uniform structure.

Which structure of a metric space is preserved by macro-bijections?
The answer: the coarse structure.

In fact, uniform and coarse structures are the two “ends” of a
common structure called the duoform structure.

All these structures are introduced with the help of entourages.

T.Banakh Small uncountable cardinals in Asymptology 5 / 58



Structures preserved by corresponding isomorphisms

Which structure of a metric space is preserved by
homeomorphisms?
The answer is known: the topology.

Which structure of a metric space is preserved by micro-bijections
(=uniform homeomorphisms)?
The answer is also known: the uniform structure.

Which structure of a metric space is preserved by macro-bijections?
The answer: the coarse structure.

In fact, uniform and coarse structures are the two “ends” of a
common structure called the duoform structure.

All these structures are introduced with the help of entourages.

T.Banakh Small uncountable cardinals in Asymptology 5 / 58



Structures preserved by corresponding isomorphisms

Which structure of a metric space is preserved by
homeomorphisms?
The answer is known: the topology.

Which structure of a metric space is preserved by micro-bijections
(=uniform homeomorphisms)?
The answer is also known: the uniform structure.

Which structure of a metric space is preserved by macro-bijections?
The answer: the coarse structure.

In fact, uniform and coarse structures are the two “ends” of a
common structure called the duoform structure.

All these structures are introduced with the help of entourages.

T.Banakh Small uncountable cardinals in Asymptology 5 / 58



Structures preserved by corresponding isomorphisms

Which structure of a metric space is preserved by
homeomorphisms?
The answer is known: the topology.

Which structure of a metric space is preserved by micro-bijections
(=uniform homeomorphisms)?
The answer is also known: the uniform structure.

Which structure of a metric space is preserved by macro-bijections?
The answer: the coarse structure.

In fact, uniform and coarse structures are the two “ends” of a
common structure called the duoform structure.

All these structures are introduced with the help of entourages.

T.Banakh Small uncountable cardinals in Asymptology 5 / 58



Structures preserved by corresponding isomorphisms

Which structure of a metric space is preserved by
homeomorphisms?
The answer is known: the topology.

Which structure of a metric space is preserved by micro-bijections
(=uniform homeomorphisms)?
The answer is also known: the uniform structure.

Which structure of a metric space is preserved by macro-bijections?
The answer: the coarse structure.

In fact, uniform and coarse structures are the two “ends” of a
common structure called the duoform structure.

All these structures are introduced with the help of entourages.

T.Banakh Small uncountable cardinals in Asymptology 5 / 58



Structures preserved by corresponding isomorphisms

Which structure of a metric space is preserved by
homeomorphisms?
The answer is known: the topology.

Which structure of a metric space is preserved by micro-bijections
(=uniform homeomorphisms)?
The answer is also known: the uniform structure.

Which structure of a metric space is preserved by macro-bijections?
The answer: the coarse structure.

In fact, uniform and coarse structures are the two “ends” of a
common structure called the duoform structure.

All these structures are introduced with the help of entourages.

T.Banakh Small uncountable cardinals in Asymptology 5 / 58



Entourages

Definition

An entourage on a set X is any subset E ⊆ X × X containing the
diagonal ∆X = {〈x , x〉 : x ∈ X} of the square X × X .

Entourages are subject to some algebra.

Namely, for two entourages E ,F on a set X we can consider the
inverse entourage

E−1 = {〈y , x〉 : 〈x , y〉 ∈ E}

and the composition

E ◦ F = {〈x , z〉 : ∃y (〈x , y〉 ∈ E ∧ 〈y , z〉 ∈ F )}.

For an entourage U let

↑U = {W : U ⊆W ⊆ X × X} and ↓U = {W : ∆X ⊆W ⊆ U}

be the upper and lower sets of U in the poset of all entourages on X .
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Entourages and geometric intuition

For an entourage U ⊆ X × X and point x ∈ X the set

U(x) = {y : 〈x , y〉 ∈ U}

is called the ball of radius U around x .

For a subset A ⊆ X the set

U[A] =
⋃
a∈A

U(a)

is called the U-neighborhood of A.

In fact, the entourage U can be recovered from its balls since

U =
⋃
x∈X

({x} × U(x)).
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Uniform structures

A uniform structure on a set X is a family of U of entourages in X
satisfying the following conditions:

B)
⋂
U = ∆X and ∀U,V ∈ U ∃W ∈ U (W ◦W ⊆ U ∩ V−1);

M) ∀U ∈ U (↑U ⊆ U).

A subfamily B ⊆ U is called a base of the uniform structure U if
for every U ∈ U there exists B ∈ B such that B ⊆ U.
Each base of a uniform structure has the property (B) and
each family of entourages B that has property (B) is a base of a
unique uniform structure, namely, ↑B =

⋃
B∈B ↑B.

The weight w(U) of a uniform structure U is the smallest
cardinality |B| of a base B ⊆ U .

A uniform space is a pair (X ,U) consisting of a set X and a
uniform structure U on X .
The weight of a uniform space is the weight of its uniform structure.
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Coarse structures

A uniform structure of a set X is a family of E of entourages in X
satisfying the following conditions:

B)
⋂
E = ∆X and ∀U,V ∈ E ∃W ∈ E (W ◦W ⊆ U ∩ V−1);

M) ∀U ∈ E (↑U ⊆ E).

A coarse structure of a set X is a family of E of entourages in X
satisfying the following conditions:

B)
⋃
E = X × X and ∀U,V ∈ E ∃W ∈ E (U ◦ V−1 ⊆W );

M) ∀U ∈ U (↓U ⊆ E).

T.Banakh Small uncountable cardinals in Asymptology 10 / 58



Coarse structures

A uniform structure of a set X is a family of E of entourages in X
satisfying the following conditions:

B)
⋂
E = ∆X and ∀U,V ∈ E ∃W ∈ E (W ◦W ⊆ U ∩ V−1);

M) ∀U ∈ E (↑U ⊆ E).

A coarse structure of a set X is a family of E of entourages in X
satisfying the following conditions:

B)
⋃
E = X × X and ∀U,V ∈ E ∃W ∈ E (U ◦ V−1 ⊆W );

M) ∀U ∈ U (↓U ⊆ E).

T.Banakh Small uncountable cardinals in Asymptology 10 / 58



Coarse structures

A coarse structure on a set X is a family of E of entourages in X
satisfying the following conditions:

B)
⋃
E = X × X and ∀U,V ∈ E ∃W ∈ E (U ◦ V−1 ⊆W );

M) ∀U ∈ U (↓U ⊆ E).

A subfamily B ⊆ E is called a base of the coarse structure E if for
every E ∈ E there exists B ∈ B such that E ⊆ B.
Each base of a coarse structure has the property (B) and
each family of entourages B that has property (B) is a base of a
unique coarse structure, namely, ↓B =

⋃
B∈B ↓B.

The weight w(E) of a coarse structure E is the smallest cardinality
|B| of a base B ⊆ E .

A coarse space is a pair (X , E) consisting of a set X and a coarse
structure E on X .
The weight of a coarse space is the weight of its coarse structure.

T.Banakh Small uncountable cardinals in Asymptology 11 / 58



Coarse structures

A coarse structure on a set X is a family of E of entourages in X
satisfying the following conditions:

B)
⋃
E = X × X and ∀U,V ∈ E ∃W ∈ E (U ◦ V−1 ⊆W );

M) ∀U ∈ U (↓U ⊆ E).

A subfamily B ⊆ E is called a base of the coarse structure E if for
every E ∈ E there exists B ∈ B such that E ⊆ B.
Each base of a coarse structure has the property (B) and
each family of entourages B that has property (B) is a base of a
unique coarse structure, namely, ↓B =

⋃
B∈B ↓B.

The weight w(E) of a coarse structure E is the smallest cardinality
|B| of a base B ⊆ E .

A coarse space is a pair (X , E) consisting of a set X and a coarse
structure E on X .
The weight of a coarse space is the weight of its coarse structure.

T.Banakh Small uncountable cardinals in Asymptology 11 / 58



Coarse structures

A coarse structure on a set X is a family of E of entourages in X
satisfying the following conditions:

B)
⋃
E = X × X and ∀U,V ∈ E ∃W ∈ E (U ◦ V−1 ⊆W );

M) ∀U ∈ U (↓U ⊆ E).

A subfamily B ⊆ E is called a base of the coarse structure E if for
every E ∈ E there exists B ∈ B such that E ⊆ B.
Each base of a coarse structure has the property (B) and
each family of entourages B that has property (B) is a base of a
unique coarse structure, namely, ↓B =

⋃
B∈B ↓B.

The weight w(E) of a coarse structure E is the smallest cardinality
|B| of a base B ⊆ E .

A coarse space is a pair (X , E) consisting of a set X and a coarse
structure E on X .
The weight of a coarse space is the weight of its coarse structure.

T.Banakh Small uncountable cardinals in Asymptology 11 / 58



Coarse structures

A coarse structure on a set X is a family of E of entourages in X
satisfying the following conditions:

B)
⋃
E = X × X and ∀U,V ∈ E ∃W ∈ E (U ◦ V−1 ⊆W );

M) ∀U ∈ U (↓U ⊆ E).

A subfamily B ⊆ E is called a base of the coarse structure E if for
every E ∈ E there exists B ∈ B such that E ⊆ B.
Each base of a coarse structure has the property (B) and
each family of entourages B that has property (B) is a base of a
unique coarse structure, namely, ↓B =

⋃
B∈B ↓B.

The weight w(E) of a coarse structure E is the smallest cardinality
|B| of a base B ⊆ E .

A coarse space is a pair (X , E) consisting of a set X and a coarse
structure E on X .
The weight of a coarse space is the weight of its coarse structure.

T.Banakh Small uncountable cardinals in Asymptology 11 / 58



Coarse structures

A coarse structure on a set X is a family of E of entourages in X
satisfying the following conditions:

B)
⋃
E = X × X and ∀U,V ∈ E ∃W ∈ E (U ◦ V−1 ⊆W );

M) ∀U ∈ U (↓U ⊆ E).

A subfamily B ⊆ E is called a base of the coarse structure E if for
every E ∈ E there exists B ∈ B such that E ⊆ B.
Each base of a coarse structure has the property (B) and
each family of entourages B that has property (B) is a base of a
unique coarse structure, namely, ↓B =

⋃
B∈B ↓B.

The weight w(E) of a coarse structure E is the smallest cardinality
|B| of a base B ⊆ E .

A coarse space is a pair (X , E) consisting of a set X and a coarse
structure E on X .
The weight of a coarse space is the weight of its coarse structure.

T.Banakh Small uncountable cardinals in Asymptology 11 / 58



Basic example

Every metric space (X , d) has the canonical uniform structure ↑B
and the canonical coarse structure ↓B, both generated by the base

B =
{
{(x , y) ∈ X × X : d(x , y) < ε} : ε ∈ R+

}
.

A uniform (coarse) structure on a set X is called metrizable if it
coincides with the canonical uniform (coarse) structure of some
metric d on X .

Theorem

(U) A uniform structure is metrizable iff it has countable weight.

(C) A coarse structure is metrizable iff it has countable weight.
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Duoform spaces

In fact, uniform and coarse structures are particular cases of a
common structure, called the duoform structure.

Definition

A duoform structure of a set X is a family of E of entourages in X
satisfying the following conditions:

Bu)
⋂
E = ∆X and ∀U,V ∈ E ∃W ∈ E (W ◦W ⊆ U ∩ V−1);

Bc)
⋃
E = X × X and ∀U,V ∈ E ∃W ∈ E (U ◦ V−1 ⊆W );

M ) ∀U,V ∈ E (↑V ∩ ↓U ⊆ E).

A duoform structure E is called

a uniform structure if X × X ∈ E ;

a coarse structure if ∆X ∈ E .
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A subfamily B ⊆ E is called a base of the duoform structure E if
for every E ∈ E there exist sets B,B ′ ∈ B such that B ⊆ E ⊆ B ′.
Each base of a duoform structure has the properties (Bu), (Bc) and
each family of entourages B that has properties (Bu), (Bc) is a
base of a unique duoform structure, namely,

lB =
⋃

B,B′∈E(↑B ∩ ↓B ′).
The weight w(E) of a duoform structure E is the smallest
cardinality |B| of a base B ⊆ E .
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Basic example

Every metric space (X , d) has the canonical duoform structure lB,
generated by the base

B =
{
{(x , y) ∈ X × X : d(x , y) < ε} : ε ∈ R+

}
.

A duoform structure on a set X is called metrizable if it coincides
with the canonical duoform structure of some metric d on X .

Theorem

(D) A duoform structure is metrizable iff it has a countable base.

Corollary

(U) A uniform structure is metrizable iff it has a countable base.

(C) A coarse structure is metrizable iff it has a countable base.
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From now on we shall be interested

only in coarse spaces
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Subspaces of coarse spaces

For a coarse structure E on a set X and a subset A ⊆ X the family

E�A = {E ∩ (A× A) : E ∈ E}

is a coarse structure on A.
The pair (A, E�A) is called a subspace of the coarse space (X , E).
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The bornology of a coarse space

Let E be a coarse structure on a set X .

Definition

A subset B ⊆ X is E-bounded if B is contained in some ball, i.e.,

B is E-bounded⇔ ∃E ∈ E ∃x ∈ X (B ⊆ E (x)).

The family of all E-bounded sets is called the bornology of the
coarse space (X , E).

The bornology is closed under taking subsets and unions.
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Finitary and locally finite coarse spaces

Definition

A coarse structure E on a set X is called

locally finite if for every E ∈ E and point x ∈ X the E -ball
E (x) is finite;

finitary if for every E ∈ E the cardinal supx∈X |E (x)| is finite.

finitary⇒ locally finite.

What about the converse?

Example

The metric space of integers Z is finitary.

The space {
√
n : n ∈ N} ⊂ R is locally finite but not finitary.

Remark: A coarse structure is locally finite if and only if its
bornology consists of finite sets.
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Canonical example of a finitary space

Let X be a set and SX be the permutation group of X .
Every subgroup G ⊆ SX induces the finitary coarse structure EG on
X , generated by the base consisting of the entourages

E = ∆X ∪ (B × B) ∪ {〈x , y〉 : x ∈ X , y ∈ Fx}

where B is a finite subset of X and F is a finite subsets of G .
So, the E -ball of a point x ∈ X \ B is the set {x} ∪ Fx .

Example

For the group of integers Z, the coarse structure EZ on Z coincides
with the coarse structure generated by the Euclidean metric.

Theorem (Protasov)

Every finitary coarse structure E on a set X coincides with the
finitary coarse structure EG generated by some subgroup G ⊆ SX .
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Maximal and minimal coarse structures

Theorem (Protasov)

Every finitary coarse structure E on a set X coincides with the
finitary coarse structure EG generated by some subgroup G ⊆ SX .

The largest finitary coarse structure on a set X is generated by the
whole permutation group SX . This coarse structure consists of all
possible entourages E on X which are finitary in the sense that the
cardinal

sup
x∈X
|E (x) ∪ E−1(x)| is finite.

The smallest finitary coarse structure E{id} on a set X is generated
by the trivial subgroup {id} ⊂ SX . This coarse structure E{id} is
generated by the base consisting of the entourages (B × B) ∪∆X

where B is a finite subset of X .
The smallest coarse structure on X can be characterized as the
unique discrete locally finite coarse structure on X .
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Discrete coarse structures

Definition

A coarse structure E on a set X is called discrete if for every
entourage E ∈ E there exists an E-bounded subset B ⊆ X such
that for every x ∈ X \ B the E -ball E (x) coincides with the
singleton {x}.

Example: The subspace {n2 : n ∈ ω} of Z is discrete.

Proposition

For a locally finite coarse structure E on a set X the following
conditions are equivalent:

1 E is discrete;

2 ∀E ∈ E (|{x ∈ X : |E (x)| 6= {x}}| < ω);

3 E = E{id}.

Remark: Countable discrete sets are antipods of Cauchy sequences.
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Indiscrete coarse spaces

Now let us look at the largest finitary coarse structure ESX on X .
Is it discrete?No! And in a very strong sense:
The coarse space (X , ESX ) contains no infinite discrete subspaces

So, ESX resembles βN which contains no convergent sequences.

Definition

A coarse structure E on a set X is called indiscrete if for any
infinite subset A ⊆ X the coarse structure E�A is not discrete.

So, the largest finitary coarse structure ESX is indiscrete.

Remark: Indiscrete coarse spaces are coarse counterparts of
topological spaces containing no non-trivial convergent sequences.
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The first set-theoretic question

What is the smallest possible weight of an indiscrete finitary coarse
structure on ω?
As we shall see, this is a cardinal in the interval [ω1, c],
so is a typical cardinal characteristic of the continuum.
Let us denote this cardinal by ∆. More precisely:

Definition

Let ∆ denote the smallest weight w(E) of an indiscrete finitary
coarse structure on ω.

Problem

What is the value of ∆? Is ∆ equal to some known cardinal
characteristic of the continuum?
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Asymptotically separated sets

Definition

Let E be a coarse structure on a set X . Two sets A,B ⊆ X are
called asymptotically separated if for any E ∈ E the set
E [A] ∩ E [B] is E-bounded.

Remark: If a coarse structure E on a set X is discrete, then any
disjoint subsets A,B ⊆ X are asymptotically separated.

Observation: For the largest finitary coarse structure ESX on a set
X , no infinite sets A,B ⊂ X are ESX -separated.

Definition

A coarse structure E on a set X is called inseparated if for any
E-separated sets A,B ⊆ X one of the sets A or B is E-bounded.

So, the coarse structure ESX is inseparated.
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An example of asymptotically separated sets
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The second set-theoretic question

Since the largest finitary coarse structure ESX is inseparated, we
can ask about the smallest weight of an inseparated finitary coarse
structure on ω.

Definition

Let Σ denote the smallest weight of an inseparated finitary coarse
structure on ω.

Problem

What is the value of Σ? Is Σ equal to some known cardinal
characteristic of the continuum?

Since any disjoint sets in a discrete locally finite coarse space are
asymptotically separated, each inseparated locally finite coarse
space is indiscrete. This implies the inequality

∆ ≤ Σ.
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Large coarse spaces

In fact the largest finitary coarse structure ESX has another exotic
property: it is large in the following sense.

Definition

A coarse structure E on a set X is large if each E-unbounded set
A ⊆ X is E-large in the sense that E [A] = X for some E ∈ E .

Observation: The coarse structure ESX is large if and only if the
set X is countable. In particular, ESω is large.

Problem

Find the smallest weight of a large finitary coarse structure on ω.

Fortunately, here we know the answer.
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The main theorem on critical cardinalities

Theorem

The smallest weight of

1 a large finitary coarse structure on ω is equal to c;

2 an inseparated finitary coarse structure on ω is equal to Σ;

3 an indiscrete finitary coarse structure on ω is equal to ∆.

4 a large locally finite coarse structure on ω is equal to d;

5 an inseparated locally finite coarse structure on ω equals b;

6 an indiscrete locally finite coarse structure on ω is equal to b.

All cardinals in this theorem except for ∆ and Σ are well-known.
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Equivalent definitions of ∆ and Σ

Proposition

1 The cardinal ∆ is equal to the smallest cardinality of a
subgroup G ⊆ Sω such that for any infinite set A ⊆ ω there
exists g ∈ G such that the set {a ∈ A : a 6= g(a) ∈ A} is
infinite.

2 The cardinal Σ is equal to the smallest cardinality of a
subgroup G ⊆ Sω such that for any infinite sets A,B ⊆ ω
there exists g ∈ G such that the set A ∩ g [B] is infinite.

In fact the subgroup G in this proposition can be replaced by a set
consisting of involutions.
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Equivalent definitions of ∆ and Σ

A permutation f ∈ SX is called an involution if f ◦ f = id. By Iω
we denote the subset of the permutation group Sω, consisting of
all involutions of ω.

Proposition

1 The cardinal ∆ is equal to the smallest cardinality of a set
I ⊆ Iω such that for any infinite set A ⊆ ω there exists an
involution g ∈ I such that the set {a ∈ A : a 6= g(a) ∈ A} is
infinite.

2 The cardinal Σ is equal to the smallest cardinality of a subset
I ⊆ Iω such that for any infinite sets A,B ⊆ ω there exists an
involution g ∈ G such that the set A ∩ g [B] is infinite.
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Equivalent definitions of ∆,Σ via 2-to-1-maps

A function ϕ : ω → ω is called 2-to-1 if ∀y ∈ Y (|ϕ−1(y)| ≤ 2).

A function f : X → Y is called almost injective if for some finite
set F ⊆ X the restriction f �X \ F is injective.

Proposition

1 The cardinal ∆ is equal to the smallest cardinality of a subset
F ⊆ ωω such that for any infinite set A ⊆ ω there exists a
2-to-1-function f ∈ F such that f �A is not almost injective.

2 The cardinal Σ is equal to the smallest cardinality of a subset
F ⊆ ωω such that for any infinite sets A,B ⊆ ω there exists a
2-to-1-function f ∈ F such that f [A] ∩ f [B] is infinite

Now we will discuss the location of the cardinals ∆ and Σ among
other known cardinal characteristics of the continuum.
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1 The cardinal ∆ is equal to the smallest cardinality of a subset
F ⊆ ωω such that for any infinite set A ⊆ ω there exists a
2-to-1-function f ∈ F such that f �A is not almost injective.

2 The cardinal Σ is equal to the smallest cardinality of a subset
F ⊆ ωω such that for any infinite sets A,B ⊆ ω there exists a
2-to-1-function f ∈ F such that f [A] ∩ f [B] is infinite

Now we will discuss the location of the cardinals ∆ and Σ among
other known cardinal characteristics of the continuum.
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Some classical cardinal characteristics of the continuum

For a set X , let [X ]<ω be the family of all finite subsets of X , and
[X ]ω be the family of all countably infinite subsets of X .

For two sets A,B, we write A ⊆∗ B if A \ B is finite.

For two functions f , g : ω → ω we write f ≤ g if f (n) ≤ g(n) for
all n ∈ ω, and f ≤∗ g if the set {n ∈ ω : f (n) 6≤ g(n)} is finite.

Let us recall that

b = min{|B| : B ⊆ ωω ∀f ∈ ωω ∃g ∈ B g 6≤∗ f };
d = min{|D| : D ⊆ ωω ∀f ∈ ωω ∃g ∈ B f ≤ g};
s = min{|S | : S ⊆ [ω]ω, ∀a ∈ [ω]ω ∃s ∈ S |a∩ s| = ω = |a \ s|};
t = min{|T | : T ⊆ [ω]ω and (∀s, t ∈ T s ⊆∗ t or t ⊆∗ s)

and (∀s ∈ [ω]ω ∃t ∈ T s 6⊆∗ t)}.
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The order relations between ω1, t, b, d, s, c

The order relations between these cardinals are described by the
following diagram in which for two cardinals κ, λ the arrow κ→ λ
indicates that κ ≤ λ in ZFC.

s // d // c

ω1
// t //

OO

b

OO

T.Banakh Small uncountable cardinals in Asymptology 34 / 58



Cardinal characteristics of ideals

Each family of sets I with
⋃
I /∈ I has four basic cardinal

characteristics:

add(I) = min{|A| : A ⊆ I ∧
⋃
A /∈ I};

cov(I) = min{|A| : A ⊆ I ∧
⋃
A =

⋃
I};

non(I) = min{|A| : A ⊆
⋃
I ∧ A /∈ I};

cof(I) = min{|J | : J ⊆ I ∧ ∀I ∈ I ∃J ∈ J (I ⊆ J)}.
These cardinal characteristics are usually considered for the
σ-ideals M and N of meager sets and Lebesgue null sets on the
real line, respectively.
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Cichoń Diagram

T.Banakh Small uncountable cardinals in Asymptology 36 / 58



Cichoń Diagram

The cardinal characteristics of the σ-ideals M and N are described
by the famous Cichoń diagram:

cov(N ) // non(M) // cof(M) // cof(N ) // c

b //

OO

d

OO

ω1
// add(N ) //

OO

add(M) //

OO

cov(M) //

OO

non(N ).

OO
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The location of ∆,Σ

Main Theorem: max{b, s, cov(N )} ≤ ∆ ≤ Σ ≤ non(M)

cov(N ) //

((

Σ // non(M) // cof(M) // cof(N ) // c

b
$$// ∆

OO

d

::

ω1
// >>add(N )

<<

OO

t <<

OO

add(M)
99

`` OO

s

OOee

99
cov(M) //

dd

OO

non(N )

OO

Problem

Which of the strict inequalities are consistent with ZFC
max{b, s, cov(N )} < ∆ < Σ < non(M)?
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Cellular coarse spaces

Def: An entourage E on a set X is called cellular if
E−1 = E = E ◦ E , which means that E is an equivalence relation.
So, {E (x)}x∈X is a partition of a set X into pairwise disjoint
E -balls.

Def:

A coarse structure is called cellular if it has a base consisting of
cellular entourages.

Fact 1: A metrizable coarse structure is cellular if and only of it is
generated by an ultrametric.

Fact 2: A coarse structure is cellular if and only if it has Gromov’s
asymptotic dimension zero.
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Some critical weights of cellular coarse structures

∆◦ω = min
(
{c+} ∪ {w(E) : E is an indiscrete cellular finitary

coarse structure on ω}
)
;

Σ◦ω = min
(
{c+} ∪ {w(E) : E is an inseparated cellular finitary

coarse structure on ω}
)
;

Λ◦ω = min
(
{c+} ∪ {w(E) : E is a large cellular finitary

coarse structure on ω}
)
;

∆◦ω1
= min

(
{c+} ∪ {w(E) : E is an indiscrete cellular locally finite

coarse structure on ω}
)
;

Σ◦ω1
= min

(
{c+} ∪ {w(E) : E is an inseparated cellular locally finite

coarse structure on ω}
)
;

Λ◦ω1
= min

(
{c+} ∪ {w(E) : E is a large cellular locally finite

coarse structure on ω}
)
.

The cardinal c+ appears in the definitions of those cardinals in
order to make these cardinals well-defined (this indeed is necessary
for the cardinal Λ◦ω, which is equal to c+ in ZFC).
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Available info on these cardinals

non(M) // c // c+

Σ

OO

""
∆◦ω //

==

Σ◦ω //

∆◦ω=c

OO

Λ◦ω
��

OO

∆

;;OO

∆◦ω1
//

OO

Σ◦ω1
//

OO

t=b

}}

Λ◦ω1

OO

t=d

��
t //

OO

b //

OOcc

d

OO
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non(M) // c // c+

Σ

OO

%%
∆◦ω //

;;

Σ◦ω //

∆◦ω=c

OO

Λ◦ω
��

OO

∆

99OO

∆◦ω1
//

OO

Σ◦ω1
//

OO

t=b{{

Λ◦ω1

OO

t=d
��

t //

OO

b //

OOff

d

OO

Theorem

1 Λ◦ω = c+.

2 ∆◦ω ≤ c.

3 ∆◦ω = c implies Σ◦ω1
≤ Σ◦ω = c.

4 t = b implies ∆◦ω1
= Σ◦ω1

= b.

5 t = d implies Λ◦ω1
= d.
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Some Open Problems

non(M) // c // c+

Σ

OO

%%
∆◦ω //

;;

Σ◦ω //

∆◦ω=c

OO

Λ◦ω
��

OO

∆

99OO

∆◦ω1
//

OO

Σ◦ω1
//

OO

t=b{{

Λ◦ω1

OO

t=d
��

t //

OO

b //

OOff

d

OO

Problem: Is Σ◦ω ≤ c in ZFC? This is equivalent to asking if there
exists an inseparable cellular finitary coarse structure on ω in ZFC?

Positive answer to this problem follows from negative answer to

Problem: Is ∆◦ω < c consistent?
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t=d
��
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OOff
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OO

Problem: Does there exist a large cellular locally finite coarse
structure on ω in ZFC? If yes, is d equal to the smallest weight of
a large cellular locally finite coarse structure on ω?

Problem: Is b equal to the smallest weight of an indiscrete cellular
locally finite coarse structure on ω?
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Cardinal Characteristics

of the poset E•ω
(of nontrivial cellular finitary entourages on ω)
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Upper and lower sets in a poset

Let P be a poset, i.e., a set P endowed with a partial order ≤.
For an element x ∈ P let

↑x = {y ∈ P : x ≤ y} and ↓x = {y ∈ P : y ≤ x}

be the upper and lower sets of x in the poset.

For a subset A ⊆ P let

↑A =
⋃
a∈A
↑a and ↓A =

⋃
a∈A
↓a

be the upper and lower sets of A in the poset.
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The cofinality and coinitiality of a poset

The cardinal

↓(P) = min{|A| : A ⊆ P ∧ ↓A = P} is called the cofinality, and

↑(P) = min{|A| : A ⊆ P ∧ ↑A = P} is called the cofinitiality

of the poset P.

Example 1: ↓(ωω,≤) = d and ↑(ωω,≤) = 1.

Example 2: ↓([ω]ω,⊆) = 1 and ↑([ω]ω,⊆) = c.
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Iterated upper and lower sets

The transitivity of the partial order ≤ implies that for any subset
A ⊆ P

↑↑A = ↑A and ↓↓A = ↓A.

On the other hand, we can consider the lower-upper and
upper-lower sets of A: ↑↓A and ↓↑A and also the corresponding
cardinal characteristics of the poset P:

↑↓(P) = min{|A| : A ⊆ P ∧ ↑↓A = P} and

↓↑(P) = min{|A| : A ⊆ P ∧ ↓↑A = P}.

Iterating, we obtain the cardinal characteristics

↓↑↓(P) = min{|A| : A ⊆ P ∧ ↓↑↓A = P},
↑↓↑(P) = min{|A| : A ⊆ P ∧ ↑↓↑A = P},

and so on.
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The cardinal characteristics ↑↑(P) and ↓↓(P)

Let us also consider the cardinal characteristics

↑↑(P) = sup{|A| : A ⊆ P ∧ ∀x , y ∈ A (x 6= y ⇒ ↑x ∩ ↑y = ∅)},
↓↓(P) = sup{|A| : A ⊆ P ∧ ∀x , y ∈ A (x 6= y ⇒ ↓x ∩ ↓y = ∅)},
which are counterparts of the cellularity in topological spaces.

The order relation between these cardinals characteristics are
described in the following diagram (in which an arrow κ→ λ
between cardinals indicates that κ ≤ λ):

↑↓↑(P) //

$$

↓↑(P) //

))

↑↑(P) // ↓(P)

↓↑↓(P) //

::

↑↓(P) //

55

↓↓(P) // ↑(P)
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Cardinal characteristics of the poset E•ω

We shall be interested in these cardinal characteristics for the
poset E•ω of nondiscrete cellular finitary entourages on ω.

An entourage E on a set X is called

nondiscrete if {x ∈ X : E (x) 6= {x}} is infinite;

cellular if E−1 = E = E ◦ E ;

finitary if supx∈X |E (x) ∪ E−1(x)| < ω.
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Theorem

1 ↓↑↓(E•ω) = ↑↓↑(E•ω) = 1.

2 ↑↑(E•ω) = ↓↓(E•ω) = ↓(E•ω) = ↑(E•ω) = c.

3 cov(M) ≤ ↓↑(E•ω) ≤ c.

4 Σ ≤ ↑↓(E•ω) ≤ non(M).

Problem: Which of the following strict inequalities is consistent?

1 Σ < ↑↓(E•ω);

2 ↑↓(E•ω) < non(M);

3 cov(M) < ↓↑(E•ω);

4 ↓↑(E•ω) < c.

Remark: Since the strict inequality cov(M) < c is consistent,
either (3) or (4) in the above Problem is consistent.
But which one? Or both?
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Special Ultrafilters

in Large-Scale Topology
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Thin ultrafilters

Definition

A free ultrafilter U on ω is called thin if for any metrizable finitary
coarse structure E on ω there exists a set U ∈ U such that the
coarse structure E�U on U is discrete.

Problem (Protasov)

Is it true that thin ultrafilters exist in ZFC?
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Some known types of ultrafilters

A free ultrafilter U on ω is called

• a P-point if for any sequence of sets {Un}n∈ω ⊆ U there exist a set
U ∈ U such that U ⊆∗ Un for every n ∈ ω;

• a Q-point if for any locally finite cellular entourage E on ω there exists
a set U ∈ U such that |U ∩ E (x)| ≤ 1 for any x ∈ ω;

• Ramsey if for any map f : ω → ω there exists U ∈ U such that f �U is
either constant or injective;

• a weak P-point, if for any sequence (Un)n∈ω of free ultrafilters that are
not equal to U there exists a set U ∈ U \

⋃
n∈ω Un;

• an OKκ-point for a cardinal κ if for any sequence of sets {Un}n∈ω ⊆ U
there exists a family (Vα)α∈κ ⊆ U such that for any ordinals
α1 < · · · < αn in κ we have

⋂n
i=1 Vαi ⊆∗ Un;

• rapid if for any function f ∈ ωω there exists a function g ∈ ωω such
that f ≤ g and {g(n) : n ∈ ω} ∈ U ;

• discrete if for any injective function ϕ : ω → R there exists a set U ∈ U
whose image f (U) is a discrete subspace of R;

• nowhere dense if for any injective function ϕ : ω → R there exists a set

U ∈ U whose image f (U) is nowhere dense in R.
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Thin ultrafilter vs other types of ultrafilters

rapid Q-pointks +3 thin nowhere
dense

Ramsey +3

KS

P-point +3

KS

��

discrete

KS

OKc-point +3 OKω1-point +3 weak P-point

By a famous result of Kunen, OKc-points exist in ZFC.

Shelah constructed a model without nowhere dense ultrafilters.

Miller constructed a model containing no rapid ultrafilters.

It is unknown if there is a model without P-points and Q-points.

So the problem of constructing a model containing no thin
ultrafilters is more difficult than the (already difficult) problem of
constructing a model without P-points and Q-points.
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Thank You!
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