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Erlangen Program

According to the Erlangen Program (1872) of Felix Klein various
geometries study invariants of the corresponding transformation
groups.

For example,

@ topology studies properties, preserved by homeomorphisms;
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Erlangen Program

According to the Erlangen Program (1872) of Felix Klein various
geometries study invariants of the corresponding transformation
groups.
For example,
@ topology studies properties, preserved by homeomorphisms;
@ uniform topology studied properties preserved by uniform
homeomorphisms (= microform bijections);

@ large-scale topology is intersted in properties preserved by
coarse isomorphisms (= macroform bijections).
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Microform and macroform functions

Let R denote the open half-line (0, +00).
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Microform and macroform functions

Let R denote the open half-line (0, +00).
A function f : X — Y between metric spaces (X, dx) and (Y, dy)
is called
e microform (= uniformly continuous) if
Ve e Ry 36 € Ry Vx, x' € X (dx(x,y) < d = dy(f(x),f(y)) <e)

e macroform (= coarse) if
Vo e Ry Je e Ry Vx, x' € X (dx(x,y) < d = dy(f(x),f(y)) <e)

Example: Any Lipschitz map is both microform and macroform.

Remark: The half-line Ry has two ends.
Microform and macroform maps are interested each by its own end.
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Micro-bijections and macro-bijections

A bijective function f : X — Y between metric spaces (X, dx) and
(Y,dy) is called

e a homeomorphism if both maps f and f~! are continuous;
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A bijective function f : X — Y between metric spaces (X, dx) and
(Y,dy) is called

e a homeomorphism if both maps f and f~! are continuous;
e a micro-bijection if both maps f and f~1 are microform;

e a macro-bijection if both maps f and f~! are macroform.

Example: Any bi-Lipschitz bijection is both micro-bijection and
macro-bijection.
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Structures preserved by corresponding isomorphisms

Which structure of a metric space is preserved by
homeomorphisms?
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Structures preserved by corresponding isomorphisms

Which structure of a metric space is preserved by
homeomorphisms?
The answer is known: the topology.

Which structure of a metric space is preserved by micro-bijections
(=uniform homeomorphisms)?
The answer is also known: the uniform structure.

Which structure of a metric space is preserved by macro-bijections?
The answer: the coarse structure.

In fact, uniform and coarse structures are the two “ends” of a
common structure called the duoform structure.

All these structures are introduced with the help of entourages.
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Definition

An entourage on a set X is any subset E C X x X containing the
diagonal Ax = {(x,x) : x € X} of the square X x X.

T.Banakh Small uncountable cardinals in Asymptology 6/58



Definition

An entourage on a set X is any subset E C X x X containing the
diagonal Ax = {(x,x) : x € X} of the square X x X.

Entourages are subject to some algebra.

Namely, for two entourages E, F on a set X we can consider the
inverse entourage

E7'={{y,x): (x,y) € E}

and the composition

EoF ={(x2):3y ((xy) €E A (y,2) € F)}.
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Definition

An entourage on a set X is any subset E C X x X containing the
diagonal Ax = {(x,x) : x € X} of the square X x X.

Entourages are subject to some algebra.

Namely, for two entourages E, F on a set X we can consider the
inverse entourage

E~l={{y.x): (xy) € E}
and the composition

EoF ={(x2):3y ((xy) €E A (y,2) € F)}.

For an entourage U let
UW={W:UCWCXxX} and [U={W:Ax C W C U}

be the upper and lower sets of U in the poset of all entourages on X.
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Entourages and geometric intuition

For an entourage U C X x X and point x € X the set

Ux) ={y: (x,y) € U}

is called the ball of radius U around x.
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Entourages and geometric intuition

For an entourage U C X x X and point x € X the set

Ux) ={y: (x,y) € U}

is called the ball of radius U around x.
For a subset A C X the set

UIAl = | U(a)

acA

is called the U-neighborhood of A.

In fact, the entourage U can be recovered from its balls since

U= J{x} x Ux)).

xeX

T.Banakh Small uncountable cardinals in Asymptology 7/58



T.Banakh

X

Small uncountable cardinals in Asymptology

8/58



Uniform structures

A uniform structure on a set X is a family of U of entourages in X
satisfying the following conditions:

B) NU=AxandVU,VelUdIWelUd (WoW C Un V1),
M) YU eU (1UCU).
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Coarse structures

A uniform structure of a set X is a family of £ of entourages in X
satisfying the following conditions:

B) NE=AxandVU,VEEIWEE (WoW CUNVY),
M) YU €& (TUCE).
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Basic example

Every metric space (X, d) has the canonical uniform structure 158
and the canonical coarse structure |BB, both generated by the base

B={{(x,y) e X x X:d(x,y) <e}:ee€Ry}.
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Basic example

Every metric space (X, d) has the canonical uniform structure 158
and the canonical coarse structure |BB, both generated by the base

B={{(x,y) e X x X:d(x,y) <e}:ee€Ry}.

A uniform (coarse) structure on a set X is called metrizable if it
coincides with the canonical uniform (coarse) structure of some
metric d on X.

Theorem
(U) A uniform structure is metrizable iff it has countable weight.
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Basic example

Every metric space (X, d) has the canonical uniform structure 158
and the canonical coarse structure |BB, both generated by the base

B={{(x,y) e X x X:d(x,y) <e}:ee€Ry}.

A uniform (coarse) structure on a set X is called metrizable if it
coincides with the canonical uniform (coarse) structure of some
metric d on X.
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(C) A coarse structure is metrizable iff it has countable weight.
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Duoform spaces

In fact, uniform and coarse structures are particular cases of a
common structure, called the duoform structure.
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Duoform structures

A duoform structure of a set X is a family of £ of entourages in X
satisfying the following conditions:
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Basic example

Every metric space (X, d) has the canonical duoform structure 1,
generated by the base

B={{(x,y) e X x X :d(x,y) <e}:c€R;}.
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From now on we shall be interested

only in coarse spaces
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Subspaces of coarse spaces

For a coarse structure £ on a set X and a subset A C X the family
EIA={EN(AxA):Ecé&}

is a coarse structure on A.
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Subspaces of coarse spaces

For a coarse structure £ on a set X and a subset A C X the family
EIA={EN(AxA):Ecé&}

is a coarse structure on A.
The pair (A,EJA) is called a subspace of the coarse space (X, £).
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The bornology of a coarse space

Let £ be a coarse structure on a set X.

A subset B C X is £-bounded if B is contained in some ball, i.e.,
B is £-bounded < JE € £ Ix € X (B C E(x)).
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The bornology of a coarse space

Let £ be a coarse structure on a set X.

Definition

A subset B C X is £-bounded if B is contained in some ball, i.e.,
B is £-bounded < JE € £ Ix € X (B C E(x)).

The family of all £-bounded sets is called the bornology of the
coarse space (X, ).

The bornology is closed under taking subsets and unions.
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Finitary and locally finite coarse spaces

A coarse structure € on a set X is called

@ locally finite if for every E € £ and point x € X the E-ball
E(x) is finite;
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E(x) is finite;
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What about the converse?
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@ The metric space of integers Z is finitary.
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Finitary and locally finite coarse spaces

Definition

A coarse structure £ on a set X is called
@ locally finite if for every E € £ and point x € X the E-ball
E(x) is finite;
o finitary if for every E € £ the cardinal sup,cx |E(x)| is finite.

finitary = locally finite.

What about the converse?

@ The metric space of integers Z is finitary.
@ The space {y/n: ne€ N} C R is locally finite but not finitary.

Remark: A coarse structure is locally finite if and only if its
bornology consists of finite sets.
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Canonical example of a finitary space

Let X be a set and Sx be the permutation group of X.
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Canonical example of a finitary space

Let X be a set and Sx be the permutation group of X.
Every subgroup G C Sx induces the finitary coarse structure g on
X, generated by the base consisting of the entourages

E=AxU(BxB)U{(x,y):xe X, ye€ Fx}

where B is a finite subset of X and F is a finite subsets of G.
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Canonical example of a finitary space

Let X be a set and Sx be the permutation group of X.
Every subgroup G C Sx induces the finitary coarse structure Eg on
X, generated by the base consisting of the entourages

E=AxU(BxB)U{(x,y):xe X, ye€ Fx}

where B is a finite subset of X and F is a finite subsets of G.
So, the E-ball of a point x € X \ B is the set {x} U Fx.

For the group of integers Z, the coarse structure £z on Z coincides
with the coarse structure generated by the Euclidean metric.

Theorem (Protasov)

Every finitary coarse structure £ on a set X coincides with the
finitary coarse structure Eg generated by some subgroup G C Sx.
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Maximal and minimal coarse structures

Theorem (Protasov)

Every finitary coarse structure £ on a set X coincides with the
finitary coarse structure Eg generated by some subgroup G C Sx.

The largest finitary coarse structure on a set X is generated by the
whole permutation group Sx. This coarse structure consists of all
possible entourages E on X which are finitary in the sense that the
cardinal

sup |E(x) U E7Y(x)| is finite.
xeX
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finitary coarse structure Eg generated by some subgroup G C Sx.

The largest finitary coarse structure on a set X is generated by the
whole permutation group Sx. This coarse structure consists of all
possible entourages E on X which are finitary in the sense that the
cardinal
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xeX

The smallest finitary coarse structure Ejqy on a set X is generated
by the trivial subgroup {id} C Sx. This coarse structure Efqy is
generated by the base consisting of the entourages (B x B) U Ax
where B is a finite subset of X.
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Maximal and minimal coarse structures

Theorem (Protasov)

Every finitary coarse structure £ on a set X coincides with the
finitary coarse structure Eg generated by some subgroup G C Sx.

The largest finitary coarse structure on a set X is generated by the
whole permutation group Sx. This coarse structure consists of all
possible entourages E on X which are finitary in the sense that the
cardinal

sup |E(x) U E7Y(x)| is finite.
xeX

The smallest finitary coarse structure Ejqy on a set X is generated
by the trivial subgroup {id} C Sx. This coarse structure Efqy is
generated by the base consisting of the entourages (B x B) U Ax
where B is a finite subset of X.

The smallest coarse structure on X can be characterized as the
unique discrete locally finite coarse structure on X.

T.Banakh Small uncountable cardinals in Asymptology 21/58



Discrete coarse structures

Definition

A coarse structure £ on a set X is called discrete if for every
entourage E € & there exists an £-bounded subset B C X such
that for every x € X \ B the E-ball E(x) coincides with the
singleton {x}.
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A coarse structure £ on a set X is called discrete if for every
entourage E € & there exists an £-bounded subset B C X such
that for every x € X \ B the E-ball E(x) coincides with the
singleton {x}.

Example: The subspace {n? : n € w} of Z is discrete.
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Discrete coarse structures

Definition

A coarse structure £ on a set X is called discrete if for every
entourage E € & there exists an £-bounded subset B C X such
that for every x € X \ B the E-ball E(x) coincides with the
singleton {x}.

Example: The subspace {n? : n € w} of Z is discrete.

Proposition

For a locally finite coarse structure £ on a set X the following
conditions are equivalent:

Q@ €& is discrete;
Q@ VEc& ({xe X |E(x)| # {x}}| <w):
e 525{1d}

T.Banakh Small uncountable cardinals in Asymptology 22 /58



Discrete coarse structures

Definition

A coarse structure £ on a set X is called discrete if for every
entourage E € & there exists an £-bounded subset B C X such
that for every x € X \ B the E-ball E(x) coincides with the
singleton {x}.

Example: The subspace {n? : n € w} of Z is discrete.

Proposition

For a locally finite coarse structure £ on a set X the following
conditions are equivalent:

Q@ €& is discrete;
Q@ VEc& ({xe X |E(x)| # {x}}| <w):
e 525{1d}

Remark: Countable discrete sets are antipods of Cauchy sequences.
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Indiscrete coarse spaces

Now let us look at the largest finitary coarse structure £, on X.
Is it discrete?
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Now let us look at the largest finitary coarse structure £, on X.
Is it discrete?’No! And in a very strong sense:
The coarse space (X, Es, ) contains no infinite discrete subspaces

So, &s, resembles BN which contains no convergent sequences.

Definition

A coarse structure £ on a set X is called indiscrete if for any
infinite subset A C X the coarse structure £[A is not discrete.

So, the largest finitary coarse structure &s, is indiscrete.
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Indiscrete coarse spaces

Now let us look at the largest finitary coarse structure £, on X.
Is it discrete?’No! And in a very strong sense:
The coarse space (X, Es, ) contains no infinite discrete subspaces

So, &s, resembles BN which contains no convergent sequences.

Definition

A coarse structure £ on a set X is called indiscrete if for any
infinite subset A C X the coarse structure £[A is not discrete.

So, the largest finitary coarse structure &s, is indiscrete.

Remark: Indiscrete coarse spaces are coarse counterparts of
topological spaces containing no non-trivial convergent sequences.
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The first set-theoretic question

What is the smallest possible weight of an indiscrete finitary coarse
structure on w?
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The first set-theoretic question

What is the smallest possible weight of an indiscrete finitary coarse
structure on w?

As we shall see, this is a cardinal in the interval [wy, ],

so is a typical cardinal characteristic of the continuum.

Let us denote this cardinal by A. More precisely:
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The first set-theoretic question

What is the smallest possible weight of an indiscrete finitary coarse
structure on w?

As we shall see, this is a cardinal in the interval [wy, ],

so is a typical cardinal characteristic of the continuum.

Let us denote this cardinal by A. More precisely:

Definition

Let A denote the smallest weight w(€) of an indiscrete finitary
coarse structure on w.
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The first set-theoretic question

What is the smallest possible weight of an indiscrete finitary coarse
structure on w?

As we shall see, this is a cardinal in the interval [wy, ],

so is a typical cardinal characteristic of the continuum.

Let us denote this cardinal by A. More precisely:

Definition

Let A denote the smallest weight w(€) of an indiscrete finitary
coarse structure on w.

Problem

What is the value of A? Is A equal to some known cardinal
characteristic of the continuum?
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Asymptotically separated sets

Definition

Let £ be a coarse structure on a set X. Two sets A, B C X are
called asymptotically separated if for any E € £ the set
E[A] N E[B] is E-bounded.
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Asymptotically separated sets

Definition

Let £ be a coarse structure on a set X. Two sets A, B C X are
called asymptotically separated if for any E € £ the set
E[A] N E[B] is E-bounded.

Remark: If a coarse structure £ on a set X is discrete, then any
disjoint subsets A, B C X are asymptotically separated.
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Asymptotically separated sets

Definition

Let £ be a coarse structure on a set X. Two sets A, B C X are
called asymptotically separated if for any E € £ the set
E[A] N E[B] is E-bounded.

Remark: If a coarse structure £ on a set X is discrete, then any
disjoint subsets A, B C X are asymptotically separated.

Observation: For the largest finitary coarse structure &, on a set
X, no infinite sets A, B C X are s, -separated.
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Asymptotically separated sets

Definition

Let £ be a coarse structure on a set X. Two sets A, B C X are
called asymptotically separated if for any E € £ the set
E[A] N E[B] is E-bounded.

Remark: If a coarse structure £ on a set X is discrete, then any
disjoint subsets A, B C X are asymptotically separated.

Observation: For the largest finitary coarse structure &, on a set
X, no infinite sets A, B C X are s, -separated.

Definition

A coarse structure £ on a set X is called inseparated if for any
E-separated sets A, B C X one of the sets A or B is £-bounded.

So, the coarse structure &s, is inseparated.
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An example of asymptotically separated sets

A B
E[A]
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The second set-theoretic question

Since the largest finitary coarse structure Es, is inseparated, we
can ask about the smallest weight of an inseparated finitary coarse
structure on w.

Definition

Let > denote the smallest weight of an inseparated finitary coarse
structure on w.
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Since the largest finitary coarse structure Es, is inseparated, we
can ask about the smallest weight of an inseparated finitary coarse
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Definition

Let > denote the smallest weight of an inseparated finitary coarse
structure on w.

Problem
What is the value of 27
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The second set-theoretic question

Since the largest finitary coarse structure Es, is inseparated, we
can ask about the smallest weight of an inseparated finitary coarse
structure on w.

Definition

Let > denote the smallest weight of an inseparated finitary coarse
structure on w.

Problem

What is the value of X7 Is X equal to some known cardinal
characteristic of the continuum?

Since any disjoint sets in a discrete locally finite coarse space are
asymptotically separated, each inseparated locally finite coarse
space is indiscrete. This implies the inequality

ALY
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La Fge Coarse spaces

In fact the largest finitary coarse structure £s, has another exotic
property: it is large in the following sense.

Definition

A coarse structure £ on a set X is large if each £-unbounded set
A C X is E-large in the sense that E[A] = X for some E € £.
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Definition

A coarse structure £ on a set X is large if each £-unbounded set
A C X is E-large in the sense that E[A] = X for some E € £.

Observation: The coarse structure &s, is large if and only if the
set X is countable. In particular, & is large.
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La Fge Coarse spaces

In fact the largest finitary coarse structure £s, has another exotic
property: it is large in the following sense.

Definition

A coarse structure £ on a set X is large if each £-unbounded set
A C X is E-large in the sense that E[A] = X for some E € £.

Observation: The coarse structure &s, is large if and only if the
set X is countable. In particular, & is large.

Problem

Find the smallest weight of a large finitary coarse structure on w.

T.Banakh Small uncountable cardinals in Asymptology 28 /58



La Fge Coarse spaces

In fact the largest finitary coarse structure £s, has another exotic
property: it is large in the following sense.

Definition

A coarse structure £ on a set X is large if each £-unbounded set
A C X is E-large in the sense that E[A] = X for some E € £.

Observation: The coarse structure &s, is large if and only if the
set X is countable. In particular, & is large.

Problem

Find the smallest weight of a large finitary coarse structure on w.

Fortunately, here we know the answer.
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The main theorem on critical cardinalities

The smallest weight of

@ a large finitary coarse structure on w is equal to c;
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The smallest weight of
@ a large finitary coarse structure on w is equal to c;

@ an inseparated finitary coarse structure on w is equal to ¥;
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The main theorem on critical cardinalities

The smallest weight of
@ a large finitary coarse structure on w is equal to c;
@ an inseparated finitary coarse structure on w is equal to ¥;

© an indiscrete finitary coarse structure on w is equal to A.
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The main theorem on critical cardinalities

The smallest weight of
@ a large finitary coarse structure on w is equal to c;
an inseparated finitary coarse structure on w is equal to %;

(2]
© an indiscrete finitary coarse structure on w is equal to A.
o

a large locally finite coarse structure on w is equal to 0;
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The main theorem on critical cardinalities

The smallest weight of
@ a large finitary coarse structure on w is equal to c;
an inseparated finitary coarse structure on w is equal to %;

an indiscrete finitary coarse structure on w is equal to A.

(2]
o
@ a large locally finite coarse structure on w is equal to 0;
o

an inseparated locally finite coarse structure on w equals b;
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The main theorem on critical cardinalities

The smallest weight of

a large finitary coarse structure on w is equal to c;
an inseparated finitary coarse structure on w is equal to %;

an indiscrete finitary coarse structure on w is equal to A.

a large locally finite coarse structure on w is equal to 0;

an inseparated locally finite coarse structure on w equals b;

©00 00O

an indiscrete locally finite coarse structure on w is equal to b.

v
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The main theorem on critical cardinalities

The smallest weight of

@ a large finitary coarse structure on w is equal to c;
an inseparated finitary coarse structure on w is equal to %;

an indiscrete finitary coarse structure on w is equal to A.

(2]
o
@ a large locally finite coarse structure on w is equal to 0;
o

an inseparated locally finite coarse structure on w equals b;

© an indiscrete locally finite coarse structure on w is equal to b.

v

All cardinals in this theorem except for A and X are well-known.

T.Banakh Small uncountable cardinals in Asymptology 29 /58



Equivalent definitions of A and ¥

© The cardinal A is equal to the smallest cardinality of a
subgroup G C S,, such that for any infinite set A C w there
exists g € G such that the set {a € A:a+# g(a) € A} is
infinite.

T.Banakh Small uncountable cardinals in Asymptology 30/58



Equivalent definitions of A and ¥

© The cardinal A is equal to the smallest cardinality of a
subgroup G C S,, such that for any infinite set A C w there
exists g € G such that the set {a € A:a+# g(a) € A} is
infinite.

@ The cardinal ¥ is equal to the smallest cardinality of a
subgroup G C S, such that for any infinite sets A, B C w
there exists g € G such that the set AN g[B] is infinite.
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Equivalent definitions of A and ¥

© The cardinal A is equal to the smallest cardinality of a
subgroup G C S,, such that for any infinite set A C w there
exists g € G such that the set {a € A:a+# g(a) € A} is
infinite.

@ The cardinal ¥ is equal to the smallest cardinality of a
subgroup G C S, such that for any infinite sets A, B C w
there exists g € G such that the set AN g[B] is infinite.

v

In fact the subgroup G in this proposition can be replaced by a set
consisting of involutions.
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Equivalent definitions of A and ¥

A permutation f € Sx is called an involution if f o f =1id. By I,
we denote the subset of the permutation group S, consisting of
all involutions of w.
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Equivalent definitions of A and ¥

A permutation f € Sx is called an involution if f o f =1id. By I,
we denote the subset of the permutation group S, consisting of
all involutions of w.

Proposition

© The cardinal A is equal to the smallest cardinality of a set
I C I, such that for any infinite set A C w there exists an
involution g € | such that the set {a € A:a+# g(a) € A} is
infinite.
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Equivalent definitions of A and ¥

A permutation f € Sx is called an involution if f o f =1id. By I,
we denote the subset of the permutation group S, consisting of
all involutions of w.

Proposition

© The cardinal A is equal to the smallest cardinality of a set
I C I, such that for any infinite set A C w there exists an
involution g € | such that the set {a € A:a+# g(a) € A} is
infinite.

@ The cardinal ¥ is equal to the smallest cardinality of a subset
| C I, such that for any infinite sets A, B C w there exists an
involution g € G such that the set AN g[B] is infinite.

T.Banakh Small uncountable cardinals in Asymptology

31/58



Equivalent definitions of A, Y via 2-to-1-maps

A function ¢ : w — w is called 2-to-1 if Vy € Y (|~ 1(y)| < 2).
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A function f : X — Y is called almost injective if for some finite
set F C X the restriction f[X \ F is injective.
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Equivalent definitions of A, Y via 2-to-1-maps

A function ¢ : w — w is called 2-to-1 if Vy € Y (|~ 1(y)| < 2).

A function f : X — Y is called almost injective if for some finite
set F C X the restriction f[X \ F is injective.

Proposition
@ The cardinal A is equal to the smallest cardinality of a subset
F C w® such that for any infinite set A C w there exists a
2-to-1-function f € F such that f[A is not almost injective.
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Equivalent definitions of A, Y via 2-to-1-maps

A function ¢ : w — w is called 2-to-1 if Vy € Y (Jo~1(y)| < 2).
A function f : X — Y is called almost injective if for some finite
set F C X the restriction f[X \ F is injective.

Proposition
@ The cardinal A is equal to the smallest cardinality of a subset
F C w® such that for any infinite set A C w there exists a
2-to-1-function f € F such that f[A is not almost injective.
@© The cardinal X is equal to the smallest cardinality of a subset

F C w" such that for any infinite sets A, B C w there exists a
2-to-1-function f € F such that f[A] N f[B] is infinite
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Equivalent definitions of A, Y via 2-to-1-maps

A function ¢ : w — w is called 2-to-1 if Vy € Y (Jo~1(y)| < 2).
A function f : X — Y is called almost injective if for some finite
set F C X the restriction f[X \ F is injective.

Proposition
@ The cardinal A is equal to the smallest cardinality of a subset
F C w® such that for any infinite set A C w there exists a
2-to-1-function f € F such that f[A is not almost injective.
@© The cardinal X is equal to the smallest cardinality of a subset

F C w" such that for any infinite sets A, B C w there exists a
2-to-1-function f € F such that f[A] N f[B] is infinite

Now we will discuss the location of the cardinals A and ¥ among
other known cardinal characteristics of the continuum.
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Some classical cardinal characteristics of the continuum

For a set X, let [X]<“ be the family of all finite subsets of X, and
[X]¥ be the family of all countably infinite subsets of X.
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Some classical cardinal characteristics of the continuum

For a set X, let [X]<“ be the family of all finite subsets of X, and
[X]¥ be the family of all countably infinite subsets of X.

For two sets A, B, we write A C* B if A\ B is finite.
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Some classical cardinal characteristics of the continuum

For a set X, let [X]<“ be the family of all finite subsets of X, and
[X]¥ be the family of all countably infinite subsets of X.

For two sets A, B, we write A C* B if A\ B is finite.

For two functions f, g : w — w we write f < g if f(n) < g(n) for
all n€w, and f <* g if the set {n € w: f(n) £ g(n)} is finite.
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Some classical cardinal characteristics of the continuum

For a set X, let [X]<“ be the family of all finite subsets of X, and
[X]¥ be the family of all countably infinite subsets of X.

For two sets A, B, we write A C* B if A\ B is finite.

For two functions f, g : w — w we write f < g if f(n) < g(n) for
all n€w, and f <* g if the set {n € w: f(n) £ g(n)} is finite.

Let us recall that
b =min{|B|:BCw* Vfecw3dge B g &£ f}
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For a set X, let [X]<“ be the family of all finite subsets of X, and
[X]¥ be the family of all countably infinite subsets of X.

For two sets A, B, we write A C* B if A\ B is finite.

For two functions f, g : w — w we write f < g if f(n) < g(n) for
all n€w, and f <* g if the set {n € w: f(n) £ g(n)} is finite.

Let us recall that
b =min{|B|: BCw¥ VfewYIgeB g« f};
0 =min{|D|:DCw¥ Vfew”IgeB f<g}
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Some classical cardinal characteristics of the continuum

For a set X, let [X]<“ be the family of all finite subsets of X, and
[X]¥ be the family of all countably infinite subsets of X.

For two sets A, B, we write A C* B if A\ B is finite.

For two functions f, g : w — w we write f < g if f(n) < g(n) for
all n€w, and f <* g if the set {n € w: f(n) £ g(n)} is finite.

Let us recall that
b =min{|B|: BCw¥ VfewYIgeB g« f};
0 =min{|D|:DCw® Vf ew¥3dgeB f<g}
s =min{|S]: S C [w]¥, Va€ [w]*Is € S |ans| =w = |a\s|};
t =min{|T|: T C[w]”and (Vs,t €T sC*tortC*s)
and (Vs € [w]¥ Ite T s Z* t)}.
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The order relations between wq,t,6,0,5, ¢

The order relations between these cardinals are described by the
following diagram in which for two cardinals , A the arrow kK — A
indicates that k < X\ in ZFC.

§—=0——>¢

|

wp—=t——=b>
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Cardinal characteristics of ideals

Each family of sets Z with | JZ ¢ Z has four basic cardinal
characteristics:

add(Z) = min{|A|: ACZT AN JAEZ}

cov(Z) =min{|A| : ACZ N UA=UT};

non(Z) =min{|A|:ACUZ N A¢ T},

cof(Z)=min{|TJ|: T CZT ANVIe€Z3JeJ (I}
These cardinal characteristics are usually considered for the
o-ideals M and N of meager sets and Lebesgue null sets on the

real line, respectively.
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Cichon Diagram

e

O
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Cichon Diagram

The cardinal characteristics of the o-ideals M and A are described
by the famous Cichon diagram:

cov(N) —non
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The location of A, Y

Main Theorem: ‘ max{b,s,cov(N)} < A < ¥ < non(M) ‘
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The location of A, Y

Main Theorem: ‘ max{b,s,cov(N)} < A < ¥ < non(M) ‘

cov(N) Y non(M) — cof (M) — cof (N) —¢
wi —add(N) t_ add(M) s cov(M) — non(N)
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The location of A, Y

Main Theorem: ‘ max{b,s,cov(N)} < A < ¥ < non(M) ‘

cov(N) Y non(M) — cof (M) — cof (N) —¢
wi —add(N) t_ add(M) s cov(M) — non(N)

Problem

Which of the strict inequalities are consistent with ZFC
max{b, s, cov(N)} < A < ¥ < non(M)?
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Cellular coarse spaces

Def: An entourage E on a set X is called cellular if

E~1 = E = E o E, which means that E is an equivalence relation.
So, {E(x)}xex is a partition of a set X into pairwise disjoint
E-balls.
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A coarse structure is called cellular if it has a base consisting of
cellular entourages.
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E~1 = E = E o E, which means that E is an equivalence relation.
So, {E(x)}xex is a partition of a set X into pairwise disjoint
E-balls.

A coarse structure is called cellular if it has a base consisting of
cellular entourages.

Fact 1: A metrizable coarse structure is cellular if and only of it is
generated by an ultrametric.
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Cellular coarse spaces

Def: An entourage E on a set X is called cellular if

E~1 = E = E o E, which means that E is an equivalence relation.
So, {E(x)}xex is a partition of a set X into pairwise disjoint
E-balls.

A coarse structure is called cellular if it has a base consisting of
cellular entourages.

Fact 1: A metrizable coarse structure is cellular if and only of it is
generated by an ultrametric.

Fact 2: A coarse structure is cellular if and only if it has Gromov's
asymptotic dimension zero.
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Some critical weights of cellular coarse structures

AL =min ({c"}U{w(€) : € is an indiscrete cellular finitary
coarse structure on w});
o =min ({c"}U{w(E) : € is an inseparated cellular finitary
coarse structure on w});
A, =min ({ct}U{w(E) : € is a large cellular finitary
coarse structure on w});
A, = min ({c"}U{w(€) : € is an indiscrete cellular locally finite
coarse structure on w});
xo, = min ({ct} U{w(€): & is an inseparated cellular locally finite
coarse structure on w});
Ay, = min ({cF}U{w(E) : € is a large cellular locally finite
coarse structure on w}).
The cardinal ¢ appears in the definitions of those cardinals in
order to make these cardinals well-defined (this indeed is necessary
for the cardinal A, which is equal to ¢t in ZFC).
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Available info on these cardinals

non(M) ¢ ¢t
/>< A2 =c
T A? o A,
A /Ale i Aoy
\ - =0
t b 0
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non(M) c ¢t

/% Jee-
T AC o A
A / N — Y
\ T )t:a
t=b
t b 0
QN =c".
Q Al <c

Q@ A) =cimplies¥; <%} =c.
Q t=">0implies A, =%, =b.
Q t =20 implies \}, =0.
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Some Open Problems

PN

A

¢t

non(M)
j—g
> A
]
AL >? A
\ T - )t:a
b 0

go

o
AUJ w

w1 w1 w1

t
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Some Open Problems

PN

A

¢t

non(M)
p—
AL > A
]
>? A
\ T - )t:a
b 0

go

w w

o
AUJ1 w1 w1

t

Problem: Is X7 < ¢ in ZFC? This is equivalent to asking if there
exists an inseparable cellular finitary coarse structure on w in ZFC?
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Some Open Problems

non(M) c ¢t
j—g
¥ A° o A
]
A Ag, 20 Aoy
\ T - )t:a
t b 0

Problem: Is X7 < ¢ in ZFC? This is equivalent to asking if there
exists an inseparable cellular finitary coarse structure on w in ZFC?

Positive answer to this problem follows from negative answer to

Problem: Is A?, < ¢ consistent? |
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Some Open Problems

non(M) ¢ ¢t
/_% TAZ_C
T A2 o A
]
A I p—
\ T . ) t=0
t b 0

Problem: Does there exist a large cellular locally finite coarse
structure on w in ZFC? If yes, is 0 equal to the smallest weight of

a large cellular locally finite coarse structure on w?
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Some Open Problems

non(M) ¢ ¢t

e
N A2, o A°
A AN 20, A%
\ T 2{_0
t=b
t b 0

Problem: Does there exist a large cellular locally finite coarse
structure on w in ZFC? If yes, is 0 equal to the smallest weight of
a large cellular locally finite coarse structure on w?

Problem: Is b equal to the smallest weight of an indiscrete cellular
locally finite coarse structure on w?
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Cardinal Characteristics

of the poset E’,

(of nontrivial cellular finitary entourages on w)
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Upper and lower sets in a poset

Let P be a poset, i.e., a set P endowed with a partial order <.
For an element x € P let

tx={yeP:x<y} and |[x={yeP:y<x}

be the upper and lower sets of x in the poset.
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Upper and lower sets in a poset

Let P be a poset, i.e., a set P endowed with a partial order <.
For an element x € P let

tx={yeP:x<y} and |[x={yeP:y<x}

be the upper and lower sets of x in the poset.
For a subset A C P let

tA=|Jta and JA=|[]]a

acA acA

be the upper and lower sets of A in the poset.
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The cofinality and coinitiality of a poset

The cardinal

L(P)=min{|]A|: AC P A JA= P} is called the cofinality, and
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The cofinality and coinitiality of a poset

The cardinal

L(P)=min{|]A|: AC P A JA= P} is called the cofinality, and
T(P) =min{|A|: AC P A 1A = P} is called the cofinitiality
of the poset P.
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The cofinality and coinitiality of a poset

The cardinal

L(P)=min{|]A|: AC P A JA= P} is called the cofinality, and
T(P) =min{|A|: AC P A 1A = P} is called the cofinitiality
of the poset P.

Example 1: |(w¥, <) =
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The cofinality and coinitiality of a poset

The cardinal

L(P)=min{|]A|: AC P A JA= P} is called the cofinality, and
T(P) =min{|A|: AC P A 1A = P} is called the cofinitiality
of the poset P.

Example 1: (0¥, <) =10
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The cofinality and coinitiality of a poset

The cardinal

L(P)=min{|]A|: AC P A JA= P} is called the cofinality, and
T(P) =min{|A|: AC P A 1A = P} is called the cofinitiality
of the poset P.

Example 1: |[(w¥, <) =0 and (w¥, <) =
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The cofinality and coinitiality of a poset

The cardinal

L(P)=min{|]A|: AC P A JA= P} is called the cofinality, and
T(P) =min{|A|: AC P A 1A = P} is called the cofinitiality
of the poset P.

Example 1: [(w¥, <) =0 and T(w¥, <) = 1.
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The cofinality and coinitiality of a poset

The cardinal

L(P)=min{|]A|: AC P A JA= P} is called the cofinality, and
T(P) =min{|A|: AC P A 1A = P} is called the cofinitiality
of the poset P.

Example 1: [(w¥, <) =0 and T(w¥, <) = 1.

Example 2: [([w]¥,C) =
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The cofinality and coinitiality of a poset

The cardinal

L(P)=min{|]A|: AC P A JA= P} is called the cofinality, and
T(P) =min{|A|: AC P A 1A = P} is called the cofinitiality
of the poset P.

Example 1: [(w¥, <) =0 and T(w¥, <) = 1.

Example 2: |[([w]“,C) =1
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The cofinality and coinitiality of a poset

The cardinal

L(P)=min{|]A|: AC P A JA= P} is called the cofinality, and
t(P) = min{|A|: AC P A TA = P} is called the cofinitiality
of the poset P.

Example 1: |(w¥, <) =0 and T(w¥, <) = 1.
Example 2: J([w], C) = 1 and 1([u]*, C) =
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The cofinality and coinitiality of a poset

The cardinal

L(P)=min{|]A|: AC P A JA= P} is called the cofinality, and
t(P) = min{|A|: AC P A TA = P} is called the cofinitiality
of the poset P.

Example 1: |(w¥, <) =0 and T(w¥, <) = 1.
Example 2: [([w]“,C) =1 and f([w]¥,C) =c.
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Iterated upper and lower sets

The transitivity of the partial order < implies that for any subset
ACP
MA=1TA and J[JA=|A
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Iterated upper and lower sets

The transitivity of the partial order < implies that for any subset
ACP

MA=1A and |JA=]A

On the other hand, we can consider the lower-upper and

upper-lower sets of A: 1/ A and [TA and also the corresponding
cardinal characteristics of the poset P:

(P) = min{|A|: ACP A T/A= P} and
I(P) =min{|A|: ACP A [TA= P}.
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Iterated upper and lower sets

The transitivity of the partial order < implies that for any subset
ACP
MA=1TA and J[JA=|A

On the other hand, we can consider the lower-upper and
upper-lower sets of A: 1/ A and [TA and also the corresponding
cardinal characteristics of the poset P:

(P) = min{|A|: ACP A T/A= P} and

H(P)=min{|A|:AC P A [TA= P}.
Iterating, we obtain the cardinal characteristics

H(P)=min{|A|:AC P A [1|A= P},

H(P) = min{|[A|: AC P N TJTA= P},
and so on.
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The cardinal characteristics 11(P) and [|(P)

Let us also consider the cardinal characteristics
M(P)=sup{|A|:ACP AVx,ye A (x£y = TxN1ty =0)},
W(P)=sup{|A|:ACP AVx,y €A (x£y = |IxNnly=0)}
which are counterparts of the cellularity in topological spaces.
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The cardinal characteristics 11(P) and [|(P)

Let us also consider the cardinal characteristics
M(P)=sup{|A|:ACP AVx,ye A (x£y = TxN1ty =0)},
W(P)=sup{|A|:ACP AVx,y €A (x£y = |IxNnly=0)}
which are counterparts of the cellularity in topological spaces.

The order relation between these cardinals characteristics are
described in the following diagram (in which an arrow k — A
between cardinals indicates that k < \):

W(P) —I(P) —=M(P) —=U(P)

><

W(P) —=1(P) —= I(P) —=1(P)

T.Banakh Small uncountable cardinals in Asymptology 49 /58



Cardinal characteristics of the poset E?,

We shall be interested in these cardinal characteristics for the
poset [E? of nondiscrete cellular finitary entourages on w.

An entourage E on a set X is called
e nondiscrete if {x € X : E(x) # {x}} is infinite;
o cellularif ET' = E = EoE;
o finitary if sup,ex |E(x) U E71(x)| < w.
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Q IN(E) = Ni(ES) = 1.

Q@ M(E3) = W(ES) = W(ES) = M(ES) = c.
Q cov(M) < IN(EE) <«

O ¥ < (E}) < non(M).
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O ItL(EZ) = HN(EZ) = 1.

Q@ M(E3) = W(ES) = W(ES) = M(ES) = c.
0 cov(M) < H(ES) <c.

Q X <f(E?) < non(M).

Problem: Which of the following strict inequalities is consistent?
Q T < 1U(EL);
Q@ (E?) < non(M);
@ cov(M) < N(ES):
Q IM(E) <c.
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Theorem
O IN(ES) = N(ES) = 1.
@ 1M(E3) = W(ES) = L(ES) = 1(ES) =«
Q cov(M) < IN(E?) <.
0 X <H(E}) < non(M).

Problem: Which of the following strict inequalities is consistent?
Q T < 1U(EL);
Q@ (E?) < non(M);
@ cov(M) < N(ES):
Q IM(E) <c.

Remark: Since the strict inequality cov(M) < ¢ is consistent,
either (3) or (4) in the above Problem is consistent.
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Theorem
O IN(ES) = N(ES) = 1.
@ 1M(E3) = W(ES) = L(ES) = 1(ES) =«
Q cov(M) < IN(E?) <.
0 X <H(E}) < non(M).

Problem: Which of the following strict inequalities is consistent?
Q T < 1U(EL);

Q@ (E?) < non(M);

@ cov(M) < N(ES):

Q IM(E) <c.

Remark: Since the strict inequality cov(M) < ¢ is consistent,
either (3) or (4) in the above Problem is consistent.
But which one? Or both?
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Special Ultrafilters
in Large-Scale Topology
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Thin ultrafilters

Definition

A free ultrafilter U on w is called thin if for any metrizable finitary
coarse structure £ on w there exists a set U € U such that the
coarse structure £[U on U is discrete.
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Thin ultrafilters

Definition

A free ultrafilter U on w is called thin if for any metrizable finitary
coarse structure £ on w there exists a set U € U such that the
coarse structure £[U on U is discrete.

Problem (Protasov)
Is it true that thin ultrafilters exist in ZFC?
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Some known types of ultrafilters

A free ultrafilter U on w is called

e a P-point if for any sequence of sets {U,}nc., C U there exist a set

U € U such that U C* U, for every n € w;

e a Q-point if for any locally finite cellular entourage E on w there exists
a set U € U such that |UN E(x)| <1 for any x € w;

e Ramsey if for any map f : w — w there exists U € U such that f[U is
either constant or injective;

e a weak P-point, if for any sequence (Uy,)ne., of free ultrafilters that are
not equal to U there exists a set U € U \ ¢, Un;

e an OKj;-point for a cardinal & if for any sequence of sets {U,},c0 CU
there exists a family (Vi )aex € U such that for any ordinals

a1 < < apin k we have (i_; Va, € Up;

e rapid if for any function f € w* there exists a function g € w* such
that f < g and {g(n) : n € w} € U,

e discrete if for any injective function ¢ : w — R there exists a set U € U
whose image f(U) is a discrete subspace of R;

e nowhere dense if for any injective function ¢ : w — R there exists a set
U € U whose image f(U) is nowhere dense in R.
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Thin ultrafilter vs other types of ultrafilters

rapid <—— Q-point ———=> thin ng\év#éaere

I I I

Ramsey =——= P-point =——=> discrete

.

OK;-point => OK,,,-point => weak P-point
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Thin ultrafilter vs other types of ultrafilters

rapid <—— Q-point ———=> thin ng\év#éaere

I I I

Ramsey =——= P-point =——=> discrete

OK;-point => OK,,,-point => weak P-point

By a famous result of Kunen, OK,-points exist in ZFC.
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Thin ultrafilter vs other types of ultrafilters

rapid <—— Q-point ———=> thin ng\év#éaere

I I I

Ramsey =——= P-point =——=> discrete

.

OK;-point => OK,,,-point => weak P-point

By a famous result of Kunen, OK,-points exist in ZFC.
Shelah constructed a model without nowhere dense ultrafilters.
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Thin ultrafilter vs other types of ultrafilters

rapid <—— Q-point ———=> thin ng\év#éaere

I I I

Ramsey =——= P-point =——=> discrete

.

OK;-point => OK,,,-point => weak P-point

By a famous result of Kunen, OK,-points exist in ZFC.
Shelah constructed a model without nowhere dense ultrafilters.
Miller constructed a model containing no rapid ultrafilters.
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Thin ultrafilter vs other types of ultrafilters

rapid <—— Q-point ———=> thin ng\év#éaere

I I I

Ramsey =——= P-point =——=> discrete

.

OK;-point => OK,,,-point => weak P-point

By a famous result of Kunen, OK,-points exist in ZFC.

Shelah constructed a model without nowhere dense ultrafilters.
Miller constructed a model containing no rapid ultrafilters.

It is unknown if there is a model without P-points and Q-points.
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Thin ultrafilter vs other types of ultrafilters

rapid <—— Q-point ———=> thin ng\év#éaere

I I I

Ramsey =——= P-point =——=> discrete

.

OK;-point => OK,,,-point => weak P-point

By a famous result of Kunen, OK,-points exist in ZFC.

Shelah constructed a model without nowhere dense ultrafilters.
Miller constructed a model containing no rapid ultrafilters.

It is unknown if there is a model without P-points and Q-points.
So the problem of constructing a model containing no thin
ultrafilters is more difficult than the (already difficult) problem of
constructing a model without P-points and Q-points.
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Thin ultrafilter vs other types of ultrafilters

rapid <———= Q-point =——=> thin ng\é/#seere

I I [

Ramsey =——= P-point =——=> discrete

|l

OK;-point => OK,,,-point => weak P-point

@ Is each OK_-ultrafilter thin?
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Thin ultrafilter vs other types of ultrafilters

rapid <———= Q-point =——=> thin ncc)j\gﬁseere

I I [

Ramsey =——= P-point =——=> discrete

|l

OK;-point => OK,,,-point => weak P-point

Problem

@ Is each OK_-ultrafilter thin?

@ Is each discrete ultrafilter thin?
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Thank You!
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