Small uncountable cardinals in Large-Scale Topology

Taras Banakh

Home

Lviv-Warsaw, 28 October 2020

According to the Erlangen Program (1872) of Felix Klein various geometries study invariants of the corresponding transformation groups.

For example,

- topology studies properties, preserved by homeomorphisms;
- **uniform topology** studied properties preserved by uniform homeomorphisms (= microform bijections);
- large-scale topology is intersted in properties preserved by coarse isomorphisms (= macroform bijections).

伺 ト イヨト イヨト

According to the Erlangen Program (1872) of Felix Klein various geometries study invariants of the corresponding transformation groups.

For example,

- topology studies properties, preserved by homeomorphisms;
- uniform topology studied properties preserved by uniform homeomorphisms (= microform bijections);
- large-scale topology is intersted in properties preserved by coarse isomorphisms (= macroform bijections).

According to the Erlangen Program (1872) of Felix Klein various geometries study invariants of the corresponding transformation groups.

For example,

- topology studies properties, preserved by homeomorphisms;
- uniform topology studied properties preserved by uniform homeomorphisms (= microform bijections);
- large-scale topology is intersted in properties preserved by coarse isomorphisms (= macroform bijections).

Microform and macroform functions

Let \mathbb{R}_+ denote the open half-line $(0, +\infty)$.

A function $f: X \to Y$ between metric spaces (X, d_X) and (Y, d_Y) is called

• microform (= uniformly continuous) if $\forall \varepsilon \in \mathbb{R}_+ \exists \delta \in \mathbb{R}_+ \forall x, x' \in X (d_X(x, y) < \delta \Rightarrow d_Y(f(x), f(y)) < \varepsilon)$

• macroform (= coarse) if $\forall \delta \in \mathbb{R}_+ \exists \varepsilon \in \mathbb{R}_+ \forall x, x' \in X (d_X(x, y) < \delta \Rightarrow d_Y(f(x), f(y)) < \varepsilon)$

Example: Any Lipschitz map is both microform and macroform. **Remark:** The half-line \mathbb{R}_+ has two ends. Microform and macroform maps are interested each by its own end.

A function $f: X \to Y$ between metric spaces (X, d_X) and (Y, d_Y) is called

• microform (= uniformly continuous) if $\forall \varepsilon \in \mathbb{R}_+ \exists \delta \in \mathbb{R}_+ \forall x, x' \in X (d_X(x, y) < \delta \Rightarrow d_Y(f(x), f(y)) < \varepsilon)$

• macroform (= coarse) if $\forall \delta \in \mathbb{R}_+ \exists \varepsilon \in \mathbb{R}_+ \forall x, x' \in X (d_X(x, y) < \delta \Rightarrow d_Y(f(x), f(y)) < \varepsilon)$

Example: Any Lipschitz map is both microform and macroform. **Remark:** The half-line \mathbb{R}_+ has two ends. Microform and macroform maps are interested each by its own end

A function $f : X \to Y$ between metric spaces (X, d_X) and (Y, d_Y) is called

• microform (= uniformly continuous) if $\forall \varepsilon \in \mathbb{R}_+ \exists \delta \in \mathbb{R}_+ \forall x, x' \in X (d_X(x, y) < \delta \Rightarrow d_Y(f(x), f(y)) < \varepsilon)$

• macroform (= coarse) if $\forall \delta \in \mathbb{R}_+ \exists \varepsilon \in \mathbb{R}_+ \forall x, x' \in X (d_X(x, y) < \delta \Rightarrow d_Y(f(x), f(y)) < \varepsilon)$

Example: Any Lipschitz map is both microform and macroform. **Remark:** The half-line \mathbb{R}_+ has two ends. Microform and macroform maps are interested each by its own end

A function $f : X \to Y$ between metric spaces (X, d_X) and (Y, d_Y) is called

• microform (= uniformly continuous) if $\forall \varepsilon \in \mathbb{R}_+ \exists \delta \in \mathbb{R}_+ \forall x, x' \in X (d_X(x, y) < \delta \Rightarrow d_Y(f(x), f(y)) < \varepsilon)$

• macroform (= coarse) if $\forall \delta \in \mathbb{R}_+ \exists \varepsilon \in \mathbb{R}_+ \forall x, x' \in X (d_X(x, y) < \delta \Rightarrow d_Y(f(x), f(y)) < \varepsilon)$

Example: Any Lipschitz map is both microform and macroform.

Remark: The half-line \mathbb{R}_+ has two ends. Microform and macroform maps are interested each by its own end.

A function $f: X \to Y$ between metric spaces (X, d_X) and (Y, d_Y) is called

• microform (= uniformly continuous) if $\forall \varepsilon \in \mathbb{R}_+ \exists \delta \in \mathbb{R}_+ \forall x, x' \in X (d_X(x, y) < \delta \Rightarrow d_Y(f(x), f(y)) < \varepsilon)$

• macroform (= coarse) if $\forall \delta \in \mathbb{R}_+ \exists \varepsilon \in \mathbb{R}_+ \forall x, x' \in X (d_X(x, y) < \delta \Rightarrow d_Y(f(x), f(y)) < \varepsilon)$

Example: Any Lipschitz map is both microform and macroform. **Remark:** The half-line \mathbb{R}_+ has two ends. Microform and macroform maps are interested each by its own end.

- A bijective function $f: X \to Y$ between metric spaces (X, d_X) and (Y, d_Y) is called
- a homeomorphism if both maps f and f^{-1} are continuous;
- a micro-bijection if both maps f and f^{-1} are microform;
- a macro-bijection if both maps f and f^{-1} are macroform.

Example: Any bi-Lipschitz bijection is both micro-bijection and macro-bijection.

- A bijective function $f: X \to Y$ between metric spaces (X, d_X) and (Y, d_Y) is called
- a homeomorphism if both maps f and f^{-1} are continuous;
- a micro-bijection if both maps f and f^{-1} are microform;
- a macro-bijection if both maps f and f^{-1} are macroform.

Example: Any bi-Lipschitz bijection is both micro-bijection and macro-bijection.

- A bijective function $f: X \to Y$ between metric spaces (X, d_X) and (Y, d_Y) is called
- a homeomorphism if both maps f and f^{-1} are continuous;
- a micro-bijection if both maps f and f^{-1} are microform;
- a macro-bijection if both maps f and f^{-1} are macroform.

Example: Any bi-Lipschitz bijection is both micro-bijection and macro-bijection.

The answer is known: the topology.

Which structure of a metric space is preserved by micro-bijections (=uniform homeomorphisms)?

The answer is also known: the uniform structure.

Which structure of a metric space is preserved by macro-bijections? The answer: the coarse structure.

In fact, uniform and coarse structures are the two "ends" of a common structure called the duoform structure.

Which structure of a metric space is preserved by homeomorphisms? The answer is known: the topology.

Which structure of a metric space is preserved by micro-bijections (=uniform homeomorphisms)?

The answer is also known: the uniform structure.

Which structure of a metric space is preserved by macro-bijections? The answer: the coarse structure.

In fact, uniform and coarse structures are the two "ends" of a common structure called the duoform structure.

The answer is known: the topology.

Which structure of a metric space is preserved by micro-bijections (=uniform homeomorphisms)?

The answer is also known: the uniform structure.

Which structure of a metric space is preserved by macro-bijections? The answer: the coarse structure.

In fact, uniform and coarse structures are the two "ends" of a common structure called the duoform structure.

The answer is known: the topology.

Which structure of a metric space is preserved by micro-bijections (=uniform homeomorphisms)? The answer is also known: the uniform structure.

Which structure of a metric space is preserved by macro-bijections? The answer: the coarse structure.

In fact, uniform and coarse structures are the two "ends" of a common structure called the duoform structure.

The answer is known: the topology.

Which structure of a metric space is preserved by micro-bijections (=uniform homeomorphisms)? The answer is also known: the uniform structure.

Which structure of a metric space is preserved by macro-bijections? The answer: the coarse structure.

In fact, uniform and coarse structures are the two "ends" of a common structure called the duoform structure.

The answer is known: the topology.

Which structure of a metric space is preserved by micro-bijections (=uniform homeomorphisms)? The answer is also known: the uniform structure.

Which structure of a metric space is preserved by macro-bijections? The answer: the coarse structure.

In fact, uniform and coarse structures are the two "ends" of a common structure called the duoform structure.

The answer is known: the topology.

Which structure of a metric space is preserved by micro-bijections (=uniform homeomorphisms)?

The answer is also known: the uniform structure.

Which structure of a metric space is preserved by macro-bijections? The answer: the coarse structure.

In fact, uniform and coarse structures are the two "ends" of a common structure called the duoform structure.

The answer is known: the topology.

Which structure of a metric space is preserved by micro-bijections (=uniform homeomorphisms)?

The answer is also known: the uniform structure.

Which structure of a metric space is preserved by macro-bijections? The answer: the coarse structure.

In fact, uniform and coarse structures are the two "ends" of a common structure called the duoform structure.

Entourages

Definition

An entourage on a set X is any subset $E \subseteq X \times X$ containing the diagonal $\Delta_X = \{ \langle x, x \rangle : x \in X \}$ of the square $X \times X$.

Entourages are subject to some algebra.

Namely, for two entourages E, F on a set X we can consider the inverse entourage

$$E^{-1} = \{ \langle y, x \rangle : \langle x, y \rangle \in E \}$$

and the composition

$$E \circ F = \{ \langle x, z \rangle : \exists y \ (\langle x, y \rangle \in E \land \langle y, z \rangle \in F) \}.$$

For an entourage U let

 $\uparrow U = \{W : U \subseteq W \subseteq X \times X\} \text{ and } \downarrow U = \{W : \Delta_X \subseteq W \subseteq U\}$

be the upper and lower sets of U in the poset of all entourages on X_{333}

Definition

An entourage on a set X is any subset $E \subseteq X \times X$ containing the diagonal $\Delta_X = \{ \langle x, x \rangle : x \in X \}$ of the square $X \times X$.

Entourages are subject to some algebra.

Namely, for two entourages E, F on a set X we can consider the inverse entourage

$$E^{-1} = \{ \langle y, x \rangle : \langle x, y \rangle \in E \}$$

and the composition

$$\mathsf{E} \circ \mathsf{F} = \{ \langle x, z \rangle : \exists y \ (\langle x, y \rangle \in \mathsf{E} \land \langle y, z \rangle \in \mathsf{F}) \}.$$

For an entourage U let

 $\uparrow U = \{W : U \subseteq W \subseteq X \times X\} \quad \text{and} \quad \downarrow U = \{W : \Delta_X \subseteq W \subseteq U\}$

be the upper and lower sets of U in the poset of all entourages on X_{230}

Definition

An entourage on a set X is any subset $E \subseteq X \times X$ containing the diagonal $\Delta_X = \{ \langle x, x \rangle : x \in X \}$ of the square $X \times X$.

Entourages are subject to some algebra.

Namely, for two entourages E, F on a set X we can consider the inverse entourage

$$E^{-1} = \{ \langle y, x \rangle : \langle x, y \rangle \in E \}$$

and the composition

$$\mathsf{E} \circ \mathsf{F} = \{ \langle x, z \rangle : \exists y \ (\langle x, y \rangle \in \mathsf{E} \land \langle y, z \rangle \in \mathsf{F}) \}.$$

For an entourage U let

 $\uparrow U = \{W: U \subseteq W \subseteq X \times X\} \quad \text{and} \quad \downarrow U = \{W: \Delta_X \subseteq W \subseteq U\}$

be the upper and lower sets of U in the poset of all entourages on $X_{23,0}$

Entourages and geometric intuition

For an entourage $U \subseteq X \times X$ and point $x \in X$ the set

$$U(x) = \{y : \langle x, y \rangle \in U\}$$

is called the ball of radius U around x.

For a subset $A \subseteq X$ the set

$$U[A] = \bigcup_{a \in A} U(a)$$

is called the *U*-neighborhood of *A*.

In fact, the entourage U can be recovered from its balls since

$$U = \bigcup_{x \in X} (\{x\} \times U(x)).$$

Entourages and geometric intuition

For an entourage $U \subseteq X \times X$ and point $x \in X$ the set

$$U(x) = \{y : \langle x, y \rangle \in U\}$$

is called the ball of radius U around x.

For a subset $A \subseteq X$ the set

$$U[A] = \bigcup_{a \in A} U(a)$$

is called the *U*-neighborhood of *A*.

In fact, the entourage U can be recovered from its balls since

$$U = \bigcup_{x \in X} (\{x\} \times U(x)).$$

Entourages and geometric intuition

For an entourage $U \subseteq X \times X$ and point $x \in X$ the set

$$U(x) = \{y : \langle x, y \rangle \in U\}$$

is called the ball of radius U around x.

For a subset $A \subseteq X$ the set

$$U[A] = \bigcup_{a \in A} U(a)$$

is called the *U*-neighborhood of *A*.

In fact, the entourage U can be recovered from its balls since

$$U = \bigcup_{x \in X} (\{x\} \times U(x)).$$

B) $\bigcap \mathcal{U} = \Delta_X$ and $\forall U, V \in \mathcal{U} \exists W \in \mathcal{U} \ (W \circ W \subseteq U \cap V^{-1});$ M) $\forall U \in \mathcal{U} \ (\uparrow U \subseteq \mathcal{U}).$

A subfamily $\mathcal{B} \subseteq \mathcal{U}$ is called a **base** of the uniform structure \mathcal{U} if for every $U \in \mathcal{U}$ there exists $B \in \mathcal{B}$ such that $B \subseteq U$. Each base of a uniform structure has the property (B) and each family of entourages \mathcal{B} that has property (B) is a base of a unique uniform structure, namely, $\uparrow \mathcal{B} = \bigcup_{B \in \mathcal{B}} \uparrow B$.

The weight $w(\mathcal{U})$ of a uniform structure \mathcal{U} is the smallest cardinality $|\mathcal{B}|$ of a base $\mathcal{B} \subseteq \mathcal{U}$.

A *uniform space* is a pair (X, U) consisting of a set X and a uniform structure U on X. The weight of a uniform space is the weight of its uniform stru-

э

9 / 58

・ 同 ト ・ ヨ ト ・ ヨ ト

B) $\bigcap \mathcal{U} = \Delta_X$ and $\forall U, V \in \mathcal{U} \exists W \in \mathcal{U} \ (W \circ W \subseteq U \cap V^{-1});$ M) $\forall U \in \mathcal{U} \ (\uparrow U \subseteq \mathcal{U}).$

A subfamily $\mathcal{B} \subseteq \mathcal{U}$ is called a base of the uniform structure \mathcal{U} if for every $U \in \mathcal{U}$ there exists $B \in \mathcal{B}$ such that $B \subseteq U$.

Each base of a uniform structure has the property (B) and each family of entourages \mathcal{B} that has property (B) is a base of a unique uniform structure, namely, $\uparrow \mathcal{B} = \bigcup_{B \in \mathcal{B}} \uparrow B$.

The weight $w(\mathcal{U})$ of a uniform structure \mathcal{U} is the smallest cardinality $|\mathcal{B}|$ of a base $\mathcal{B} \subseteq \mathcal{U}$.

A *uniform space* is a pair (X,U) consisting of a set X and a uniform structure U on X. The weight of a uniform space is the weight of its uniform stru

э

9 / 58

< 同 ト < 三 ト < 三 ト

B) $\bigcap \mathcal{U} = \Delta_X$ and $\forall U, V \in \mathcal{U} \exists W \in \mathcal{U} \ (W \circ W \subseteq U \cap V^{-1});$ M) $\forall U \in \mathcal{U} \ (\uparrow U \subseteq \mathcal{U}).$

A subfamily $\mathcal{B} \subseteq \mathcal{U}$ is called a base of the uniform structure \mathcal{U} if for every $\mathcal{U} \in \mathcal{U}$ there exists $B \in \mathcal{B}$ such that $B \subseteq \mathcal{U}$. Each base of a uniform structure has the property (B) and each family of entourages \mathcal{B} that has property (B) is a base of a unique uniform structure, namely, $\uparrow \mathcal{B} = \bigcup_{B \in \mathcal{B}} \uparrow B$. The weight $w(\mathcal{U})$ of a uniform structure \mathcal{U} is the smallest cardinality $|\mathcal{B}|$ of a base $\mathcal{B} \subseteq \mathcal{U}$.

A *uniform space* is a pair (X,U) consisting of a set X and a uniform structure U on X. The <mark>weight</mark> of a uniform space is the weight of its uniform struct

э

< 同 ト < 三 ト < 三 ト

B) $\bigcap \mathcal{U} = \Delta_X$ and $\forall U, V \in \mathcal{U} \exists W \in \mathcal{U} \ (W \circ W \subseteq U \cap V^{-1});$ M) $\forall U \in \mathcal{U} \ (\uparrow U \subseteq \mathcal{U}).$

A subfamily $\mathcal{B} \subseteq \mathcal{U}$ is called a base of the uniform structure \mathcal{U} if for every $U \in \mathcal{U}$ there exists $B \in \mathcal{B}$ such that $B \subseteq U$. Each base of a uniform structure has the property (B) and each family of entourages \mathcal{B} that has property (B) is a base of a unique uniform structure, namely, $\uparrow \mathcal{B} = \bigcup_{B \in \mathcal{B}} \uparrow B$.

The weight $w(\mathcal{U})$ of a uniform structure \mathcal{U} is the smallest cardinality $|\mathcal{B}|$ of a base $\mathcal{B} \subseteq \mathcal{U}$.

A *uniform space* is a pair (X,U) consisting of a set X and a uniform structure U on X. The weight of a uniform space is the weight of its uniform struc

3

伺 ト イヨ ト イヨ トー

B) $\bigcap \mathcal{U} = \Delta_X$ and $\forall U, V \in \mathcal{U} \exists W \in \mathcal{U} \ (W \circ W \subseteq U \cap V^{-1});$ M) $\forall U \in \mathcal{U} \ (\uparrow U \subseteq \mathcal{U}).$

A subfamily $\mathcal{B} \subseteq \mathcal{U}$ is called a base of the uniform structure \mathcal{U} if for every $U \in \mathcal{U}$ there exists $B \in \mathcal{B}$ such that $B \subseteq U$. Each base of a uniform structure has the property (B) and each family of entourages \mathcal{B} that has property (B) is a base of a unique uniform structure, namely, $\uparrow \mathcal{B} = \bigcup_{B \in \mathcal{B}} \uparrow B$.

The weight $w(\mathcal{U})$ of a uniform structure \mathcal{U} is the smallest cardinality $|\mathcal{B}|$ of a base $\mathcal{B} \subseteq \mathcal{U}$.

A *uniform space* is a pair (X,U) consisting of a set X and a uniform structure U on X. The <mark>weight</mark> of a uniform space is the weight of its uniform structu

э

9 / 58

伺 ト イヨト イヨト

B) $\bigcap \mathcal{U} = \Delta_X$ and $\forall U, V \in \mathcal{U} \exists W \in \mathcal{U} \ (W \circ W \subseteq U \cap V^{-1});$ M) $\forall U \in \mathcal{U} \ (\uparrow U \subseteq \mathcal{U}).$

A subfamily $\mathcal{B} \subseteq \mathcal{U}$ is called a base of the uniform structure \mathcal{U} if for every $U \in \mathcal{U}$ there exists $B \in \mathcal{B}$ such that $B \subseteq U$. Each base of a uniform structure has the property (B) and each family of entourages \mathcal{B} that has property (B) is a base of a unique uniform structure, namely, $\uparrow \mathcal{B} = \bigcup_{B \in \mathcal{B}} \uparrow B$.

The weight $w(\mathcal{U})$ of a uniform structure \mathcal{U} is the smallest cardinality $|\mathcal{B}|$ of a base $\mathcal{B} \subseteq \mathcal{U}$.

A *uniform space* is a pair (X, U) consisting of a set X and a uniform structure U on X.

The weight of a uniform space is the weight of its uniform structure.

э

9 / 58

伺 ト イヨト イヨト

B) $\bigcap \mathcal{U} = \Delta_X$ and $\forall U, V \in \mathcal{U} \exists W \in \mathcal{U} \ (W \circ W \subseteq U \cap V^{-1});$ M) $\forall U \in \mathcal{U} \ (\uparrow U \subseteq \mathcal{U}).$

A subfamily $\mathcal{B} \subseteq \mathcal{U}$ is called a base of the uniform structure \mathcal{U} if for every $U \in \mathcal{U}$ there exists $B \in \mathcal{B}$ such that $B \subseteq U$. Each base of a uniform structure has the property (B) and each family of entourages \mathcal{B} that has property (B) is a base of a unique uniform structure, namely, $\uparrow \mathcal{B} = \bigcup_{B \in \mathcal{B}} \uparrow B$.

The weight $w(\mathcal{U})$ of a uniform structure \mathcal{U} is the smallest cardinality $|\mathcal{B}|$ of a base $\mathcal{B} \subseteq \mathcal{U}$.

A *uniform space* is a pair (X, U) consisting of a set X and a uniform structure U on X.

The weight of a uniform space is the weight of its uniform structure.

→ < Ξ → <</p>

B) $\bigcap \mathcal{E} = \Delta_X$ and $\forall U, V \in \mathcal{E} \exists W \in \mathcal{E} \ (W \circ W \subseteq U \cap V^{-1});$ M) $\forall U \in \mathcal{E} \ (\uparrow U \subseteq \mathcal{E}).$

A coarse structure of a set X is a family of \mathcal{E} of entourages in X satisfying the following conditions: B) $\bigcup \mathcal{E} = X \times X$ and $\forall U, V \in \mathcal{E} \exists W \in \mathcal{E} \ (U \circ V^{-1} \subseteq W);$

 $\mathsf{M}) \ \forall U \in \mathcal{U} \quad (\downarrow U \subseteq \mathcal{E}).$

B) $\bigcap \mathcal{E} = \Delta_X$ and $\forall U, V \in \mathcal{E} \exists W \in \mathcal{E} \ (W \circ W \subseteq U \cap V^{-1});$ M) $\forall U \in \mathcal{E} \ (\uparrow U \subseteq \mathcal{E}).$

A *coarse structure* of a set X is a family of \mathcal{E} of entourages in X satisfying the following conditions:

B) $\bigcup \mathcal{E} = X \times X$ and $\forall U, V \in \mathcal{E} \exists W \in \mathcal{E} \ (U \circ V^{-1} \subseteq W);$ M) $\forall U \in \mathcal{U} \ (\downarrow U \subseteq \mathcal{E}).$
B)
$$\bigcup \mathcal{E} = X \times X$$
 and $\forall U, V \in \mathcal{E} \exists W \in \mathcal{E} \ (U \circ V^{-1} \subseteq W);$
M) $\forall U \in \mathcal{U} \ (\downarrow U \subseteq \mathcal{E}).$

A subfamily $\mathcal{B} \subseteq \mathcal{E}$ is called a base of the coarse structure \mathcal{E} if for every $E \in \mathcal{E}$ there exists $B \in \mathcal{B}$ such that $E \subseteq B$.

Each base of a coarse structure has the property (B) and each family of entourages \mathcal{B} that has property (B) is a base of a unique coarse structure, namely, $\downarrow \mathcal{B} = \bigcup_{B \in \mathcal{B}} \downarrow B$.

The weight $w(\mathcal{E})$ of a coarse structure \mathcal{E} is the smallest cardinality $|\mathcal{B}|$ of a base $\mathcal{B} \subseteq \mathcal{E}$.

A *coarse space* is a pair (X, \mathcal{E}) consisting of a set X and a coarse structure \mathcal{E} on X.

The weight of a coarse space is the weight of its coarse structure.

B)
$$\bigcup \mathcal{E} = X \times X$$
 and $\forall U, V \in \mathcal{E} \exists W \in \mathcal{E} \ (U \circ V^{-1} \subseteq W);$
M) $\forall U \in \mathcal{U} \ (\downarrow U \subseteq \mathcal{E}).$

A subfamily $\mathcal{B} \subseteq \mathcal{E}$ is called a base of the coarse structure \mathcal{E} if for every $E \in \mathcal{E}$ there exists $B \in \mathcal{B}$ such that $E \subseteq B$. Each base of a coarse structure has the property (B) and each family of entourages \mathcal{B} that has property (B) is a base of a unique coarse structure, namely, $\downarrow \mathcal{B} = \bigcup_{B \in \mathcal{B}} \downarrow B$.

The weight $w(\mathcal{E})$ of a coarse structure \mathcal{E} is the smallest cardinality $|\mathcal{B}|$ of a base $\mathcal{B} \subseteq \mathcal{E}$.

A *coarse space* is a pair (X, \mathcal{E}) consisting of a set X and a coarse structure \mathcal{E} on X.

The weight of a coarse space is the weight of its coarse structure.

.

B)
$$\bigcup \mathcal{E} = X \times X$$
 and $\forall U, V \in \mathcal{E} \exists W \in \mathcal{E} \ (U \circ V^{-1} \subseteq W);$
M) $\forall U \in \mathcal{U} \ (\downarrow U \subseteq \mathcal{E}).$

A subfamily $\mathcal{B} \subseteq \mathcal{E}$ is called a base of the coarse structure \mathcal{E} if for every $E \in \mathcal{E}$ there exists $B \in \mathcal{B}$ such that $E \subseteq B$. Each base of a coarse structure has the property (B) and each family of entourages \mathcal{B} that has property (B) is a base of a unique coarse structure, namely, $\downarrow \mathcal{B} = \bigcup_{B \in \mathcal{B}} \downarrow B$.

The weight $w(\mathcal{E})$ of a coarse structure \mathcal{E} is the smallest cardinality $|\mathcal{B}|$ of a base $\mathcal{B} \subseteq \mathcal{E}$.

A *coarse space* is a pair (X, \mathcal{E}) consisting of a set X and a coarse structure \mathcal{E} on X.

The weight of a coarse space is the weight of its coarse structure.

B)
$$\bigcup \mathcal{E} = X \times X$$
 and $\forall U, V \in \mathcal{E} \exists W \in \mathcal{E} \ (U \circ V^{-1} \subseteq W);$
M) $\forall U \in \mathcal{U} \ (\downarrow U \subseteq \mathcal{E}).$

A subfamily $\mathcal{B} \subseteq \mathcal{E}$ is called a base of the coarse structure \mathcal{E} if for every $E \in \mathcal{E}$ there exists $B \in \mathcal{B}$ such that $E \subseteq B$. Each base of a coarse structure has the property (B) and each family of entourages \mathcal{B} that has property (B) is a base of a unique coarse structure, namely, $\downarrow \mathcal{B} = \bigcup_{B \in \mathcal{B}} \downarrow B$.

The weight $w(\mathcal{E})$ of a coarse structure \mathcal{E} is the smallest cardinality $|\mathcal{B}|$ of a base $\mathcal{B} \subseteq \mathcal{E}$.

A *coarse space* is a pair (X, \mathcal{E}) consisting of a set X and a coarse structure \mathcal{E} on X.

The weight of a coarse space is the weight of its coarse structure.

B)
$$\bigcup \mathcal{E} = X \times X$$
 and $\forall U, V \in \mathcal{E} \exists W \in \mathcal{E} \ (U \circ V^{-1} \subseteq W);$
M) $\forall U \in \mathcal{U} \ (\downarrow U \subseteq \mathcal{E}).$

A subfamily $\mathcal{B} \subseteq \mathcal{E}$ is called a base of the coarse structure \mathcal{E} if for every $E \in \mathcal{E}$ there exists $B \in \mathcal{B}$ such that $E \subseteq B$. Each base of a coarse structure has the property (B) and each family of entourages \mathcal{B} that has property (B) is a base of a unique coarse structure, namely, $\downarrow \mathcal{B} = \bigcup_{B \in \mathcal{B}} \downarrow B$.

The weight $w(\mathcal{E})$ of a coarse structure \mathcal{E} is the smallest cardinality $|\mathcal{B}|$ of a base $\mathcal{B} \subseteq \mathcal{E}$.

A *coarse space* is a pair (X, \mathcal{E}) consisting of a set X and a coarse structure \mathcal{E} on X.

The weight of a coarse space is the weight of its coarse structure.

$$\mathcal{B} = \big\{ \{ (x, y) \in X \times X : d(x, y) < \varepsilon \} : \varepsilon \in \mathbb{R}_+ \big\}.$$

A uniform (coarse) structure on a set X is called metrizable if it coincides with the canonical uniform (coarse) structure of some metric d on X.

Theorem

(U) A uniform structure is metrizable iff it has countable weight.(C) A coarse structure is metrizable iff it has countable weight.

$$\mathcal{B} = \big\{\{(x,y) \in X \times X : d(x,y) < \varepsilon\} : \varepsilon \in \mathbb{R}_+\big\}.$$

A uniform (coarse) structure on a set X is called metrizable if it coincides with the canonical uniform (coarse) structure of some metric d on X.

Theorem

(U) A uniform structure is metrizable iff it has countable weight.(C) A coarse structure is metrizable iff it has countable weight.

$$\mathcal{B} = \big\{ \{ (x, y) \in X \times X : d(x, y) < \varepsilon \} : \varepsilon \in \mathbb{R}_+ \big\}.$$

A uniform (coarse) structure on a set X is called metrizable if it coincides with the canonical uniform (coarse) structure of some metric d on X.

Theorem

(U) A uniform structure is metrizable iff it has countable weight.

A coarse structure is metrizable iff it has countable weight.

$$\mathcal{B} = \big\{ \{ (x, y) \in X \times X : d(x, y) < \varepsilon \} : \varepsilon \in \mathbb{R}_+ \big\}.$$

A uniform (coarse) structure on a set X is called metrizable if it coincides with the canonical uniform (coarse) structure of some metric d on X.

Theorem

(U) A uniform structure is metrizable iff it has countable weight.(C) A coarse structure is metrizable iff it has countable weight.

Definition

A *duoform structure* of a set X is a family of \mathcal{E} of entourages in X satisfying the following conditions:

 $\mathsf{B}_u) \ \bigcap \mathcal{E} = \Delta_X \text{ and } \forall U, V \in \mathcal{E} \ \exists W \in \mathcal{E} \ (W \circ W \subseteq U \cap V^{-1});$

 $\mathsf{B}_c) \bigcup \mathcal{E} = X \times X \text{ and } \forall U, V \in \mathcal{E} \exists W \in \mathcal{E} (U \circ V^{-1} \subseteq W);$

 $\mathsf{M}) \ \forall U, V \in \mathcal{E} \ (\uparrow V \cap \downarrow U \subseteq \mathcal{E}).$

A duoform structure \mathcal{E} is called

- a uniform structure if $X \times X \in \mathcal{E}$;
- a coarse structure if $\Delta_X \in \mathcal{E}$.

伺下 イヨト イヨト

Definition

A *duoform structure* of a set X is a family of \mathcal{E} of entourages in X satisfying the following conditions:

 $\mathsf{B}_u) \ \bigcap \mathcal{E} = \Delta_X \text{ and } \forall U, V \in \mathcal{E} \ \exists W \in \mathcal{E} \ (W \circ W \subseteq U \cap V^{-1});$

 $\mathsf{B}_c) \ \bigcup \mathcal{E} = X imes X ext{ and } \forall U, V \in \mathcal{E} \ \exists W \in \mathcal{E} \ (U \circ V^{-1} \subseteq W);$

$$\mathsf{M}) \ \forall U, V \in \mathcal{E} \ (\uparrow V \cap \downarrow U \subseteq \mathcal{E}).$$

A duoform structure \mathcal{E} is called

- a uniform structure if $X \times X \in \mathcal{E}$;
- a coarse structure if $\Delta_X \in \mathcal{E}$.

Definition

A *duoform structure* of a set X is a family of \mathcal{E} of entourages in X satisfying the following conditions:

$$\mathsf{B}_u) \ \bigcap \mathcal{E} = \Delta_X \text{ and } \forall U, V \in \mathcal{E} \ \exists W \in \mathcal{E} \ (W \circ W \subseteq U \cap V^{-1});$$

$$\mathsf{B}_c) \ \bigcup \mathcal{E} = X \times X \text{ and } \forall U, V \in \mathcal{E} \ \exists W \in \mathcal{E} \ (U \circ V^{-1} \subseteq W);$$

$$\mathsf{M}) \ \forall U, V \in \mathcal{E} \ (\uparrow V \cap \downarrow U \subseteq \mathcal{E}).$$

A duoform structure \mathcal{E} is called

• a uniform structure if $X \times X \in \mathcal{E}$;

• a coarse structure if $\Delta_X \in \mathcal{E}$.

Definition

A *duoform structure* of a set X is a family of \mathcal{E} of entourages in X satisfying the following conditions:

$$\mathsf{B}_u) \ \bigcap \mathcal{E} = \Delta_X \text{ and } \forall U, V \in \mathcal{E} \ \exists W \in \mathcal{E} \ (W \circ W \subseteq U \cap V^{-1});$$

 $\mathsf{B}_c) \ \bigcup \mathcal{E} = X imes X \text{ and } \forall U, V \in \mathcal{E} \ \exists W \in \mathcal{E} \ (U \circ V^{-1} \subseteq W);$

$$\mathsf{M}) \ \forall U, V \in \mathcal{E} \ (\uparrow V \cap \downarrow U \subseteq \mathcal{E}).$$

A duoform structure ${\mathcal E}$ is called

- a uniform structure if $X \times X \in \mathcal{E}$;
- a coarse structure if $\Delta_X \in \mathcal{E}$.

$$\begin{split} & \mathsf{B}_{u}) \ \forall U, V \in \mathcal{E} \ \exists W \in \mathcal{E} \ (W \circ W \subseteq U \cap V^{-1}); \\ & \mathsf{B}_{c}) \ \forall U, V \in \mathcal{E} \ \exists W \in \mathcal{E} \ (U \circ V^{-1} \subseteq W); \\ & \mathsf{M}) \ \forall U, V \in \mathcal{E} \ (\uparrow V \cap \downarrow U \subseteq \mathcal{E}). \end{split}$$

A subfamily $\mathcal{B} \subseteq \mathcal{E}$ is called a **base** of the duoform structure \mathcal{E} if for every $E \in \mathcal{E}$ there exist sets $B, B' \in \mathcal{B}$ such that $B \subseteq E \subseteq B'$. Each base of a duoform structure has the properties (B_u) , (B_c) and each family of entourages \mathcal{B} that has properties (B_u) , (B_c) is a base of a unique duoform structure, namely,

$$\mathsf{D} = \bigcup_{B,B'\in\mathcal{E}} (\mathsf{D} \cap \mathsf{D}').$$

$$\begin{split} \mathsf{B}_u) \ \forall U, V \in \mathcal{E} \ \exists W \in \mathcal{E} \ (W \circ W \subseteq U \cap V^{-1}); \\ \mathsf{B}_c) \ \forall U, V \in \mathcal{E} \ \exists W \in \mathcal{E} \ (U \circ V^{-1} \subseteq W); \end{split}$$

$$\mathsf{M}) \ \forall U, V \in \mathcal{E} \ (\uparrow V \cap \downarrow U \subseteq \mathcal{E}).$$

A subfamily $\mathcal{B} \subseteq \mathcal{E}$ is called a base of the duoform structure \mathcal{E} if for every $E \in \mathcal{E}$ there exist sets $B, B' \in \mathcal{B}$ such that $B \subseteq E \subseteq B'$.

Each base of a duoform structure has the properties (B_u) , (B_c) and each family of entourages \mathcal{B} that has properties (B_u) , (B_c) is a base of a unique duoform structure, namely,

$$\mathsf{D} = \bigcup_{B,B' \in \mathcal{E}} (\mathsf{D} \cap \mathsf{D}').$$

$$\begin{array}{l} \mathsf{B}_{u}) \ \forall U, V \in \mathcal{E} \ \exists W \in \mathcal{E} \ (W \circ W \subseteq U \cap V^{-1}); \\ \mathsf{B}_{c}) \ \forall U, V \in \mathcal{E} \ \exists W \in \mathcal{E} \ (U \circ V^{-1} \subseteq W); \\ \mathsf{M}) \ \forall U, V \in \mathcal{E} \ (\uparrow V \cap \downarrow U \subseteq \mathcal{E}). \end{array}$$

A subfamily $\mathcal{B} \subseteq \mathcal{E}$ is called a base of the duoform structure \mathcal{E} if for every $E \in \mathcal{E}$ there exist sets $B, B' \in \mathcal{B}$ such that $B \subseteq E \subseteq B'$. Each base of a duoform structure has the properties (B_u) , (B_c) and each family of entourages \mathcal{B} that has properties (B_u) , (B_c) is a base of a unique duoform structure, namely,

$${}^{\natural}\mathcal{B} = \bigcup_{B,B'\in\mathcal{E}} (\uparrow B \cap \downarrow B').$$

$$\begin{split} & \mathsf{B}_{u}) \ \forall U, V \in \mathcal{E} \ \exists W \in \mathcal{E} \ (W \circ W \subseteq U \cap V^{-1}); \\ & \mathsf{B}_{c}) \ \forall U, V \in \mathcal{E} \ \exists W \in \mathcal{E} \ (U \circ V^{-1} \subseteq W); \\ & \mathsf{M} \) \ \forall U, V \in \mathcal{E} \ (\uparrow V \cap \downarrow U \subseteq \mathcal{E}). \end{split}$$

A subfamily $\mathcal{B} \subseteq \mathcal{E}$ is called a base of the duoform structure \mathcal{E} if for every $E \in \mathcal{E}$ there exist sets $B, B' \in \mathcal{B}$ such that $B \subseteq E \subseteq B'$. Each base of a duoform structure has the properties (B_u) , (B_c) and each family of entourages \mathcal{B} that has properties (B_u) , (B_c) is a base of a unique duoform structure, namely,

$$\label{eq:B} \textbf{$\widehat{}$} \mathcal{B} = \bigcup_{B,B' \in \mathcal{E}} (\textbf{$\widehat{}$} B \cap \textbf{$\widehat{}$} B').$$

$$\begin{split} & \mathsf{B}_{u}) \ \forall U, V \in \mathcal{E} \ \exists W \in \mathcal{E} \ (W \circ W \subseteq U \cap V^{-1}); \\ & \mathsf{B}_{c}) \ \forall U, V \in \mathcal{E} \ \exists W \in \mathcal{E} \ (U \circ V^{-1} \subseteq W); \\ & \mathsf{M} \) \ \forall U, V \in \mathcal{E} \ (\uparrow V \cap \downarrow U \subseteq \mathcal{E}). \end{split}$$

A subfamily $\mathcal{B} \subseteq \mathcal{E}$ is called a base of the duoform structure \mathcal{E} if for every $E \in \mathcal{E}$ there exist sets $B, B' \in \mathcal{B}$ such that $B \subseteq E \subseteq B'$. Each base of a duoform structure has the properties (B_u) , (B_c) and each family of entourages \mathcal{B} that has properties (B_u) , (B_c) is a base of a unique duoform structure, namely,

$$\mathsf{T} \mathcal{B} = \bigcup_{B,B' \in \mathcal{E}} (\mathsf{T} B \cap \mathsf{T} B').$$

Basic example

Every metric space (X, d) has the canonical duoform structure $\uparrow B$, generated by the base

$$\mathcal{B} = \big\{\{(x,y) \in X \times X : d(x,y) < \varepsilon\} : \varepsilon \in \mathbb{R}_+\big\}.$$

A duoform structure on a set X is called metrizable if it coincides with the canonical duoform structure of some metric d on X.

Theorem

(D) A duoform structure is metrizable iff it has a countable base.

Corollary

(U) A uniform structure is metrizable iff it has a countable base.

C) A coarse structure is metrizable iff it has a countable base.

Basic example

Every metric space (X, d) has the canonical duoform structure $\uparrow B$, generated by the base

$$\mathcal{B} = \big\{\{(x,y) \in X \times X : d(x,y) < \varepsilon\} : \varepsilon \in \mathbb{R}_+\big\}.$$

A duoform structure on a set X is called metrizable if it coincides with the canonical duoform structure of some metric d on X.

(D) A duoform structure is metrizable iff it has a countable base.

Corollary

(U) A uniform structure is metrizable iff it has a countable base.

C) A coarse structure is metrizable iff it has a countable base.

A (10) < A (10) </p>

Every metric space (X, d) has the canonical duoform structure $\ \ \mathcal{B}$, generated by the base

$$\mathcal{B} = \big\{\{(x,y) \in X \times X : d(x,y) < \varepsilon\} : \varepsilon \in \mathbb{R}_+\big\}.$$

A duoform structure on a set X is called metrizable if it coincides with the canonical duoform structure of some metric d on X.

Theorem

(D) A duoform structure is metrizable iff it has a countable base.

Corollary

(U) A uniform structure is metrizable iff it has a countable base.

C) A coarse structure is metrizable iff it has a countable base.

Every metric space (X, d) has the canonical duoform structure $\ \ \mathcal{B}$, generated by the base

$$\mathcal{B} = \big\{\{(x,y) \in X \times X : d(x,y) < \varepsilon\} : \varepsilon \in \mathbb{R}_+\big\}.$$

A duoform structure on a set X is called metrizable if it coincides with the canonical duoform structure of some metric d on X.

Theorem

(D) A duoform structure is metrizable iff it has a countable base.

Corollary

(U) A uniform structure is metrizable iff it has a countable base.

(C) A coarse structure is metrizable iff it has a countable base.

From now on we shall be interested only in coarse spaces

For a coarse structure \mathcal{E} on a set X and a subset $A \subseteq X$ the family

$$\mathcal{E}{\upharpoonright} A = \{E \cap (A \times A) : E \in \mathcal{E}\}$$

is a coarse structure on A.

The pair $(A, \mathcal{E} \upharpoonright A)$ is called a subspace of the coarse space (X, \mathcal{E}) .

For a coarse structure \mathcal{E} on a set X and a subset $A \subseteq X$ the family

$$\mathcal{E}\restriction A = \{E \cap (A \times A) : E \in \mathcal{E}\}$$

is a coarse structure on A. The pair $(A, \mathcal{E} \upharpoonright A)$ is called a subspace of the coarse space (X, \mathcal{E}) . Let \mathcal{E} be a coarse structure on a set X.

Definition

A subset $B \subseteq X$ is \mathcal{E} -bounded if B is contained in some ball, i.e., B is \mathcal{E} -bounded $\Leftrightarrow \exists E \in \mathcal{E} \ \exists x \in X \ (B \subseteq E(x))$. The family of all \mathcal{E} -bounded sets is called the bornology of the coarse space (X, \mathcal{E}) .

The bornology is closed under taking subsets and unions.

Let \mathcal{E} be a coarse structure on a set X.

Definition

A subset $B \subseteq X$ is \mathcal{E} -bounded if B is contained in some ball, i.e.,

B is \mathcal{E} -bounded $\Leftrightarrow \exists E \in \mathcal{E} \ \exists x \in X \ (B \subseteq E(x)).$

The family of all \mathcal{E} -bounded sets is called the bornology of the coarse space (X, \mathcal{E}) .

The bornology is closed under taking subsets and unions.

Definition

A coarse structure \mathcal{E} on a set X is called

- locally finite if for every $E \in \mathcal{E}$ and point $x \in X$ the *E*-ball E(x) is finite;
- finitary if for every $E \in \mathcal{E}$ the cardinal $\sup_{x \in X} |E(x)|$ is finite.

finitary \Rightarrow locally finite.

What about the converse?

Example

- The metric space of integers \mathbb{Z} is finitary.
- The space $\{\sqrt{n} : n \in \mathbb{N}\} \subset \mathbb{R}$ is locally finite but not finitary.

Remark: A coarse structure is locally finite if and only if its bornology consists of finite sets.

・ロト ・ 同ト ・ ヨト ・

Definition

A coarse structure \mathcal{E} on a set X is called

- locally finite if for every $E \in \mathcal{E}$ and point $x \in X$ the *E*-ball E(x) is finite;
- finitary if for every $E \in \mathcal{E}$ the cardinal $\sup_{x \in X} |E(x)|$ is finite.

finitary \Rightarrow locally finite.

What about the converse?

Example

- The metric space of integers \mathbb{Z} is finitary.
- The space $\{\sqrt{n} : n \in \mathbb{N}\} \subset \mathbb{R}$ is locally finite but not finitary.

Remark: A coarse structure is locally finite if and only if its bornology consists of finite sets.

イロト イボト イヨト イヨト

Definition

A coarse structure \mathcal{E} on a set X is called

- locally finite if for every $E \in \mathcal{E}$ and point $x \in X$ the *E*-ball E(x) is finite;
- finitary if for every $E \in \mathcal{E}$ the cardinal $\sup_{x \in X} |E(x)|$ is finite.

finitary \Rightarrow locally finite.

What about the converse?

Example

- The metric space of integers \mathbb{Z} is finitary.
- The space $\{\sqrt{n} : n \in \mathbb{N}\} \subset \mathbb{R}$ is locally finite but not finitary.

Remark: A coarse structure is locally finite if and only if its bornology consists of finite sets.

イロト イボト イヨト イヨト

Definition

A coarse structure \mathcal{E} on a set X is called

- locally finite if for every $E \in \mathcal{E}$ and point $x \in X$ the *E*-ball E(x) is finite;
- finitary if for every $E \in \mathcal{E}$ the cardinal $\sup_{x \in X} |E(x)|$ is finite.

finitary \Rightarrow locally finite.

What about the converse?

Example

- The metric space of integers \mathbb{Z} is finitary.
- The space $\{\sqrt{n} : n \in \mathbb{N}\} \subset \mathbb{R}$ is locally finite but not finitary.

Remark: A coarse structure is locally finite if and only if its bornology consists of finite sets.

・ロト ・ 同ト ・ ヨト ・ ヨト

Definition

A coarse structure \mathcal{E} on a set X is called

- locally finite if for every $E \in \mathcal{E}$ and point $x \in X$ the *E*-ball E(x) is finite;
- finitary if for every $E \in \mathcal{E}$ the cardinal $\sup_{x \in X} |E(x)|$ is finite.

finitary \Rightarrow locally finite.

What about the converse?

Example

- The metric space of integers $\ensuremath{\mathbb{Z}}$ is finitary.
- The space $\{\sqrt{n} : n \in \mathbb{N}\} \subset \mathbb{R}$ is locally finite but not finitary.

Remark: A coarse structure is locally finite if and only if its bornology consists of finite sets.

・ロト ・ 同ト ・ ヨト ・ ヨト

Definition

A coarse structure \mathcal{E} on a set X is called

- locally finite if for every $E \in \mathcal{E}$ and point $x \in X$ the *E*-ball E(x) is finite;
- finitary if for every $E \in \mathcal{E}$ the cardinal $\sup_{x \in X} |E(x)|$ is finite.

finitary \Rightarrow locally finite.

What about the converse?

Example

- $\bullet\,$ The metric space of integers $\mathbb Z$ is finitary.
- The space $\{\sqrt{n} : n \in \mathbb{N}\} \subset \mathbb{R}$ is locally finite but not finitary.

Remark: A coarse structure is locally finite if and only if its bornology consists of finite sets.

・ロト ・ 同ト ・ ヨト ・ ヨト

Definition

A coarse structure \mathcal{E} on a set X is called

- locally finite if for every $E \in \mathcal{E}$ and point $x \in X$ the *E*-ball E(x) is finite;
- finitary if for every $E \in \mathcal{E}$ the cardinal $\sup_{x \in X} |E(x)|$ is finite.

finitary \Rightarrow locally finite.

What about the converse?

Example

- $\bullet\,$ The metric space of integers $\mathbb Z$ is finitary.
- The space $\{\sqrt{n} : n \in \mathbb{N}\} \subset \mathbb{R}$ is locally finite but not finitary.

Remark: A coarse structure is locally finite if and only if its bornology consists of finite sets.

イロト イポト イラト イラト

Canonical example of a finitary space

Let X be a set and S_X be the permutation group of X.

Every subgroup $G \subseteq S_X$ induces the finitary coarse structure \mathcal{E}_G on X, generated by the base consisting of the entourages

 $E = \Delta_X \cup (B \times B) \cup \{ \langle x, y \rangle : x \in X, y \in Fx \}$

where *B* is a finite subset of *X* and *F* is a finite subsets of *G*. So, the *E*-ball of a point $x \in X \setminus B$ is the set $\{x\} \cup Fx$.

Example

For the group of integers \mathbb{Z} , the coarse structure $\mathcal{E}_{\mathbb{Z}}$ on \mathbb{Z} coincides with the coarse structure generated by the Euclidean metric.

Theorem (Protasov)

Every finitary coarse structure \mathcal{E} on a set X coincides with the finitary coarse structure \mathcal{E}_G generated by some subgroup $G \subseteq S_X$

Canonical example of a finitary space

Let X be a set and S_X be the permutation group of X. Every subgroup $G \subseteq S_X$ induces the finitary coarse structure \mathcal{E}_G on X, generated by the base consisting of the entourages

 $E = \Delta_X \cup (B \times B) \cup \{ \langle x, y \rangle : x \in X, y \in Fx \}$

where *B* is a finite subset of *X* and *F* is a finite subsets of *G*. So, the *E*-ball of a point $x \in X \setminus B$ is the set $\{x\} \cup Fx$.

Example

For the group of integers \mathbb{Z} , the coarse structure $\mathcal{E}_{\mathbb{Z}}$ on \mathbb{Z} coincides with the coarse structure generated by the Euclidean metric.

Theorem (Protasov)

Every finitary coarse structure \mathcal{E} on a set X coincides with the finitary coarse structure \mathcal{E}_G generated by some subgroup $G \subseteq S_X$
Canonical example of a finitary space

Let X be a set and S_X be the permutation group of X. Every subgroup $G \subseteq S_X$ induces the finitary coarse structure \mathcal{E}_G on X, generated by the base consisting of the entourages

 $E = \Delta_X \cup (B \times B) \cup \{ \langle x, y \rangle : x \in X, y \in Fx \}$

where B is a finite subset of X and F is a finite subsets of G. So, the E-ball of a point $x \in X \setminus B$ is the set $\{x\} \cup Fx$.

Example

For the group of integers \mathbb{Z} , the coarse structure $\mathcal{E}_{\mathbb{Z}}$ on \mathbb{Z} coincides with the coarse structure generated by the Euclidean metric.

Theorem (Protasov)

Every finitary coarse structure \mathcal{E} on a set X coincides with the finitary coarse structure \mathcal{E}_G generated by some subgroup $G \subseteq S_X$

Canonical example of a finitary space

Let X be a set and S_X be the permutation group of X. Every subgroup $G \subseteq S_X$ induces the finitary coarse structure \mathcal{E}_G on X, generated by the base consisting of the entourages

 $E = \Delta_X \cup (B \times B) \cup \{ \langle x, y \rangle : x \in X, y \in Fx \}$

where B is a finite subset of X and F is a finite subsets of G. So, the E-ball of a point $x \in X \setminus B$ is the set $\{x\} \cup Fx$.

Example

For the group of integers \mathbb{Z} , the coarse structure $\mathcal{E}_{\mathbb{Z}}$ on \mathbb{Z} coincides with the coarse structure generated by the Euclidean metric.

Theorem (Protasov)

Every finitary coarse structure \mathcal{E} on a set X coincides with the finitary coarse structure \mathcal{E}_G generated by some subgroup $G \subseteq S_X$.

Canonical example of a finitary space

Let X be a set and S_X be the permutation group of X. Every subgroup $G \subseteq S_X$ induces the finitary coarse structure \mathcal{E}_G on X, generated by the base consisting of the entourages

 $E = \Delta_X \cup (B \times B) \cup \{ \langle x, y \rangle : x \in X, y \in Fx \}$

where B is a finite subset of X and F is a finite subsets of G. So, the E-ball of a point $x \in X \setminus B$ is the set $\{x\} \cup Fx$.

Example

For the group of integers \mathbb{Z} , the coarse structure $\mathcal{E}_{\mathbb{Z}}$ on \mathbb{Z} coincides with the coarse structure generated by the Euclidean metric.

Theorem (Protasov)

Every finitary coarse structure \mathcal{E} on a set X coincides with the finitary coarse structure \mathcal{E}_G generated by some subgroup $G \subseteq S_X$.

イロト イヨト イヨト

Theorem (Protasov)

Every finitary coarse structure \mathcal{E} on a set X coincides with the finitary coarse structure \mathcal{E}_G generated by some subgroup $G \subseteq S_X$.

The largest finitary coarse structure on a set X is generated by the whole permutation group S_X . This coarse structure consists of all possible entourages E on X which are finitary in the sense that the cardinal

$$\sup_{x \in X} |E(x) \cup E^{-1}(x)| \quad \text{is finite.}$$

The smallest finitary coarse structure $\mathcal{E}_{\{id\}}$ on a set X is generated by the trivial subgroup $\{id\} \subset S_X$. This coarse structure $\mathcal{E}_{\{id\}}$ is generated by the base consisting of the entourages $(B \times B) \cup \Delta_X$ where B is a finite subset of X. The smallest coarse structure on X can be characterized as the unique discrete locally finite coarse structure on X.

21/58

Theorem (Protasov)

Every finitary coarse structure \mathcal{E} on a set X coincides with the finitary coarse structure \mathcal{E}_G generated by some subgroup $G \subseteq S_X$.

The largest finitary coarse structure on a set X is generated by the whole permutation group S_X . This coarse structure consists of all possible entourages E on X which are finitary in the sense that the cardinal

$$\sup_{x \in X} |E(x) \cup E^{-1}(x)| \quad \text{is finite.}$$

The smallest finitary coarse structure $\mathcal{E}_{\{id\}}$ on a set X is generated by the trivial subgroup $\{id\} \subset S_X$. This coarse structure $\mathcal{E}_{\{id\}}$ is generated by the base consisting of the entourages $(B \times B) \cup \Delta_X$ where B is a finite subset of X.

The smallest coarse structure on X can be characterized as the unique discrete locally finite coarse structure on X.

21/58

Theorem (Protasov)

Every finitary coarse structure \mathcal{E} on a set X coincides with the finitary coarse structure \mathcal{E}_G generated by some subgroup $G \subseteq S_X$.

The largest finitary coarse structure on a set X is generated by the whole permutation group S_X . This coarse structure consists of all possible entourages E on X which are finitary in the sense that the cardinal

$$\sup_{x \in X} |E(x) \cup E^{-1}(x)| \quad \text{is finite.}$$

The smallest finitary coarse structure $\mathcal{E}_{\{id\}}$ on a set X is generated by the trivial subgroup $\{id\} \subset S_X$. This coarse structure $\mathcal{E}_{\{id\}}$ is generated by the base consisting of the entourages $(B \times B) \cup \Delta_X$ where B is a finite subset of X. The smallest coarse structure on X can be characterized as the

The smallest coarse structure on X can be characterized as the unique discrete locally finite coarse structure on X.

A coarse structure \mathcal{E} on a set X is called *discrete* if for every entourage $E \in \mathcal{E}$ there exists an \mathcal{E} -bounded subset $B \subseteq X$ such that for every $x \in X \setminus B$ the E-ball E(x) coincides with the singleton $\{x\}$.

Example: The subspace $\{n^2 : n \in \omega\}$ of \mathbb{Z} is discrete.

Proposition

For a locally finite coarse structure \mathcal{E} on a set X the following conditions are equivalent:

- *E* is discrete;
- $\exists \forall E \in \mathcal{E} (|\{x \in X : |E(x)| \neq \{x\}\}| < \omega);$

Remark: Countable discrete sets are antipods of Cauchy sequences.

22 / 58

A coarse structure \mathcal{E} on a set X is called *discrete* if for every entourage $E \in \mathcal{E}$ there exists an \mathcal{E} -bounded subset $B \subseteq X$ such that for every $x \in X \setminus B$ the E-ball E(x) coincides with the singleton $\{x\}$.

Example: The subspace $\{n^2 : n \in \omega\}$ of \mathbb{Z} is discrete.

Proposition

For a locally finite coarse structure \mathcal{E} on a set X the following conditions are equivalent:

- *E* is discrete;
- $\exists \forall E \in \mathcal{E} (|\{x \in X : |E(x)| \neq \{x\}\}| < \omega);$

Remark: Countable discrete sets are antipods of Cauchy sequences.

A coarse structure \mathcal{E} on a set X is called *discrete* if for every entourage $E \in \mathcal{E}$ there exists an \mathcal{E} -bounded subset $B \subseteq X$ such that for every $x \in X \setminus B$ the E-ball E(x) coincides with the singleton $\{x\}$.

Example: The subspace $\{n^2 : n \in \omega\}$ of \mathbb{Z} is discrete.

Proposition

For a locally finite coarse structure \mathcal{E} on a set X the following conditions are equivalent:

E is discrete;

$$2 \forall E \in \mathcal{E} (|\{x \in X : |E(x)| \neq \{x\}\}| < \omega);$$

Remark: Countable discrete sets are antipods of Cauchy sequences.

22 / 58

A coarse structure \mathcal{E} on a set X is called *discrete* if for every entourage $E \in \mathcal{E}$ there exists an \mathcal{E} -bounded subset $B \subseteq X$ such that for every $x \in X \setminus B$ the E-ball E(x) coincides with the singleton $\{x\}$.

Example: The subspace $\{n^2 : n \in \omega\}$ of \mathbb{Z} is discrete.

Proposition

For a locally finite coarse structure \mathcal{E} on a set X the following conditions are equivalent:

E is discrete;

$$2 \forall E \in \mathcal{E} (|\{x \in X : |E(x)| \neq \{x\}\}| < \omega);$$

Remark: Countable discrete sets are antipods of Cauchy sequences.

Now let us look at the largest finitary coarse structure \mathcal{E}_{S_X} on X. Is it discrete?No! And in a very strong sense:

The coarse space (X, \mathcal{E}_{S_X}) contains no infinite discrete subspaces So \mathcal{E}_{S_X} resembles $\beta \mathbb{N}$ which contains no convergent sequences

Definition

A coarse structure \mathcal{E} on a set X is called indiscrete if for any infinite subset $A \subseteq X$ the coarse structure $\mathcal{E} \upharpoonright A$ is not discrete.

So, the largest finitary coarse structure \mathcal{E}_{S_X} is indiscrete. **Remark:** Indiscrete coarse spaces are coarse counterparts of topological spaces containing no non-trivial convergent sequences. Now let us look at the largest finitary coarse structure \mathcal{E}_{S_X} on X. Is it discrete?No! And in a very strong sense:

The coarse space (X, \mathcal{E}_{S_X}) contains no infinite discrete subspaces

So, \mathcal{E}_{S_X} resembles $\beta \mathbb{N}$ which contains no convergent sequences.

Definition

A coarse structure \mathcal{E} on a set X is called indiscrete if for any infinite subset $A \subseteq X$ the coarse structure $\mathcal{E} \upharpoonright A$ is not discrete.

So, the largest finitary coarse structure \mathcal{E}_{S_X} is indiscrete. **Remark:** Indiscrete coarse spaces are coarse counterparts of topological spaces containing no non-trivial convergent sequences. Now let us look at the largest finitary coarse structure \mathcal{E}_{S_X} on X. Is it discrete?No! And in a very strong sense: The coarse space (X, \mathcal{E}_{S_X}) contains no infinite discrete subspaces So, \mathcal{E}_{S_X} resembles $\beta \mathbb{N}$ which contains no convergent sequences.

Definition

A coarse structure \mathcal{E} on a set X is called indiscrete if for any infinite subset $A \subseteq X$ the coarse structure $\mathcal{E} \upharpoonright A$ is not discrete.

So, the largest finitary coarse structure \mathcal{E}_{S_X} is indiscrete. **Remark:** Indiscrete coarse spaces are coarse counterparts of topological spaces containing no non-trivial convergent sequences. Now let us look at the largest finitary coarse structure \mathcal{E}_{S_X} on X. Is it discrete?No! And in a very strong sense:

The coarse space (X, \mathcal{E}_{S_X}) contains no infinite discrete subspaces

So, \mathcal{E}_{S_X} resembles $\beta \mathbb{N}$ which contains no convergent sequences.

Definition

A coarse structure \mathcal{E} on a set X is called indiscrete if for any infinite subset $A \subseteq X$ the coarse structure $\mathcal{E} \upharpoonright A$ is not discrete.

So, the largest finitary coarse structure \mathcal{E}_{S_X} is indiscrete.

Remark: Indiscrete coarse spaces are coarse counterparts of topological spaces containing no non-trivial convergent sequences.

Now let us look at the largest finitary coarse structure \mathcal{E}_{S_X} on X. Is it discrete?No! And in a very strong sense:

The coarse space (X, \mathcal{E}_{S_X}) contains no infinite discrete subspaces

So, \mathcal{E}_{S_X} resembles $\beta \mathbb{N}$ which contains no convergent sequences.

Definition

A coarse structure \mathcal{E} on a set X is called indiscrete if for any infinite subset $A \subseteq X$ the coarse structure $\mathcal{E} \upharpoonright A$ is not discrete.

So, the largest finitary coarse structure \mathcal{E}_{S_X} is indiscrete.

Remark: Indiscrete coarse spaces are coarse counterparts of topological spaces containing no non-trivial convergent sequences.

What is the smallest possible weight of an indiscrete finitary coarse structure on ω ?

As we shall see, this is a cardinal in the interval $[\omega_1, c]$, so is a typical cardinal characteristic of the continuum. Let us denote this cardinal by Δ . More precisely:

Definition

Let Δ denote the smallest weight $w(\mathcal{E})$ of an indiscrete finitary coarse structure on ω .

Problem

What is the value of Δ ? Is Δ equal to some known cardinal characteristic of the continuum?

What is the smallest possible weight of an indiscrete finitary coarse structure on ω ? As we shall see, this is a cardinal in the interval $[\omega_1, \mathfrak{c}]$, so is a typical cardinal characteristic of the continuum. Let us denote this cardinal by Δ . More precisely:

Definition

Let Δ denote the smallest weight $w(\mathcal{E})$ of an indiscrete finitary coarse structure on ω .

Problem

What is the value of Δ ? Is Δ equal to some known cardinal characteristic of the continuum?

伺 ト イヨト イヨト

What is the smallest possible weight of an indiscrete finitary coarse structure on ω ? As we shall see, this is a cardinal in the interval $[\omega_1, \mathfrak{c}]$, so is a typical cardinal characteristic of the continuum. Let us denote this cardinal by Δ . More precisely:

Definition

Let Δ denote the smallest weight $w(\mathcal{E})$ of an indiscrete finitary coarse structure on ω .

Problem

What is the value of Δ ? Is Δ equal to some known cardinal characteristic of the continuum?

What is the smallest possible weight of an indiscrete finitary coarse structure on ω ? As we shall see, this is a cardinal in the interval $[\omega_1, \mathfrak{c}]$, so is a typical cardinal characteristic of the continuum. Let us denote this cardinal by Δ . More precisely:

Definition

Let Δ denote the smallest weight $w(\mathcal{E})$ of an indiscrete finitary coarse structure on ω .

Problem

What is the value of Δ ? Is Δ equal to some known cardinal characteristic of the continuum?

Let \mathcal{E} be a coarse structure on a set X. Two sets $A, B \subseteq X$ are called asymptotically separated if for any $E \in \mathcal{E}$ the set $E[A] \cap E[B]$ is \mathcal{E} -bounded.

Remark: If a coarse structure \mathcal{E} on a set X is discrete, then any disjoint subsets $A, B \subseteq X$ are asymptotically separated.

Observation: For the largest finitary coarse structure \mathcal{E}_{S_X} on a set X, no infinite sets $A, B \subset X$ are \mathcal{E}_{S_X} -separated.

Definition

A coarse structure \mathcal{E} on a set X is called inseparated if for any \mathcal{E} -separated sets $A, B \subseteq X$ one of the sets A or B is \mathcal{E} -bounded.

Let \mathcal{E} be a coarse structure on a set X. Two sets $A, B \subseteq X$ are called asymptotically separated if for any $E \in \mathcal{E}$ the set $E[A] \cap E[B]$ is \mathcal{E} -bounded.

Remark: If a coarse structure \mathcal{E} on a set X is discrete, then any disjoint subsets $A, B \subseteq X$ are asymptotically separated.

Observation: For the largest finitary coarse structure \mathcal{E}_{S_X} on a set X, no infinite sets $A, B \subset X$ are \mathcal{E}_{S_X} -separated.

Definition

A coarse structure \mathcal{E} on a set X is called inseparated if for any \mathcal{E} -separated sets $A, B \subseteq X$ one of the sets A or B is \mathcal{E} -bounded.

Let \mathcal{E} be a coarse structure on a set X. Two sets $A, B \subseteq X$ are called asymptotically separated if for any $E \in \mathcal{E}$ the set $E[A] \cap E[B]$ is \mathcal{E} -bounded.

Remark: If a coarse structure \mathcal{E} on a set X is discrete, then any disjoint subsets $A, B \subseteq X$ are asymptotically separated.

Observation: For the largest finitary coarse structure \mathcal{E}_{S_X} on a set X, no infinite sets $A, B \subset X$ are \mathcal{E}_{S_X} -separated.

Definition

A coarse structure \mathcal{E} on a set X is called inseparated if for any \mathcal{E} -separated sets $A, B \subseteq X$ one of the sets A or B is \mathcal{E} -bounded.

Let \mathcal{E} be a coarse structure on a set X. Two sets $A, B \subseteq X$ are called asymptotically separated if for any $E \in \mathcal{E}$ the set $E[A] \cap E[B]$ is \mathcal{E} -bounded.

Remark: If a coarse structure \mathcal{E} on a set X is discrete, then any disjoint subsets $A, B \subseteq X$ are asymptotically separated.

Observation: For the largest finitary coarse structure \mathcal{E}_{S_X} on a set X, no infinite sets $A, B \subset X$ are \mathcal{E}_{S_X} -separated.

Definition

A coarse structure \mathcal{E} on a set X is called inseparated if for any \mathcal{E} -separated sets $A, B \subseteq X$ one of the sets A or B is \mathcal{E} -bounded.

An example of asymptotically separated sets

26 / 58

Since the largest finitary coarse structure \mathcal{E}_{S_X} is inseparated, we can ask about the smallest weight of an inseparated finitary coarse structure on ω .

Definition

Let Σ denote the smallest weight of an inseparated finitary coarse structure on $\omega.$

Problem

What is the value of Σ ? Is Σ equal to some known cardinal characteristic of the continuum?

Since any disjoint sets in a discrete locally finite coarse space are asymptotically separated, each inseparated locally finite coarse space is indiscrete. This implies the inequality

$$\Delta \leq \Sigma$$
.

Since the largest finitary coarse structure \mathcal{E}_{S_X} is inseparated, we can ask about the smallest weight of an inseparated finitary coarse structure on ω .

Definition

Let Σ denote the smallest weight of an inseparated finitary coarse structure on $\omega.$

Problem

What is the value of Σ ? Is Σ equal to some known cardinal characteristic of the continuum?

Since any disjoint sets in a discrete locally finite coarse space are asymptotically separated, each inseparated locally finite coarse space is indiscrete. This implies the inequality

$$\Delta \leq \Sigma.$$

Since the largest finitary coarse structure \mathcal{E}_{S_X} is inseparated, we can ask about the smallest weight of an inseparated finitary coarse structure on ω .

Definition

Let Σ denote the smallest weight of an inseparated finitary coarse structure on $\omega.$

Problem

What is the value of Σ ? Is Σ equal to some known cardinal characteristic of the continuum?

Since any disjoint sets in a discrete locally finite coarse space are asymptotically separated, each inseparated locally finite coarse space is indiscrete. This implies the inequality

$$\Delta \leq \Sigma$$
.

伺下 イヨト イヨト

Since the largest finitary coarse structure \mathcal{E}_{S_X} is inseparated, we can ask about the smallest weight of an inseparated finitary coarse structure on ω .

Definition

Let Σ denote the smallest weight of an inseparated finitary coarse structure on $\omega.$

Problem

What is the value of Σ ? Is Σ equal to some known cardinal characteristic of the continuum?

Since any disjoint sets in a discrete locally finite coarse space are asymptotically separated, each inseparated locally finite coarse space is indiscrete. This implies the inequality

$$\Delta \leq \Sigma.$$

Definition

A coarse structure \mathcal{E} on a set X is *large* if each \mathcal{E} -unbounded set $A \subseteq X$ is \mathcal{E} -*large* in the sense that E[A] = X for some $E \in \mathcal{E}$.

Observation: The coarse structure \mathcal{E}_{S_X} is large if and only if the set X is countable. In particular, \mathcal{E}_{S_ω} is large.

Problem

Find the smallest weight of a large finitary coarse structure on ω .

Fortunately, here we know the answer.

Definition

A coarse structure \mathcal{E} on a set X is *large* if each \mathcal{E} -unbounded set $A \subseteq X$ is \mathcal{E} -*large* in the sense that E[A] = X for some $E \in \mathcal{E}$.

Observation: The coarse structure \mathcal{E}_{S_X} is large if and only if the set X is countable. In particular, \mathcal{E}_{S_ω} is large.

Problem

Find the smallest weight of a large finitary coarse structure on ω .

Fortunately, here we know the answer.

Definition

A coarse structure \mathcal{E} on a set X is *large* if each \mathcal{E} -unbounded set $A \subseteq X$ is \mathcal{E} -*large* in the sense that E[A] = X for some $E \in \mathcal{E}$.

Observation: The coarse structure \mathcal{E}_{S_X} is large if and only if the set X is countable. In particular, \mathcal{E}_{S_ω} is large.

Problem

Find the smallest weight of a large finitary coarse structure on ω .

Fortunately, here we know the answer.

伺 ト イヨト イヨト

Definition

A coarse structure \mathcal{E} on a set X is *large* if each \mathcal{E} -unbounded set $A \subseteq X$ is \mathcal{E} -*large* in the sense that E[A] = X for some $E \in \mathcal{E}$.

Observation: The coarse structure \mathcal{E}_{S_X} is large if and only if the set X is countable. In particular, \mathcal{E}_{S_ω} is large.

Problem

Find the smallest weight of a large finitary coarse structure on ω .

Fortunately, here we know the answer.

The smallest weight of

- **1** a large finitary coarse structure on ω is equal to \mathfrak{c} ;
- ② an inseparated finitary coarse structure on ω is equal to Σ ;
- (a) an indiscrete finitary coarse structure on ω is equal to Δ .
- (a) a large locally finite coarse structure on ω is equal to \mathfrak{d} ;
- (a) an inseparated locally finite coarse structure on ω equals b;
- **(**) an indiscrete locally finite coarse structure on ω is equal to \mathfrak{b} .

The smallest weight of

- **1** a large finitary coarse structure on ω is equal to \mathfrak{c} ;
- **2** an inseparated finitary coarse structure on ω is equal to Σ ;
- (a) an indiscrete finitary coarse structure on ω is equal to Δ .
- (1) a large locally finite coarse structure on ω is equal to \mathfrak{d} ;
- (a) an inseparated locally finite coarse structure on ω equals \mathfrak{b} ;
- **(**) an indiscrete locally finite coarse structure on ω is equal to \mathfrak{b} .

The smallest weight of

- **1** a large finitary coarse structure on ω is equal to \mathfrak{c} ;
- **2** an inseparated finitary coarse structure on ω is equal to Σ ;
- **(3)** an *indiscrete* finitary coarse structure on ω is equal to Δ .
- (a) a large locally finite coarse structure on ω is equal to \mathfrak{d} ;
- (a) an inseparated locally finite coarse structure on ω equals \mathfrak{b} ;
- **()** an indiscrete locally finite coarse structure on ω is equal to \mathfrak{b} .

The smallest weight of

- **1** a large finitary coarse structure on ω is equal to \mathfrak{c} ;
- **2** an inseparated finitary coarse structure on ω is equal to Σ ;
- **(3)** an *indiscrete* finitary coarse structure on ω is equal to Δ .
- **9** a large locally finite coarse structure on ω is equal to $\mathbf{0}$;
-) an inseparated locally finite coarse structure on ω equals \mathfrak{b} ;
- **(**) an indiscrete locally finite coarse structure on ω is equal to \mathfrak{b} .
The smallest weight of

- **1** a large finitary coarse structure on ω is equal to \mathfrak{c} ;
- **2** an inseparated finitary coarse structure on ω is equal to Σ ;
- **(3)** an *indiscrete* finitary coarse structure on ω is equal to Δ .
- **4** a large locally finite coarse structure on ω is equal to \mathfrak{d} ;
- **(5)** an inseparated locally finite coarse structure on ω equals **b**;
-) an indiscrete locally finite coarse structure on ω is equal to \mathfrak{b} .

All cardinals in this theorem except for Δ and Σ are well-known.

The smallest weight of

- **1** a large finitary coarse structure on ω is equal to \mathfrak{c} ;
- **2** an inseparated finitary coarse structure on ω is equal to Σ ;
- **(3)** an *indiscrete* finitary coarse structure on ω is equal to Δ .
- **4** a large locally finite coarse structure on ω is equal to \mathfrak{d} ;
- **(5)** an inseparated locally finite coarse structure on ω equals **b**;
- **(**) an indiscrete locally finite coarse structure on ω is equal to **b**.

All cardinals in this theorem except for Δ and Σ are well-known.

The smallest weight of

- **1** a large finitary coarse structure on ω is equal to c;
- **2** an inseparated finitary coarse structure on ω is equal to Σ ;
- **(3)** an *indiscrete* finitary coarse structure on ω is equal to Δ .
- **9** a large locally finite coarse structure on ω is equal to \mathfrak{d} ;
- **(5)** an inseparated locally finite coarse structure on ω equals **b**;
- **(**) an indiscrete locally finite coarse structure on ω is equal to **b**.

All cardinals in this theorem except for Δ and Σ are well-known.

Proposition

The cardinal Δ is equal to the smallest cardinality of a subgroup G ⊆ S_ω such that for any infinite set A ⊆ ω there exists g ∈ G such that the set {a ∈ A : a ≠ g(a) ∈ A} is infinite.

The cardinal Σ is equal to the smallest cardinality of a subgroup G ⊆ S_ω such that for any infinite sets A, B ⊆ ω there exists g ∈ G such that the set A ∩ g[B] is infinite.

In fact the subgroup G in this proposition can be replaced by a set consisting of involutions.

▲ □ ▶ ▲ □ ▶ ▲

Proposition

- The cardinal Δ is equal to the smallest cardinality of a subgroup G ⊆ S_ω such that for any infinite set A ⊆ ω there exists g ∈ G such that the set {a ∈ A : a ≠ g(a) ∈ A} is infinite.
- The cardinal Σ is equal to the smallest cardinality of a subgroup G ⊆ S_ω such that for any infinite sets A, B ⊆ ω there exists g ∈ G such that the set A ∩ g[B] is infinite.

In fact the subgroup G in this proposition can be replaced by a set consisting of involutions.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Proposition

- The cardinal Δ is equal to the smallest cardinality of a subgroup G ⊆ S_ω such that for any infinite set A ⊆ ω there exists g ∈ G such that the set {a ∈ A : a ≠ g(a) ∈ A} is infinite.
- The cardinal Σ is equal to the smallest cardinality of a subgroup G ⊆ S_ω such that for any infinite sets A, B ⊆ ω there exists g ∈ G such that the set A ∩ g[B] is infinite.

In fact the subgroup G in this proposition can be replaced by a set consisting of involutions.

A permutation $f \in S_X$ is called *an involution* if $f \circ f = id$. By I_{ω} we denote the subset of the permutation group S_{ω} , consisting of all involutions of ω .

Proposition

- The cardinal Δ is equal to the smallest cardinality of a set I ⊆ I_ω such that for any infinite set A ⊆ ω there exists an involution g ∈ I such that the set {a ∈ A : a ≠ g(a) ∈ A} is infinite.
- The cardinal ∑ is equal to the smallest cardinality of a subset I ⊆ I_ω such that for any infinite sets A, B ⊆ ω there exists an involution g ∈ G such that the set A ∩ g[B] is infinite.

A permutation $f \in S_X$ is called *an involution* if $f \circ f = id$. By I_{ω} we denote the subset of the permutation group S_{ω} , consisting of all involutions of ω .

Proposition

 The cardinal Δ is equal to the smallest cardinality of a set I ⊆ I_ω such that for any infinite set A ⊆ ω there exists an involution g ∈ I such that the set {a ∈ A : a ≠ g(a) ∈ A} is infinite.

The cardinal Σ is equal to the smallest cardinality of a subset I ⊆ I_ω such that for any infinite sets A, B ⊆ ω there exists an involution g ∈ G such that the set A ∩ g[B] is infinite. A permutation $f \in S_X$ is called *an involution* if $f \circ f = id$. By I_{ω} we denote the subset of the permutation group S_{ω} , consisting of all involutions of ω .

Proposition

- The cardinal Δ is equal to the smallest cardinality of a set I ⊆ I_ω such that for any infinite set A ⊆ ω there exists an involution g ∈ I such that the set {a ∈ A : a ≠ g(a) ∈ A} is infinite.
- The cardinal ∑ is equal to the smallest cardinality of a subset I ⊆ I_ω such that for any infinite sets A, B ⊆ ω there exists an involution g ∈ G such that the set A ∩ g[B] is infinite.

A function $\varphi: \omega \to \omega$ is called 2-to-1 if $\forall y \in Y (|\varphi^{-1}(y)| \leq 2)$.

A function $f : X \to Y$ is called *almost injective* if for some finite set $F \subseteq X$ the restriction $f \upharpoonright X \setminus F$ is injective.

Proposition

- The cardinal Δ is equal to the smallest cardinality of a subset $F \subseteq \omega^{\omega}$ such that for any infinite set $A \subseteq \omega$ there exists a 2-to-1-function $f \in F$ such that $f \upharpoonright A$ is not almost injective.
- ◎ The cardinal Σ is equal to the smallest cardinality of a subset $F \subseteq \omega^{\omega}$ such that for any infinite sets $A, B \subseteq \omega$ there exists a 2-to-1-function $f \in F$ such that $f[A] \cap f[B]$ is infinite

A function $\varphi : \omega \to \omega$ is called 2-to-1 if $\forall y \in Y (|\varphi^{-1}(y)| \le 2)$. A function $f : X \to Y$ is called *almost injective* if for some finite set $F \subseteq X$ the restriction $f \upharpoonright X \setminus F$ is injective.

Proposition

- **1** The cardinal Δ is equal to the smallest cardinality of a subset $F \subseteq \omega^{\omega}$ such that for any infinite set $A \subseteq \omega$ there exists a 2-to-1-function $f \in F$ such that $f \upharpoonright A$ is not almost injective.
- The cardinal ∑ is equal to the smallest cardinality of a subset F ⊆ ω^ω such that for any infinite sets A, B ⊆ ω there exists a 2-to-1-function f ∈ F such that f[A] ∩ f[B] is infinite

A function $\varphi : \omega \to \omega$ is called 2-to-1 if $\forall y \in Y (|\varphi^{-1}(y)| \le 2)$. A function $f : X \to Y$ is called *almost injective* if for some finite set $F \subseteq X$ the restriction $f \upharpoonright X \setminus F$ is injective.

Proposition

 The cardinal Δ is equal to the smallest cardinality of a subset *F* ⊆ ω^ω such that for any infinite set *A* ⊆ ω there exists a 2-to-1-function *f* ∈ *F* such that *f*↾*A* is not almost injective.

The cardinal Σ is equal to the smallest cardinality of a subset F ⊆ ω^ω such that for any infinite sets A, B ⊆ ω there exists a 2-to-1-function f ∈ F such that f[A] ∩ f[B] is infinite

A function $\varphi : \omega \to \omega$ is called 2-to-1 if $\forall y \in Y (|\varphi^{-1}(y)| \le 2)$. A function $f : X \to Y$ is called *almost injective* if for some finite set $F \subseteq X$ the restriction $f \upharpoonright X \setminus F$ is injective.

Proposition

- The cardinal Δ is equal to the smallest cardinality of a subset *F* ⊆ ω^ω such that for any infinite set *A* ⊆ ω there exists a 2-to-1-function *f* ∈ *F* such that *f*↾*A* is not almost injective.
- The cardinal Σ is equal to the smallest cardinality of a subset F ⊆ ω^ω such that for any infinite sets A, B ⊆ ω there exists a 2-to-1-function f ∈ F such that f[A] ∩ f[B] is infinite

A function $\varphi : \omega \to \omega$ is called 2-to-1 if $\forall y \in Y (|\varphi^{-1}(y)| \le 2)$. A function $f : X \to Y$ is called *almost injective* if for some finite set $F \subseteq X$ the restriction $f \upharpoonright X \setminus F$ is injective.

Proposition

- The cardinal Δ is equal to the smallest cardinality of a subset *F* ⊆ ω^ω such that for any infinite set *A* ⊆ ω there exists a 2-to-1-function *f* ∈ *F* such that *f*↑*A* is not almost injective.
- The cardinal Σ is equal to the smallest cardinality of a subset F ⊆ ω^ω such that for any infinite sets A, B ⊆ ω there exists a 2-to-1-function f ∈ F such that f[A] ∩ f[B] is infinite

For a set X, let $[X]^{<\omega}$ be the family of all finite subsets of X, and $[X]^{\omega}$ be the family of all countably infinite subsets of X.

For two sets A, B, we write $A \subseteq^* B$ if $A \setminus B$ is finite.

For two functions $f, g : \omega \to \omega$ we write $f \leq g$ if $f(n) \leq g(n)$ for all $n \in \omega$, and $f \leq^* g$ if the set $\{n \in \omega : f(n) \leq g(n)\}$ is finite. Let us recall that

- $\mathfrak{b} = \min\{|B| : B \subseteq \omega^{\omega} \ \forall f \in \omega^{\omega} \ \exists g \in B \ g \not\leq^* f\};$
- $\mathfrak{d} = \min\{|D| : D \subseteq \omega^{\omega} \; \forall f \in \omega^{\omega} \; \exists g \in B \; f \leq g\};$

 $\mathfrak{s} = \min\{|S| : S \subseteq [\omega]^{\omega}, \ \forall a \in [\omega]^{\omega} \exists s \in S \ |a \cap s| = \omega = |a \setminus s|\};$

 $t = \min\{|T| : T \subseteq [\omega]^{\omega} \text{ and } (\forall s, t \in T \ s \subseteq^* t \text{ or } t \subseteq^* s) \\ \text{and } (\forall s \in [\omega]^{\omega} \exists t \in T \ s \not\subset^* t) \}.$

For a set X, let $[X]^{<\omega}$ be the family of all finite subsets of X, and $[X]^{\omega}$ be the family of all countably infinite subsets of X.

For two sets A, B, we write $A \subseteq^* B$ if $A \setminus B$ is finite.

For two functions $f, g : \omega \to \omega$ we write $f \leq g$ if $f(n) \leq g(n)$ for all $n \in \omega$, and $f \leq^* g$ if the set $\{n \in \omega : f(n) \leq g(n)\}$ is finite. Let us recall that

- $\mathfrak{b} = \min\{|B| : B \subseteq \omega^{\omega} \ \forall f \in \omega^{\omega} \ \exists g \in B \ g \not\leq^* f\};$
- $\mathfrak{d} = \min\{|D| : D \subseteq \omega^{\omega} \; \forall f \in \omega^{\omega} \; \exists g \in B \; f \leq g\};$

 $\mathfrak{s} = \min\{|S| : S \subseteq [\omega]^{\omega}, \ \forall a \in [\omega]^{\omega} \exists s \in S \ |a \cap s| = \omega = |a \setminus s|\};$

 $t = \min\{|T| : T \subseteq [\omega]^{\omega} \text{ and } (\forall s, t \in T \ s \subseteq^* t \text{ or } t \subseteq^* s) \\ \text{and } (\forall s \in [\omega]^{\omega} \exists t \in T \ s \not\subset^* t) \}.$

- $\mathfrak{b} = \min\{|B| : B \subseteq \omega^{\omega} \ \forall f \in \omega^{\omega} \ \exists g \in B \ g \not\leq^* f\};$
- $\mathfrak{d} = \min\{|D| : D \subseteq \omega^{\omega} \; \forall f \in \omega^{\omega} \; \exists g \in B \; f \leq g\};$

 $\mathfrak{s} = \min\{|S| : S \subseteq [\omega]^{\omega}, \ \forall a \in [\omega]^{\omega} \exists s \in S \ |a \cap s| = \omega = |a \setminus s|\};$

 $t = \min\{|T| : T \subseteq [\omega]^{\omega} \text{ and } (\forall s, t \in T \ s \subseteq^* t \text{ or } t \subseteq^* s) \\ \text{and } (\forall s \in [\omega]^{\omega} \exists t \in T \ s \not\subseteq^* t)\}.$

- $\mathfrak{b} = \min\{|B| : B \subseteq \omega^{\omega} \ \forall f \in \omega^{\omega} \ \exists g \in B \ g \not\leq^* f\};$
- $\mathfrak{d} = \min\{|D| : D \subseteq \omega^{\omega} \; \forall f \in \omega^{\omega} \; \exists g \in B \; f \leq g\};$
- $\mathfrak{s} = \min\{|S| : S \subseteq [\omega]^{\omega}, \ \forall a \in [\omega]^{\omega} \exists s \in S \ |a \cap s| = \omega = |a \setminus s|\};$
- $t = \min\{|T| : T \subseteq [\omega]^{\omega} \text{ and } (\forall s, t \in T \ s \subseteq^* t \text{ or } t \subseteq^* s) \\ \text{and } (\forall s \in [\omega]^{\omega} \exists t \in T \ s \not\subset^* t)\}.$

- $\mathfrak{b} = \min\{|B| : B \subseteq \omega^{\omega} \ \forall f \in \omega^{\omega} \ \exists g \in B \ g \not\leq^* f\};$
- $\mathfrak{d} = \min\{|D| : D \subseteq \omega^{\omega} \ \forall f \in \omega^{\omega} \ \exists g \in B \ f \leq g\};$

 $\mathfrak{s} = \min\{|S|: S \subseteq [\omega]^{\omega}, \ \forall a \in [\omega]^{\omega} \exists s \in S \ |a \cap s| = \omega = |a \setminus s|\};$

 $t = \min\{|T| : T \subseteq [\omega]^{\omega} \text{ and } (\forall s, t \in T \ s \subseteq^* t \text{ or } t \subseteq^* s) \\ \text{and } (\forall s \in [\omega]^{\omega} \exists t \in T \ s \not\subset^* t) \}$

$$\begin{split} \mathfrak{b} &= \min\{|B| : B \subseteq \omega^{\omega} \ \forall f \in \omega^{\omega} \ \exists g \in B \ g \not\leq^* f\};\\ \mathfrak{d} &= \min\{|D| : D \subseteq \omega^{\omega} \ \forall f \in \omega^{\omega} \ \exists g \in B \ f \leq g\};\\ \mathfrak{s} &= \min\{|S| : S \subseteq [\omega]^{\omega}, \ \forall a \in [\omega]^{\omega} \ \exists s \in S \ |a \cap s| = \omega = |a \setminus s|\};\\ \mathfrak{t} &= \min\{|T| : T \subseteq [\omega]^{\omega} \ \text{and} \ (\forall s, t \in T \ s \subseteq^* t \ or \ t \subseteq^* s)\\ \text{and} \ (\forall s \in [\omega]^{\omega} \ \exists t \in T \ s \not\subseteq^* t\, t)\}. \end{split}$$

$$\begin{split} \mathfrak{b} &= \min\{|B| : B \subseteq \omega^{\omega} \ \forall f \in \omega^{\omega} \ \exists g \in B \ g \not\leq^* f\};\\ \mathfrak{d} &= \min\{|D| : D \subseteq \omega^{\omega} \ \forall f \in \omega^{\omega} \ \exists g \in B \ f \leq g\};\\ \mathfrak{s} &= \min\{|S| : S \subseteq [\omega]^{\omega}, \ \forall a \in [\omega]^{\omega} \ \exists s \in S \ |a \cap s| = \omega = |a \setminus s|\};\\ \mathfrak{t} &= \min\{|T| : T \subseteq [\omega]^{\omega} \ \text{and} \ (\forall s, t \in T \ s \subseteq^* t \ \text{or} \ t \subseteq^* s)\\ &= \max\{\forall s \in [\omega]^{\omega} \ \exists t \in T \ s \not\subseteq^* t)\}. \end{split}$$

The order relations between these cardinals are described by the following diagram in which for two cardinals κ, λ the arrow $\kappa \to \lambda$ indicates that $\kappa \leq \lambda$ in ZFC.

Each family of sets \mathcal{I} with $\bigcup \mathcal{I} \notin \mathcal{I}$ has four basic cardinal characteristics:

$$\begin{aligned} \operatorname{add}(\mathcal{I}) &= \min\{|\mathcal{A}| : \mathcal{A} \subseteq \mathcal{I} \land \bigcup \mathcal{A} \notin \mathcal{I}\};\\ \operatorname{cov}(\mathcal{I}) &= \min\{|\mathcal{A}| : \mathcal{A} \subseteq \mathcal{I} \land \bigcup \mathcal{A} = \bigcup \mathcal{I}\};\\ \operatorname{non}(\mathcal{I}) &= \min\{|\mathcal{A}| : \mathcal{A} \subseteq \bigcup \mathcal{I} \land \mathcal{A} \notin \mathcal{I}\};\\ \operatorname{cof}(\mathcal{I}) &= \min\{|\mathcal{J}| : \mathcal{J} \subseteq \mathcal{I} \land \forall I \in \mathcal{I} \exists J \in \mathcal{J} \ (I \subseteq J)\}. \end{aligned}$$

These cardinal characteristics are usually considered for the σ -ideals \mathcal{M} and \mathcal{N} of meager sets and Lebesgue null sets on the real line, respectively.

Cichoń Diagram

< 注 → < 注 → ...

æ

The cardinal characteristics of the σ -ideals \mathcal{M} and \mathcal{N} are described by the famous Cichoń diagram:

The location of Δ, Σ

Problem

Which of the strict inequalities are consistent with ZFC $\max\{\mathfrak{b},\mathfrak{s},\mathrm{cov}(\mathcal{N})\} < \Delta < \Sigma < \mathrm{non}(\mathcal{M})?$

・ 同 ト ・ ヨ ト ・ ヨ ト

The location of Δ, Σ

Problem

Which of the strict inequalities are consistent with ZFC $\max\{\mathfrak{b},\mathfrak{s},\mathrm{cov}(\mathcal{N})\} < \Delta < \Sigma < \mathrm{non}(\mathcal{M})?$

The location of Δ, Σ

Problem

Which of the strict inequalities are consistent with ZFC $\max\{\mathfrak{b},\mathfrak{s},\mathrm{cov}(\mathcal{N})\} < \Delta < \Sigma < \mathrm{non}(\mathcal{M})?$

Def:

A coarse structure is called *cellular* if it has a base consisting of cellular entourages.

Fact 1: A metrizable coarse structure is cellular if and only of it is generated by an ultrametric.

Fact 2: A coarse structure is cellular if and only if it has Gromov's asymptotic dimension zero.

Def:

A coarse structure is called *cellular* if it has a base consisting of cellular entourages.

Fact 1: A metrizable coarse structure is cellular if and only of it is generated by an ultrametric.

Fact 2: A coarse structure is cellular if and only if it has Gromov's asymptotic dimension zero.

Def:

A coarse structure is called *cellular* if it has a base consisting of cellular entourages.

Fact 1: A metrizable coarse structure is cellular if and only of it is generated by an ultrametric.

Fact 2: A coarse structure is cellular if and only if it has Gromov's asymptotic dimension zero.

.

Def:

A coarse structure is called *cellular* if it has a base consisting of cellular entourages.

Fact 1: A metrizable coarse structure is cellular if and only of it is generated by an ultrametric.

Fact 2: A coarse structure is cellular if and only if it has Gromov's asymptotic dimension zero.

Some critical weights of cellular coarse structures

 $\begin{aligned} \Delta^{\circ}_{\omega} &= \min \left(\{ \mathfrak{c}^+ \} \cup \{ w(\mathcal{E}) : \mathcal{E} \text{ is an indiscrete cellular finitary} \\ & \text{coarse structure on } \omega \} \right);\\ \Sigma^{\circ}_{\omega} &= \min \left(\{ \mathfrak{c}^+ \} \cup \{ w(\mathcal{E}) : \mathcal{E} \text{ is an inseparated cellular finitary} \right. \end{aligned}$

coarse structure on ω };

 $\Lambda^{\circ}_{\omega} = \min(\{\mathfrak{c}^+\} \cup \{w(\mathcal{E}) : \mathcal{E} \text{ is a large cellular finitary })$

coarse structure on ω });

 $\Delta_{\omega_1}^{\circ} = \min \left(\{ \mathfrak{c}^+ \} \cup \{ w(\mathcal{E}) : \mathcal{E} \text{ is an indiscrete cellular locally finite} \\ \text{coarse structure on } \omega \} \right);$

 $\Sigma_{\omega_1}^{\circ} = \min \left(\{ \mathfrak{c}^+ \} \cup \{ w(\mathcal{E}) \colon \mathcal{E} \text{ is an inseparated cellular locally finite coarse structure on } \omega \} \right);$

 $\Lambda_{\omega_1}^{\circ} = \min \left(\{ \mathfrak{c}^+ \} \cup \{ w(\mathcal{E}) : \mathcal{E} \text{ is a large cellular locally finite} \\ \text{coarse structure on } \omega \} \right).$

The cardinal \mathfrak{c}^+ appears in the definitions of those cardinals in order to make these cardinals well-defined (this indeed is necessary for the cardinal Λ_{ω}° , which is equal to \mathfrak{c}^+ in ZFC).

Available info on these cardinals

B> B

\$\Lambda_{\omega}^{\circ} = \mathbf{c}^+\$.
\$\Delta_{\omega}^{\circ} \le \mathbf{c}\$.
\$\Delta_{\omega}^{\circ} = \mathbf{c}\$ implies \$\Sigma_{\omega_1}^{\circ} \le \Sigma_{\omega}^{\circ} = \mathbf{c}\$.
\$\mathbf{t} = \mathbf{b}\$ implies \$\Lambda_{\omega_1}^{\circ} = \mathbf{d}\$.
\$\mathbf{t} = \mathbf{d}\$ implies \$\Lambda_{\omega_1}^{\circ} = \mathbf{d}\$.

42 / 58

Some Open Problems

Problem: Is $\Sigma_{\omega}^{\circ} \leq \mathfrak{c}$ in ZFC? This is equivalent to asking if there exists an inseparable cellular finitary coarse structure on ω in ZFC?

Positive answer to this problem follows from negative answer to

Problem: Is $\Delta^{\circ}_{\omega} < \mathfrak{c}$ consistent?

Problem: Is $\Sigma_{\omega}^{\circ} \leq \mathfrak{c}$ in ZFC? This is equivalent to asking if there exists an inseparable cellular finitary coarse structure on ω in ZFC?

Positive answer to this problem follows from negative answer to

Problem: Is $\Delta^{\circ}_{\omega} < \mathfrak{c}$ consistent?

43 / 58

Problem: Is $\Sigma_{\omega}^{\circ} \leq \mathfrak{c}$ in ZFC? This is equivalent to asking if there exists an inseparable cellular finitary coarse structure on ω in ZFC?

Positive answer to this problem follows from negative answer to

Problem: Is $\Delta^{\circ}_{\omega} < \mathfrak{c}$ consistent?

Problem: Does there exist a large cellular locally finite coarse structure on ω in ZFC? If yes, is ϑ equal to the smallest weight of a large cellular locally finite coarse structure on ω ?

Problem: Is b equal to the smallest weight of an indiscrete cellular locally finite coarse structure on ω ?

Problem: Does there exist a large cellular locally finite coarse structure on ω in ZFC? If yes, is ϑ equal to the smallest weight of a large cellular locally finite coarse structure on ω ?

Problem: Is \mathfrak{b} equal to the smallest weight of an indiscrete cellular locally finite coarse structure on ω ?

Cardinal Characteristics

of the poset $\mathbb{E}^{ullet}_{\omega}$

(of nontrivial cellular finitary entourages on ω)

Let *P* be a *poset*, i.e., a set *P* endowed with a partial order \leq . For an element $x \in P$ let

$$\uparrow x = \{y \in P : x \le y\} \text{ and } \downarrow x = \{y \in P : y \le x\}$$

be the *upper* and *lower sets* of x in the poset.

For a subset $A \subseteq P$ let

$$\uparrow A = \bigcup_{a \in A} \uparrow a$$
 and $\downarrow A = \bigcup_{a \in A} \downarrow a$

be the *upper* and *lower sets* of A in the poset.

Let *P* be a *poset*, i.e., a set *P* endowed with a partial order \leq . For an element $x \in P$ let

$$\uparrow x = \{y \in P : x \le y\} \text{ and } \downarrow x = \{y \in P : y \le x\}$$

be the *upper* and *lower sets* of x in the poset. For a subset $A \subseteq P$ let

$$\uparrow A = \bigcup_{a \in A} \uparrow a$$
 and $\downarrow A = \bigcup_{a \in A} \downarrow a$

be the *upper* and *lower sets* of A in the poset.

Example 1: $\downarrow(\omega^{\omega}, \leq) = \mathfrak{d}$ and $\uparrow(\omega^{\omega}, \leq) = 1$.

Example 1: $\downarrow(\omega^{\omega}, \leq) = \mathfrak{d}$ and $\uparrow(\omega^{\omega}, \leq) = \mathfrak{1}$. **Example 2:** $\downarrow([\omega]^{\omega}, \subseteq) = \mathfrak{1}$ and $\uparrow([\omega]^{\omega}, \subseteq) = \mathfrak{c}$.

Example 1: $\downarrow(\omega^{\omega}, \leq) = 0$ and $\uparrow(\omega^{\omega}, \leq) = 1$.

Example 1: $\downarrow(\omega^{\omega}, \leq) = \mathfrak{d}$ and $\uparrow(\omega^{\omega}, \leq) = 1$.

Example 1: $\downarrow(\omega^{\omega}, \leq) = \mathfrak{d}$ and $\uparrow(\omega^{\omega}, \leq) = 1$.

Example 1: $\downarrow(\omega^{\omega}, \leq) = \mathfrak{d}$ and $\uparrow(\omega^{\omega}, \leq) = 1$.

Example 1: $\downarrow(\omega^{\omega}, \leq) = \mathfrak{d}$ and $\uparrow(\omega^{\omega}, \leq) = 1$.

Example 1: $\downarrow(\omega^{\omega}, \leq) = \mathfrak{d}$ and $\uparrow(\omega^{\omega}, \leq) = 1$.

Example 1: $\downarrow(\omega^{\omega}, \leq) = \mathfrak{d}$ and $\uparrow(\omega^{\omega}, \leq) = 1$.

Example 1: $\downarrow(\omega^{\omega}, \leq) = \mathfrak{d}$ and $\uparrow(\omega^{\omega}, \leq) = 1$.

The transitivity of the partial order \leq implies that for any subset $A \subseteq P$

 $\uparrow \uparrow A = \uparrow A \quad \text{and} \quad \downarrow \downarrow A = \downarrow A.$

On the other hand, we can consider the lower-upper and upper-lower sets of A: $\uparrow \downarrow A$ and $\downarrow \uparrow A$ and also the corresponding cardinal characteristics of the poset P:

$$\uparrow \downarrow(P) = \min\{|A| : A \subseteq P \land \uparrow \downarrow A = P\} \text{ and } \\ \downarrow \uparrow(P) = \min\{|A| : A \subseteq P \land \downarrow \uparrow A = P\}.$$

Iterating, we obtain the cardinal characteristics

The transitivity of the partial order \leq implies that for any subset $A \subseteq P$

$$\uparrow \uparrow A = \uparrow A \quad \text{and} \quad \downarrow \downarrow A = \downarrow A.$$

On the other hand, we can consider the lower-upper and upper-lower sets of A: $\uparrow \downarrow A$ and $\downarrow \uparrow A$ and also the corresponding cardinal characteristics of the poset P:

$$\uparrow \downarrow(P) = \min\{|A| : A \subseteq P \land \uparrow \downarrow A = P\} \text{ and } \\ \downarrow \uparrow(P) = \min\{|A| : A \subseteq P \land \downarrow \uparrow A = P\}.$$

Iterating, we obtain the cardinal characteristics

$$\downarrow \uparrow \downarrow (P) = \min\{|A| : A \subseteq P \land \downarrow \uparrow \downarrow A = P\},$$
$$\uparrow \downarrow \uparrow (P) = \min\{|A| : A \subseteq P \land \uparrow \downarrow \uparrow A = P\}$$

and so on.

The transitivity of the partial order \leq implies that for any subset $A \subseteq P$

$$\uparrow\uparrow A = \uparrow A$$
 and $\downarrow\downarrow A = \downarrow A$.

On the other hand, we can consider the lower-upper and upper-lower sets of A: $\uparrow \downarrow A$ and $\downarrow \uparrow A$ and also the corresponding cardinal characteristics of the poset P:

$$\uparrow \downarrow(P) = \min\{|A| : A \subseteq P \land \uparrow \downarrow A = P\} \text{ and } \\ \downarrow \uparrow(P) = \min\{|A| : A \subseteq P \land \downarrow \uparrow A = P\}.$$

Iterating, we obtain the cardinal characteristics

$$\downarrow \uparrow \downarrow (P) = \min\{|A| : A \subseteq P \land \downarrow \uparrow \downarrow A = P\}, \\ \uparrow \downarrow \uparrow (P) = \min\{|A| : A \subseteq P \land \uparrow \downarrow \uparrow A = P\},$$

and so on.

The cardinal characteristics $\uparrow\uparrow(P)$ and $\downarrow\downarrow(P)$

Let us also consider the cardinal characteristics $\Uparrow(P) = \sup\{|A| : A \subseteq P \land \forall x, y \in A \ (x \neq y \Rightarrow \uparrow x \cap \uparrow y = \emptyset)\},$ $\Downarrow(P) = \sup\{|A| : A \subseteq P \land \forall x, y \in A \ (x \neq y \Rightarrow \downarrow x \cap \downarrow y = \emptyset)\},$ which are counterparts of the cellularity in topological spaces.

The order relation between these cardinals characteristics are described in the following diagram (in which an arrow $\kappa \to \lambda$ between cardinals indicates that $\kappa \leq \lambda$):

The cardinal characteristics $\uparrow\uparrow(P)$ and $\downarrow\downarrow(P)$

Let us also consider the cardinal characteristics

 $\begin{array}{l} & (P) = \sup\{|A| : A \subseteq P \land \forall x, y \in A \ (x \neq y \Rightarrow \uparrow x \cap \uparrow y = \emptyset)\}, \\ & \downarrow (P) = \sup\{|A| : A \subseteq P \land \forall x, y \in A \ (x \neq y \Rightarrow \downarrow x \cap \downarrow y = \emptyset)\}, \\ & \text{which are counterparts of the cellularity in topological spaces.} \end{array}$

The order relation between these cardinals characteristics are described in the following diagram (in which an arrow $\kappa \to \lambda$ between cardinals indicates that $\kappa \leq \lambda$):

We shall be interested in these cardinal characteristics for the poset $\mathbb{E}^{\bullet}_{\omega}$ of nondiscrete cellular finitary entourages on ω .

An entourage E on a set X is called

- *nondiscrete* if $\{x \in X : E(x) \neq \{x\}\}$ is infinite;
- cellular if $E^{-1} = E = E \circ E$;
- finitary if $\sup_{x \in X} |E(x) \cup E^{-1}(x)| < \omega$.

$${ { (\mathbb{E}^{\bullet}_{\omega}) = { \downarrow (\mathbb{E}^{\bullet}_{\omega}) = { \downarrow (\mathbb{E}^{\bullet}_{\omega}) = \uparrow (\mathbb{E}^{\bullet}_{\omega}) = \mathfrak{c}. } }$$

$$one (\mathcal{M}) \leq \mathrm{tr}(\mathbb{E}^{\bullet}_{\omega}) \leq \mathfrak{c}.$$

Problem: Which of the following strict inequalities is consistent?

$$\ \, \Sigma < \textup{th}(\mathbb{E}^{\bullet}_{\omega});$$

$$@ \ {}^{}_{\downarrow}(\mathbb{E}^{\bullet}_{\omega}) < \operatorname{non}(\mathcal{M});$$

$$one cov(\mathcal{M}) < \downarrow \uparrow (\mathbb{E}^{\bullet}_{\omega});$$

$$\ \, \texttt{I}(\mathbb{E}^{\bullet}_{\omega}) < \mathfrak{c}.$$

Remark: Since the strict inequality $cov(\mathcal{M}) < \mathfrak{c}$ is consistent, either (3) or (4) in the above Problem is consistent. But which one? Or both?

$$) \hspace{0.1cm} \uparrow \hspace{-0.1cm} (\mathbb{E}^{\bullet}_{\omega}) = { \downarrow \hspace{-0.1cm} (\mathbb{E}^{\bullet}_{\omega}) = { \downarrow \hspace{-0.1cm} (\mathbb{E}^{\bullet}_{\omega}) = { \frak (} \mathbb{E}^{\bullet}_{\omega}) = { \frak (}$$

$$one cov(\mathcal{M}) \leq {\rm tr}(\mathbb{E}^{\bullet}_{\omega}) \leq \mathfrak{c}.$$

$${ { { 3 } } \hspace{.1 in} } \Sigma \leq { \Uparrow (\mathbb{E}^{ \bullet}_{ \omega}) } \leq \operatorname{non}(\mathcal{M}).$$

Problem: Which of the following strict inequalities is consistent?

$$\ \, {\bf \Sigma}<{\bf m}({\mathbb E}^{\bullet}_{\omega});$$

$${\it 2} \hspace{0.2cm} {\it 1} \hspace{-0.2cm} (\mathbb{E}_{\omega}^{\bullet}) < \operatorname{non}(\mathcal{M});$$

$$one (\mathcal{M}) < \mathrm{sphere}(\mathbb{E}^{\bullet}_{\omega});$$

$$\ \, \texttt{Im}(\mathbb{E}^{\bullet}_{\omega}) < \mathfrak{c}.$$

Remark: Since the strict inequality $cov(\mathcal{M}) < \mathfrak{c}$ is consistent, either (3) or (4) in the above Problem is consistent. But which one? Or both?

$$) \hspace{0.1cm} \Uparrow (\mathbb{E}^{\bullet}_{\omega}) = { \downarrow \hspace{-.1cm} \downarrow } (\mathbb{E}^{\bullet}_{\omega}) = { \downarrow \hspace{-.1cm} (\mathbb{E}^{\bullet}_{\omega}) = \uparrow (\mathbb{E}^{\bullet}_{\omega}) = \mathfrak{c}.$$

$$one cov(\mathcal{M}) \leq {\rm tr}(\mathbb{E}^{\bullet}_{\omega}) \leq \mathfrak{c}.$$

$${ { { 3 } } \hspace{.1 in} } \Sigma \leq { \Uparrow (\mathbb{E}^{ \bullet}_{ \omega}) } \leq \operatorname{non}(\mathcal{M}).$$

Problem: Which of the following strict inequalities is consistent?

$$\ \, {\bf 0} \ \, {\boldsymbol \Sigma} < {\bf m}({\mathbb E}^{\bullet}_{\omega});$$

$${\it 2} \hspace{0.2cm} {\it 1} \hspace{-0.2cm} (\mathbb{E}_{\omega}^{\bullet}) < \operatorname{non}(\mathcal{M});$$

$$one (\mathcal{M}) < {\rm tr}(\mathbb{E}^{\bullet}_{\omega});$$

$$\ \, \texttt{I}(\mathbb{E}^{\bullet}_{\omega}) < \mathfrak{c}.$$

Remark: Since the strict inequality $cov(\mathcal{M}) < \mathfrak{c}$ is consistent, either (3) or (4) in the above Problem is consistent. But which one? Or both?

$$) \hspace{0.1cm} \uparrow \hspace{-0.1cm} \uparrow \hspace{-0.1cm} (\mathbb{E}_{\omega}^{\bullet}) = \hspace{-0.1cm} \downarrow \hspace{-0.1cm} (\mathbb{E}_{\omega}^{\bullet}) = \hspace{-0.1cm} \uparrow \hspace{-0.1cm} (\mathbb{E}_{\omega}^{\bullet}) = \mathfrak{c}.$$

$$on (\mathcal{M}) \leq {\rm sphere:} \mathbb{C}^{\bullet}_{\omega}) \leq \mathfrak{c}.$$

$$\quad \textbf{ } \Sigma \leq \textup{ th}(\mathbb{E}^{\bullet}_{\omega}) \leq \operatorname{non}(\mathcal{M}).$$

Problem: Which of the following strict inequalities is consistent?

$$\ \, {\bf 0} \ \, {\boldsymbol \Sigma} < {\bf m}({\mathbb E}^{\bullet}_{\omega});$$

$${\it 2} \hspace{0.2cm} {\it 1} \hspace{-0.2cm} (\mathbb{E}_{\omega}^{\bullet}) < \operatorname{non}(\mathcal{M});$$

$$one (\mathcal{M}) < \mathrm{cov}(\mathcal{M});$$

$$\ \, \texttt{I}(\mathbb{E}^{\bullet}_{\omega}) < \mathfrak{c}.$$

Remark: Since the strict inequality $cov(\mathcal{M}) < \mathfrak{c}$ is consistent, either (3) or (4) in the above Problem is consistent. But which one? Or both?

Special Ultrafilters in Large-Scale Topology

Definition

A free ultrafilter \mathcal{U} on ω is called *thin* if for any metrizable finitary coarse structure \mathcal{E} on ω there exists a set $U \in \mathcal{U}$ such that the coarse structure $\mathcal{E} \upharpoonright U$ on U is discrete.

Problem (Protasov)

Is it true that thin ultrafilters exist in ZFC?

Definition

A free ultrafilter \mathcal{U} on ω is called *thin* if for any metrizable finitary coarse structure \mathcal{E} on ω there exists a set $U \in \mathcal{U}$ such that the coarse structure $\mathcal{E} \upharpoonright U$ on U is discrete.

Problem (Protasov)

Is it true that thin ultrafilters exist in ZFC?

Some known types of ultrafilters

A free ultrafilter ${\mathcal U}$ on ω is called

• a *P*-point if for any sequence of sets $\{U_n\}_{n \in \omega} \subseteq \mathcal{U}$ there exist a set $U \in \mathcal{U}$ such that $U \subseteq^* U_n$ for every $n \in \omega$;

• a *Q-point* if for any locally finite cellular entourage *E* on ω there exists a set $U \in \mathcal{U}$ such that $|U \cap E(x)| \leq 1$ for any $x \in \omega$;

• *Ramsey* if for any map $f : \omega \to \omega$ there exists $U \in \mathcal{U}$ such that $f \upharpoonright U$ is either constant or injective;

• a *weak P-point*, if for any sequence $(\mathcal{U}_n)_{n \in \omega}$ of free ultrafilters that are not equal to \mathcal{U} there exists a set $U \in \mathcal{U} \setminus \bigcup_{n \in \omega} \mathcal{U}_n$;

• an OK_{κ} -point for a cardinal κ if for any sequence of sets $\{U_n\}_{n \in \omega} \subseteq \mathcal{U}$ there exists a family $(V_{\alpha})_{\alpha \in \kappa} \subseteq \mathcal{U}$ such that for any ordinals $\alpha_1 < \cdots < \alpha_n$ in κ we have $\bigcap_{i=1}^n V_{\alpha_i} \subseteq^* U_n$;

• *rapid* if for any function $f \in \omega^{\omega}$ there exists a function $g \in \omega^{\omega}$ such that $f \leq g$ and $\{g(n) : n \in \omega\} \in \mathcal{U};$

• *discrete* if for any injective function $\varphi : \omega \to \mathbb{R}$ there exists a set $U \in \mathcal{U}$ whose image f(U) is a discrete subspace of \mathbb{R} ;

• nowhere dense if for any injective function $\varphi : \omega \to \mathbb{R}$ there exists a set $U \in \mathcal{U}$ whose image f(U) is nowhere dense in \mathbb{R} .

55 / 58

By a famous result of Kunen, OK_c -points exist in ZFC.

Shelah constructed a model without nowhere dense ultrafilters. Miller constructed a model containing no rapid ultrafilters. It is unknown if there is a model without *P*-points and *Q*-points. So the problem of constructing a model containing no thin ultrafilters is more difficult than the (already difficult) problem of constructing a model without P-points and Q-points.

By a famous result of Kunen, OK_c -points exist in ZFC. Shelah constructed a model without nowhere dense ultrafilters. Miller constructed a model containing no rapid ultrafilters. It is unknown if there is a model without *P*-points and *Q*-points. So the problem of constructing a model containing no thin ultrafilters is more difficult than the (already difficult) problem of constructing a model without P-points and Q-points.

55 / 58

Thin ultrafilter vs other types of ultrafilters

Problem

- Is each OK_c-ultrafilter thin?
- Is each discrete ultrafilter thin?

Thin ultrafilter vs other types of ultrafilters

Problem

- Is each OK_c-ultrafilter thin?
- Is each discrete ultrafilter thin?

T. Banakh,

Small uncountable cardinals in large-scale topology, preprint (arxiv.org/abs/2002.08800).

T. Banakh, I. Protasov,

Set-theoretic problems in Asymptology, preprint (arxiv.org/abs/2004.01979).

Thank You!

æ