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Problem definition.
Recap of some basic techniques.

Recent breakthroughs.
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On the way:
 models of computations,
 how restricted edge weight domain is exploited,

5. Briefly about one related result of ours.



Ziirawn
[ pm— LUrawi

ﬂ
o
Q

’ =
¢ o
{105 ¢
] [} o

' 2
(]

‘ Hava H7¢n ;_ Hoza
ET " UOU[/- ™
= <r- O <.4que Q



Ve |

7

. p
(9|
65’

- wszeC Ce/;{, /o= =1
] < W M/ a[szame 3 hy
Maf’lo_(;

&
e A5
)
ng‘o & i = ‘ i

go g
Y H Nop,
’C@/} !

0.5

/
S 4«14«
Q

%9

BXHSA ezsieN
WOX§ v
b EL

Li‘—».‘



Q

%9

e)SMOY|eZSie

Hozs



The shortest path problem

Input:
G = (V,E): aweighted directed graph with n vertices and m = n edges.
* Two vertices: source/target s,t € V/.

Goal:
Compute a shortest s — ¢ path in G.
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The shortest path problem

Input:
* (G = (V,E): aweighted directed graph with n vertices and m = n edges.
* Two vertices: source/target s, t € V.

Goal:
Compute a shortest s — ¢ path in G.

We want to solve the problem:
> exactly,
» fast in the worst case (asymptotically).
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Well-defined:

|dist; (u,v)| # o forallu,v eV
Equiv: every pair reachable

no negative-weight cycles in G.




SSSP

Some facts:

» In general, solving the problem for all targets t € V does not look any easier.

» Finding paths not easier than computing optimal path lengths (distances).

-

Single-Source Shortest Paths (SSSP):
Given a weighted directed graph ¢ = (V, E') with n vertices and m edges,
and a source s € V, compute dist;(s,t) forallt € V.

y,
Notation: TR
. . _ 0(1) ell-aerineaq.
EOIY(n)’ poly(n, m); polylog(n) = log™ "', |dist; (u,v)| # o forallu,v eV
* 0(f(n,m)) := O(f (n,m)polylog(n)). Equiv: every pair reachable

* w(uv) := weight of a (directed) edge uv. no negative-weight cycles in G.



(obsolete) Manual for solving SSSP
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Single-Source Shortest Paths (SSSP):
Given a weighted directed graph ¢ = (V, E') with n vertices and m edges,
and a source s € V, compute dist;(s,t) forallt € V.
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-

Single-Source Shortest Paths (SSSP):
Given a weighted directed graph ¢ = (V, E') with n vertices and m edges,
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Yes? Use Dijkstra’s algorithm (‘56).
O(m + nlogn) time [FT'86].

Or O(mlogn) time without fancy data structures.



(obsolete) Manual for solving SSSP

-

Single-Source Shortest Paths (SSSP):
Given a weighted directed graph ¢ = (V, E') with n vertices and m edges,
and a source s € V, compute dist;(s,t) forallt € V.

J
v
- BN e
Does G have only TR
non-negative weights? \S=— -\
"W\
||||||| ;\ "i_NEORITH
Yes? Use Dijkstra’s algorithm (‘56). No? Use Bellman-Ford algorithm (‘56).

O(m + nlogn) time [FT'86]. O(m - n) time.

Or O(mlogn) time without fancy data structures.
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Bellman-Ford recap

* If SSSP is well-defined, then an optimal path P,;; = s — t has < n edges.
* Let PX be the shortest out of s = v paths with at most k edges, i.e., Pg; = ot
* The (weight of) P, can be computed inductively:

» Either it is an empty path, which can only exist if s = v.

> Or it ends with some edge uv € E, and starts with PX%; try all of them.

pk-1 W(PS’f, = lrg]lleré (W(PS’{[l) + W(uv))
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All weights of PX fort € V, k = 0, ...,n and can be computed in 0(m - n) time.
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Dijkstra recap (non-negative weights)

e Suppose we have established correct distances to the k nearest vertices S € V.
* Then the (k + 1)-th nearest vertex is the one ,closest via a ” from S.

A data structure called a priority
gueue allows finding the next
nearest vertex in O(logn) time.

fa, <a, <--<a,,Dijkstra’s alg.
visits vertices specifically in this order.

Sorting with binary comparisons requires
log, n! = Q(nlogn) comparisons.




Recent breakthroughs

1) FOCS 2022 Best Paper Award (Bernstein, Nanongkai, Wulff-Nilsen):
“Negative-Weight Single-Source Shortest Paths in Near-linear Time”

2) STOC 2024 Best Paper Award (Fineman):
“Single-Source Shortest Paths with Negative Real Weights in ﬁ(mng/ 9) Time”

3) STOC 2025 Best Paper Award (Duan, Mao, Mao, Shu, Yin):
“Breaking the Sorting Barrier for Directed Single-Source Shortest Paths”




Recent breakthroughs

1) FOCS 2022 Best Paper Award (Bernstein, Nanongkai, Wulff-Nilsen):
“Negative-Weight in Near-linear Time”

2) STOC 2024 Best Paper Award (Fineman):
“ with Negative Weights in O(mn®/?) Time”

3) STOC 2025 Best Paper Award (Duan, Mao, Mao, Shu, Yin):
“Breaking the Sorting Barrier for Directed

V4



Recent breakthroughs

1) FOCS 2022 Best Paper Award (Bernstein, Nanongkai, Wulff-Nilsen):

“Negative-Weight in Near-linear Time”
2) STOC 2024 Best Paper Award (Fineman):
“ with Negative Weights in O(mn®/?) Time”

3) STOC 2025 Best Paper Award (Duan, Mao, Mao, Shu, Yin):
“Breaking the Sorting Barrier for Directed

V4

Non-negative real weights.



Recent breakthroughs —

1) FOCS 2022 Best Paper Award (Bernstein, Nanongkai, Wulff-Nilsen):

“Negative-Weight in Near-linear Time”
2) STOC 2024 Best Paper Award (Fineman):
“ with Negative Weights in O(mn®/?) Time”

3) STOC 2025 Best Paper Award (Duan, Mao, Mao, Shu, Yin):
“Breaking the Sorting Barrier for Directed

V4

Non-negative real weights.



Recent breakthroughs —

1) FOCS 2022 Best Paper Award (Bernstein, Nanongkai, Wulff-Nilsen):
“Negative-Weight in Near-linear Time”

2) STOC 2024 Best Paper Award (Fineman):
“ with Negative Weights in O(mn®/?) Time”

3) STOC 2025 Best Paper Award (Duan, Mao, Mao, Shu, Yin):
“Breaking the Sorting Barrier for Directed

V4

Non-negative real weights.

» Real/integer regimes very different for SSSP.



Recent breakthroughs

Integer weights.

1) FOCS 2022 Best Paper Award (Bernstein, Nanongkai, Wulff-Nilsen):
“Negative-Weight in Near-linear Time”

2) STOC 2024 Best Paper Award (Fineman):
“ with Negative Weights in O(mn®/?) Time”

3) STOC 2025 Best Paper Award (Duan, Mao, Mao, Shu, Yin):
“Breaking the Sorting Barrier for Directed

V4

Non-negative real weights.

» Real/integer regimes very different for SSSP.

» What does it even mean to solve optimization problems on real numbers?
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v’ Super convenient.
v Not very realistic.
v’ Overpowered, e.g.:
* Integer division |x/a] in O(1) time = solve NP-hard problems in poly. time.

* Only (+, <) = e.g., count triangles in a graph in O(m) time.
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Exact optimization on real-weighted graphs

(Real RAM:

» Integer-indexed memory cells store infinite-precision real numbers,
» basic arithmetic operations (+, —, -, =) and comparisons performed in
O(1) time in a black-box way. y

» Still, likely the best model for truly exact computation we’ve got...

> ... if we do not abuse it. E.g. we can:
" promise to only ever compute values from a natural restricted domain.
= promise to use polynomial space if mapped to a realistic model.

» Green flag: running within the same time bound on a realistic model.
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Recent breakthroughs (real weights)

2) STOC 2024 Best Paper Award (Fineman):
“Single-Source Shortest Paths with Negative Weights in O(mn®/?) Time”

3) STOC 2025 Best Paper Award (Duan, Mao, Mao, Shu, Yin):
“Breaking the Sorting Barrier for Directed Single-Source Shortest Paths”

Non-negative.

Runs in O(m log?/3 n) time using (+, <), thus cannot sort via comparisons!

Baseline: 0(m + nlogn)

L In both, all intermediate reals constructed are the graph’s path lengths = no abuse! J
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Word RAM Think C language, w = 64.

n = “problem size”

(Word RAM:

» Memory cells store w-bit integers, where w = ()(logn) is the word size.
» Arithmetic/bitwise/comparison operations on w-bit integers performed
in 0(1) time. y

> Intermediate values sums of poly(n) input values — still O(w)-bit ints.

» Typically, for integer weights fitting in a word, real RAM bounds transfer to
word RAM bounds.

» Literature: “exact” means “exact on integer input”.
» For graphs: edge weights = integers fitting in a single word.

L For simplicity, let’s assume w = O(log n) = absolute edge weights < poly(n). }
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(obsolete) Manual for solving integer SSSP

-
Single-Source Shortest Paths (SSSP):

Given a directed graph ¢ = (V, E') with n vertices and m edges whose weights are

integers fitting in words, and a source s € V, compute dist;(s,t) forallt € V.

Does G have only
non-negative weights?

Yes? Use Dijkstra’s algorithm No? Use a “scaling” algorithm.
with a fancier priority queue. E.g. Gabow’s 0(mn3/4) (‘83)
O(m + nloglogn) time [Thorup ’03]. Or Goldberg’s O (m+/n) ('93)

Or faster; holds even for word size >> logn!
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» Consider vertex prices p(v) forallv € V.

» One can prove that for a well-defined SSSP problem there exist prices such that:
w(uv) +p(u) —p(v) =0 foralledgesuv € E

» p(u) = dist;(s,u) is one such function...
» Changing edge weights to:
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Reweighting via Price functions

» Consider vertex prices p(v) forallv € V.

» One can prove that for a well-defined SSSP problem there exist prices such that:
w(uv) +p(u) —p(v) =0 foralledgesuv € E

» p(u) = dist;(s,u) is one such function...
» Changing edge weights to:
wy, (uv) == w(uv) + p(u) — p(v) = 0.
1) does not change the shortest paths structure,

2) makes the problem amenable to Dijkstra.
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lw(uv)| < poly(n),
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p =0, e = poly(n).
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Approximation scheme

1) Relax the inequalities with an error parameter € that you can initialize easily
w(uv) +p(u) —p(v) = —¢ foralledgesuv € E

2) Devise a refinement procedure that improves p to p’ such that
w(uv) +p'(u) —p'(v) = —€/2 forall edgesuv € E

3) After O(logn) iterations we will have

1
wy, (uv) == w(uv) + p(u) —p(w) = 5
wy (ux) = — 1/2n wp(y) 2 —1/2n wy(v) 2 —1/2n | Wp(Q) — wp(R) = w(Q) — w(R)
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Approximation scheme

1) Relax the inequalities with an error parameter € that you can initialize easily
w(uv) +p(u) —p(v) = —¢ foralledgesuv € E

2) Devise a refinement procedure that improves p to p’ such that
w(uv) +p'(u) —p'(v) = —€/2 forall edgesuv € E
3) After O(logn) iterations we will have

wy, (uv) == w(uv) + p(u) —p(w) = —%.

w'(x =0 /
W) = 0 P(Y) Wip(w) 2 0
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Approximation scheme

1) Relax the inequalities with an error parameter € that you can initialize easily
w(uv) +p(u) —p(v) = for all edges uv € E

2) Devise a refinement procedure that improves p to p’ such that
wuv) +p'(u) —p'(v) 2 for all edges uv € E

3) After O(logn) iterations we will have
wy,(uv) = w(uv) + p(u) —p(v) =

4) Increasing edge weights by % increases path weight by at most % :

5) But, by integrality, shortest and non-shortest path weights differ by > 1.

6) Dijkstra applicable and correct after increase.



Approximation scheme

2) Devise a refinement procedure that improves p to p’ such that
w(uv) +p'(u) —p'(v) = —€/2 forall edgesuv € E
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Integrality and scaling

o . L.
Scaling framework = very efficient approximation scheme!

» Single ‘refinement” iteration: decrease error by a constant factor.
» Additive error € achieved in polylog(n, e~ 1) iterations.

J

» Could be used even real data, e.g., irrational...

> ... but would never terminate with an exact solution in poly(n, m) time.

1

> Integrality = accuracy e = poly(n) enough to correctly round.
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Recent breakthroughs (integer)

1) FOCS 2022 Best Paper Award (Bernstein, Nanongkai, Wulff-Nilsen):
“Negative-Weight in Near-linear Time”

Approximation refinement in 0 () time!

Best real RAM bound:

Other recent achievements: O(nm) [Orlin “13]

» max flow with integer weights in m**°(1) time [Chen et al. 22].



Recent breakthroughs (real weights)

2) STOC 2024 Best Paper Award (Fineman):
“Single-Source Shortest Paths with Negative Weights in O(mn®/?) Time”

Given a price function p:V — R such that k vertices have adjacent negative edges, in
O (mk?/?) time one can compute a price fun. p’ with k'/3 fewer such negative vertices.




Recent breakthroughs

1) FOCS 2022 Best Paper Award (Bernstein, Nanongkai, Wulff-Nilsen):
“Negative-Weight Single-Source Shortest Paths in Near-linear Time”

2) STOC 2024 Best Paper Award (Fineman):
“Single-Source Shortest Paths with Negative Real Weights in ﬁ(mng/ 9) Time”

3) STOC 2025 Best Paper Award (Duan, Mao, Mao, Shu, Yin):
“Breaking the Sorting Barrier for Directed Single-Source Shortest Paths”
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What about rational data?

Exact optimization on graphs studied:

» either in an unrealistic real RAM model,

» or for integer data in a realistic word RAM model.

q
using a single machine word in the word RAM.

-
v’ A rational number £ with p, g = @(poly(n)) can be represented exactly

J

Can optimization problems on rational-weighted graphs be solved on the

word RAM exactly and as efficiently as on integer-weighted graphs?
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Single-Source Shortest Paths (SSSP):

Given a directed graph ¢ = (V, E') with n vertices and m edges whose weights are
word-fitting rationals, and a source s € I/, compute a shortest paths tree from s.

» Suppose we adapt Dijkstra’s algorithm: use exact arithmetic on rationals.

» Intermediate values = path lengths — sums of O (n) word-fitting rationals.

» Intermediate values may require (1(n) bits — arithmetic cost linear!

Trivial adaptation of Dijkstra runs in O (inn) time on rationals > 0!




Rational SSSP

(.
Single-Source Shortest Paths (SSSP):

Given a directed graph ¢ = (V, E') with n vertices and m edges whose weights are
word-fitting rationals, and a source s € I/, compute a shortest paths tree from s.

» Maybe apply some form of scaling then?




Rational SSSP

(.
Single-Source Shortest Paths (SSSP):

Given a directed graph ¢ = (V, E') with n vertices and m edges whose weights are
word-fitting rationals, and a source s € I/, compute a shortest paths tree from s.

» Maybe apply some form of scaling then?
> But the second shortest path might differ from OPT by 2790




Rational SSSP

-
Single-Source Shortest Paths (SSSP):

Given a directed graph ¢ = (V, E') with n vertices and m edges whose weights are
word-fitting rationals, and a source s € I/, compute a shortest paths tree from s.

» Maybe apply some form of scaling then?

» But the second shortest path might differ from OPT by 2=
» Scaling needs accuracy € = 2-6(m)




Rational SSSP

(.
Single-Source Shortest Paths (SSSP):

Given a directed graph ¢ = (V, E') with n vertices and m edges whose weights are
word-fitting rationals, and a source s € I/, compute a shortest paths tree from s.

» Maybe apply some form of scaling then?

» But the second shortest path might differ from OPT by 2=
» Scaling needs accuracy € = 2-6(m)

At least ©(n)-factor time slowdown compared to integer data!
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Our results

Joint work with W. Nadara and M. Sokotowski (SODA 2024):

Theorem:

SSSP with non-negative word-fitting rational weights can be solved in
O(n + m) time on the word RAM.

> ... even though arithmetic operations on k-bit rationals take O (k) time.

» Indeed, almost matching the best-known integer bound possible for SSSPs,.
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Our results

Joint work with W. Nadara and M. Sokotowski (SODA 2024):

Theorem:

SSSP with word-fitting rational weights can be solved in 0(m + n%°) time
on the word RAM.

> Beats scaling with exponential accuracy for very dense graphs m = Q(n?°1).

» No reason to believe near-linear time is impossible.
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Conclusion

1)

2)

3)

4)

Model choice and low-level details can make a huge difference even for very
basic polynomial algorithmic optimization problems.

What we’ve been taught about computing single-source shortest paths is now
completely obsolete at last.

Very fast-converging approximation schemes can be considered exact
algorithms in realistic models of computation.

Studying truly exact computation in unrealistic models is okay and timely, but
don’t abuse them!
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Open problem

See https://en.wikipedia.org/wiki/Smale's problems

Big open problem in Real RAM vs. Word RAM optimization:

Can Linear Programming be solved exactly on a Real RAM in polynomial time (as a
function of #(variables + constraints)) without model abuse?

Khachiyan‘79: Linear programming with rational data can be solved in polynomial
time (in #(variables + constraints), on the word RAM).



https://en.wikipedia.org/wiki/Smale%27s_problems
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