

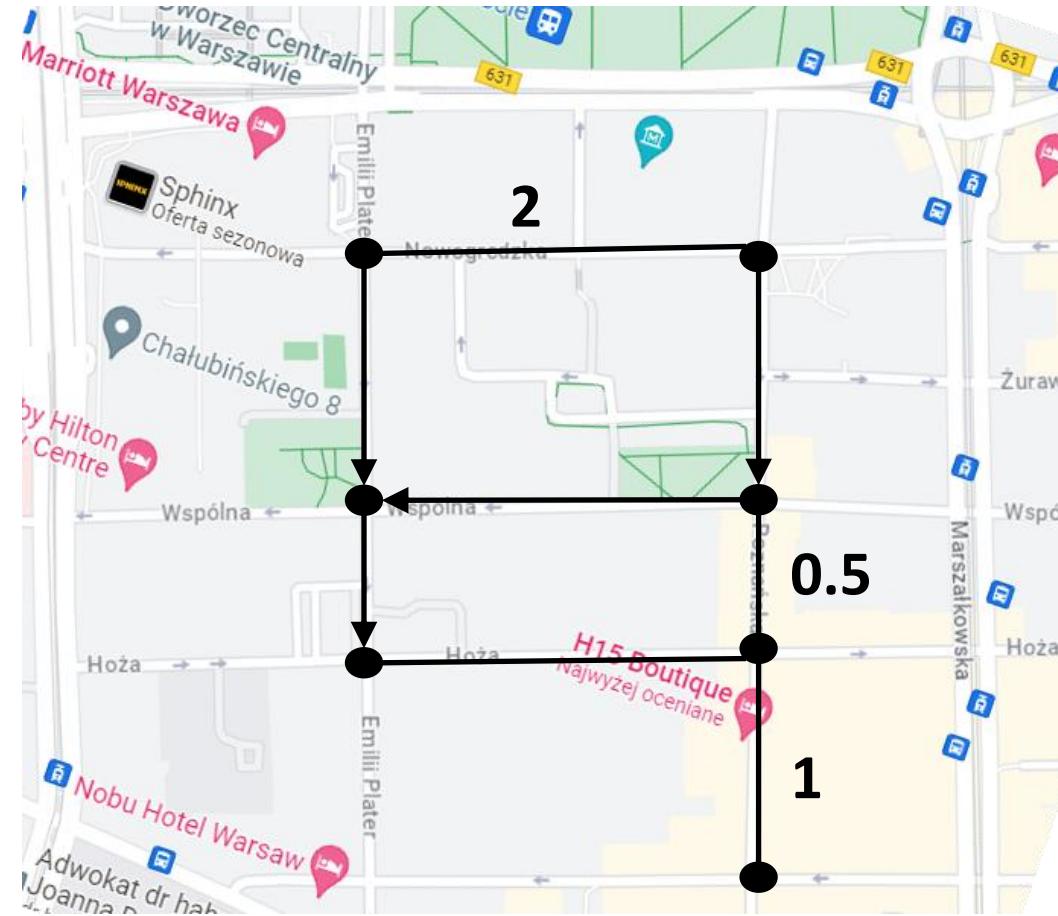
Shortest paths, edge weights, and models of computation

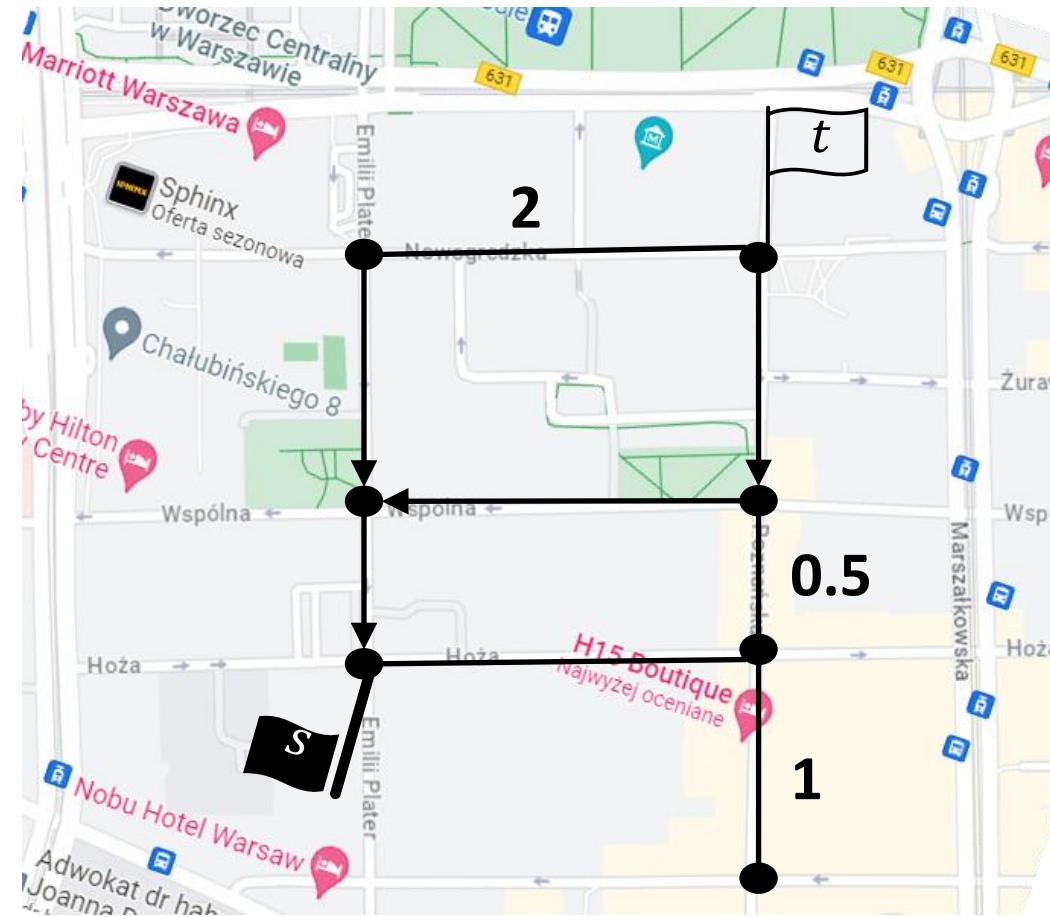
[Adam Karczmarz](#)

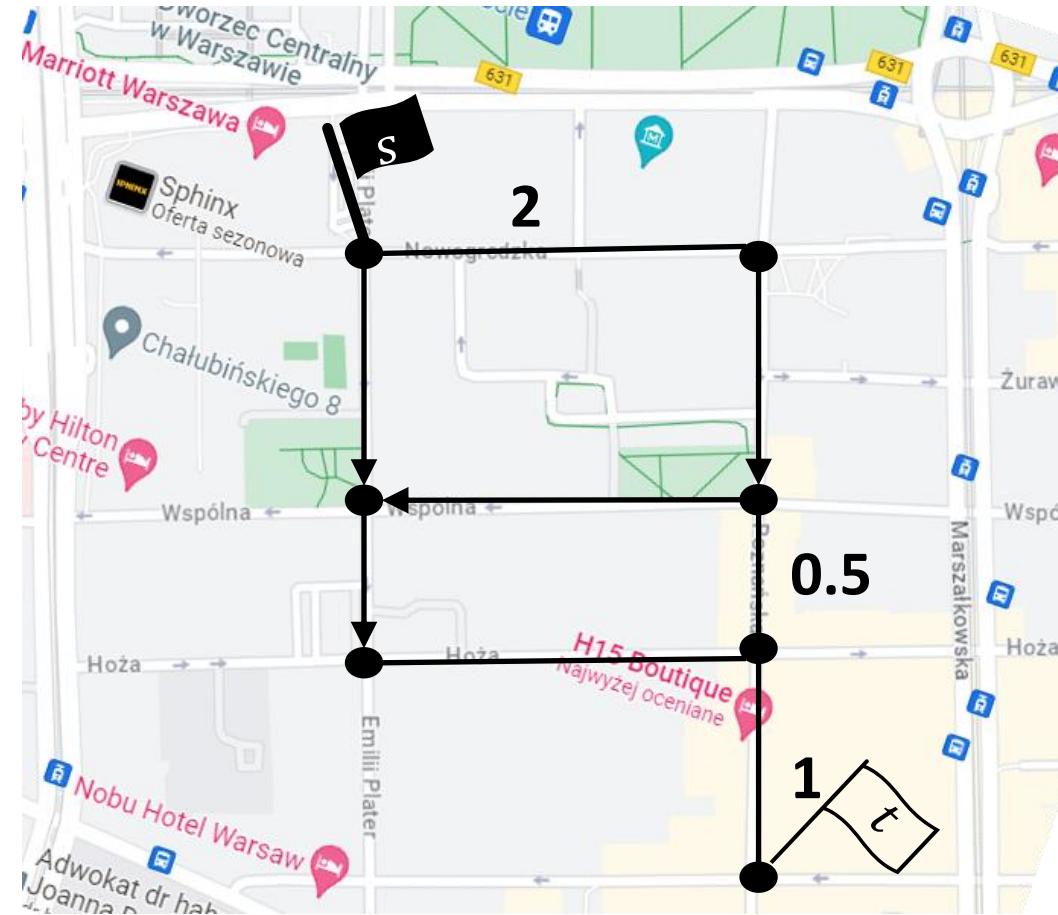
22/01/2026

Plan

1. Problem definition.
2. Recap of some basic techniques.
3. Recent breakthroughs.
4. On the way:
 - models of computations,
 - how restricted edge weight domain is exploited,
5. Briefly about one related result of ours.







The shortest path problem

Input:

- $G = (V, E)$: a weighted directed graph with n vertices and $m \geq n$ edges.
- Two vertices: source/target $s, t \in V$.

Goal:

Compute a shortest $s \rightarrow t$ path in G .

The shortest path problem

Input:

- $G = (V, E)$: a weighted directed graph with n vertices and $m \geq n$ edges.
- Two vertices: source/target $s, t \in V$.

Goal:

Compute a shortest $s \rightarrow t$ path in G .

We want to solve the problem:

- exactly,

The shortest path problem

Input:

- $G = (V, E)$: a weighted directed graph with n vertices and $m \geq n$ edges.
- Two vertices: source/target $s, t \in V$.

Goal:

Compute a shortest $s \rightarrow t$ path in G .

We want to solve the problem:

- exactly,
- fast in the worst case (asymptotically).

SSSP

Some facts:

- In general, solving the problem for all targets $t \in V$ does not look any easier.

SSSP

Some facts:

- In general, solving the problem for all targets $t \in V$ does not look any easier.
- Finding paths not easier than computing optimal path lengths (distances).

SSSP

Some facts:

- In general, solving the problem for all targets $t \in V$ does not look any easier.
- Finding paths not easier than computing optimal path lengths (distances).

Single-Source Shortest Paths (SSSP): [vague]

Given a weighted directed graph $G = (V, E)$ with n vertices and m edges, and a source $s \in V$, compute $\text{dist}_G(s, t)$ for all $t \in V$.

SSSP

Some facts:

- In general, solving the problem for all targets $t \in V$ does not look any easier.
- Finding paths not easier than computing optimal path lengths (distances).

Single-Source Shortest Paths (SSSP): [vague]

Given a weighted directed graph $G = (V, E)$ with n vertices and m edges, and a source $s \in V$, compute $\text{dist}_G(s, t)$ for all $t \in V$.

Well-defined:

$|\text{dist}_G(u, v)| \neq \infty$ for all $u, v \in V$

Equiv: every pair reachable

no negative-weight cycles in G .

SSSP

Some facts:

- In general, solving the problem for all targets $t \in V$ does not look any easier.
- Finding paths not easier than computing optimal path lengths (distances).

Single-Source Shortest Paths (SSSP): [vague]

Given a weighted directed graph $G = (V, E)$ with n vertices and m edges, and a source $s \in V$, compute $\text{dist}_G(s, t)$ for all $t \in V$.

Notation:

- $\text{poly}(n)$, $\text{poly}(n, m)$; $\text{polylog}(n) = \log^{O(1)} n$,
- $\tilde{O}(f(n, m)) := O(f(n, m)\text{polylog}(n))$.
- $w(uv) :=$ weight of a (directed) edge uv .

Well-defined:

$|\text{dist}_G(u, v)| \neq \infty$ for all $u, v \in V$

Equiv: every pair reachable

no negative-weight cycles in G .

(obsolete) Manual for solving SSSP

Single-Source Shortest Paths (SSSP): [vague]

Given a weighted directed graph $G = (V, E)$ with n vertices and m edges, and a source $s \in V$, compute $\text{dist}_G(s, t)$ for all $t \in V$.

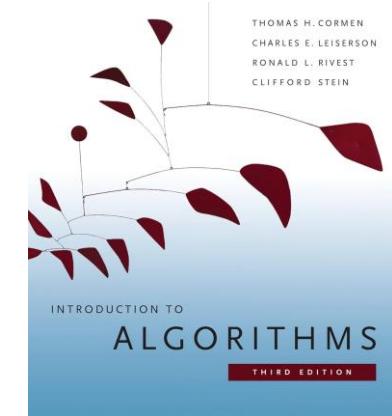
Does G have only
non-negative weights?

(obsolete) Manual for solving SSSP

Single-Source Shortest Paths (SSSP): [vague]

Given a weighted directed graph $G = (V, E)$ with n vertices and m edges, and a source $s \in V$, compute $\text{dist}_G(s, t)$ for all $t \in V$.

Does G have only
non-negative weights?



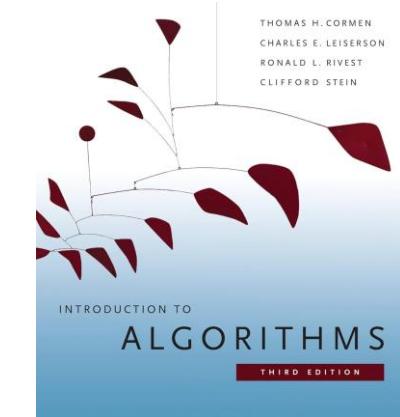
(obsolete) Manual for solving SSSP

Single-Source Shortest Paths (SSSP): [vague]

Given a weighted directed graph $G = (V, E)$ with n vertices and m edges, and a source $s \in V$, compute $\text{dist}_G(s, t)$ for all $t \in V$.

Does G have only
non-negative weights?

Yes? Use Dijkstra's algorithm ('56).
 $O(m + n \log n)$ time [FT'86].



Or $O(m \log n)$ time without fancy data structures.

(obsolete) Manual for solving SSSP

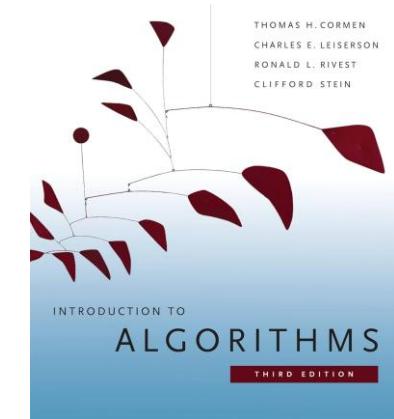
Single-Source Shortest Paths (SSSP): [vague]

Given a weighted directed graph $G = (V, E)$ with n vertices and m edges, and a source $s \in V$, compute $\text{dist}_G(s, t)$ for all $t \in V$.

Does G have only
non-negative weights?

Yes? Use Dijkstra's algorithm ('56).
 $O(m + n \log n)$ time [FT'86].

No? Use Bellman-Ford algorithm ('56).
 $O(m \cdot n)$ time.



Or $O(m \log n)$ time without fancy data structures.

Bellman-Ford recap

- If SSSP is well-defined, then an optimal path $P_{st} = s \rightarrow t$ has $< n$ edges.

Bellman-Ford recap

- If SSSP is well-defined, then an optimal path $P_{st} = s \rightarrow t$ has $< n$ edges.
- Let P_{sv}^k be the shortest out of $s \rightarrow v$ paths with at most k edges, i.e., $P_{st} = P_{s,t}^n$.

Bellman-Ford recap

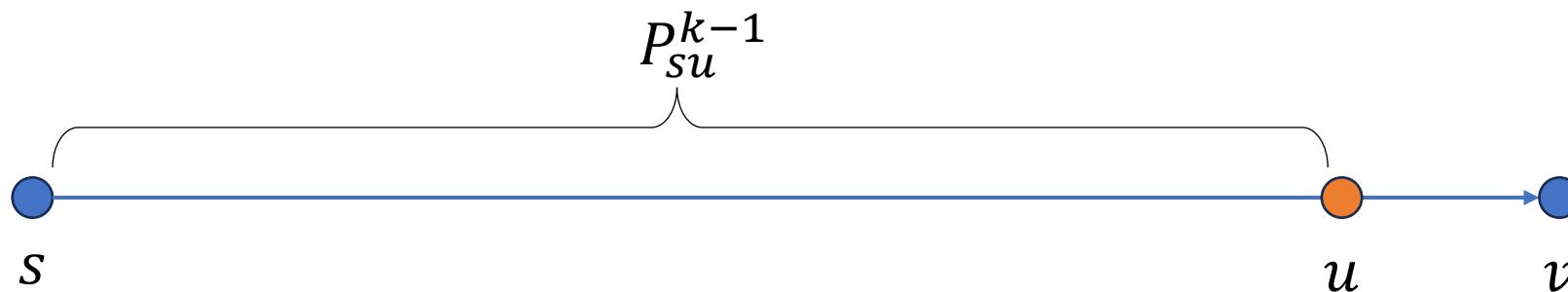
- If SSSP is well-defined, then an optimal path $P_{st} = s \rightarrow t$ has $< n$ edges.
- Let P_{sv}^k be the shortest out of $s \rightarrow v$ paths with at most k edges, i.e., $P_{st} = P_{s,t}^n$.
- The (weight of) P_{sv}^k can be computed inductively:
 - Either it is an empty path, which can only exist if $s = v$.

Bellman-Ford recap

- If SSSP is well-defined, then an optimal path $P_{st} = s \rightarrow t$ has $< n$ edges.
- Let P_{sv}^k be the shortest out of $s \rightarrow v$ paths with at most k edges, i.e., $P_{st} = P_{s,t}^n$.
- The (weight of) P_{sv}^k can be computed inductively:
 - Either it is an empty path, which can only exist if $s = v$.
 - Or it ends with some edge $uv \in E$, and starts with P_{su}^{k-1} ; try all of them.

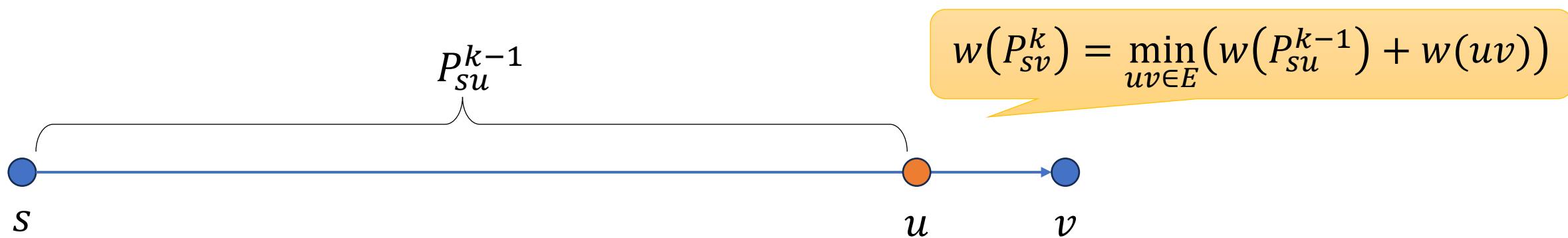
Bellman-Ford recap

- If SSSP is well-defined, then an optimal path $P_{st} = s \rightarrow t$ has $< n$ edges.
- Let P_{sv}^k be the shortest out of $s \rightarrow v$ paths with at most k edges, i.e., $P_{st} = P_{s,t}^n$.
- The (weight of) P_{sv}^k can be computed inductively:
 - Either it is an empty path, which can only exist if $s = v$.
 - Or it ends with some edge $uv \in E$, and starts with P_{su}^{k-1} ; try all of them.



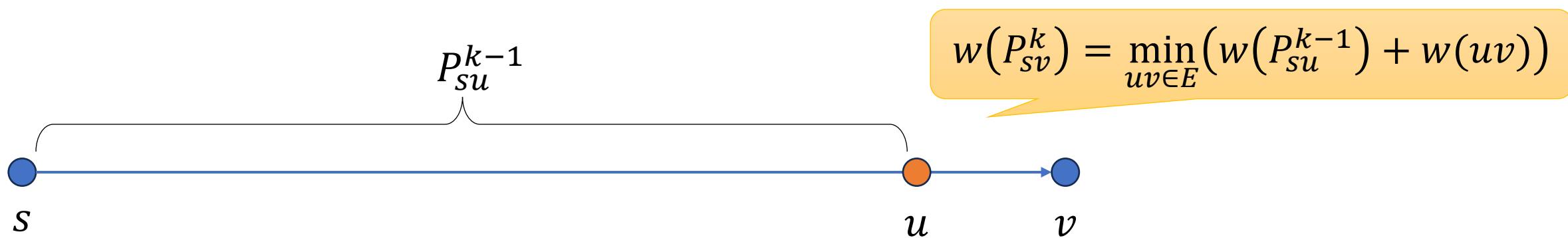
Bellman-Ford recap

- If SSSP is well-defined, then an optimal path $P_{st} = s \rightarrow t$ has $< n$ edges.
- Let P_{sv}^k be the shortest out of $s \rightarrow v$ paths with at most k edges, i.e., $P_{st} = P_{s,t}^n$.
- The (weight of) P_{sv}^k can be computed inductively:
 - Either it is an empty path, which can only exist if $s = v$.
 - Or it ends with some edge $uv \in E$, and starts with P_{su}^{k-1} ; try all of them.



Bellman-Ford recap

- If SSSP is well-defined, then an optimal path $P_{st} = s \rightarrow t$ has $< n$ edges.
- Let P_{sv}^k be the shortest out of $s \rightarrow v$ paths with at most k edges, i.e., $P_{st} = P_{s,t}^n$.
- The (weight of) P_{sv}^k can be computed inductively:
 - Either it is an empty path, which can only exist if $s = v$.
 - Or it ends with some edge $uv \in E$, and starts with P_{su}^{k-1} ; try all of them.



All weights of P_{st}^k for $t \in V$, $k = 0, \dots, n$ and can be computed in $\mathcal{O}(m \cdot n)$ time.

Dijkstra recap (non-negative weights)

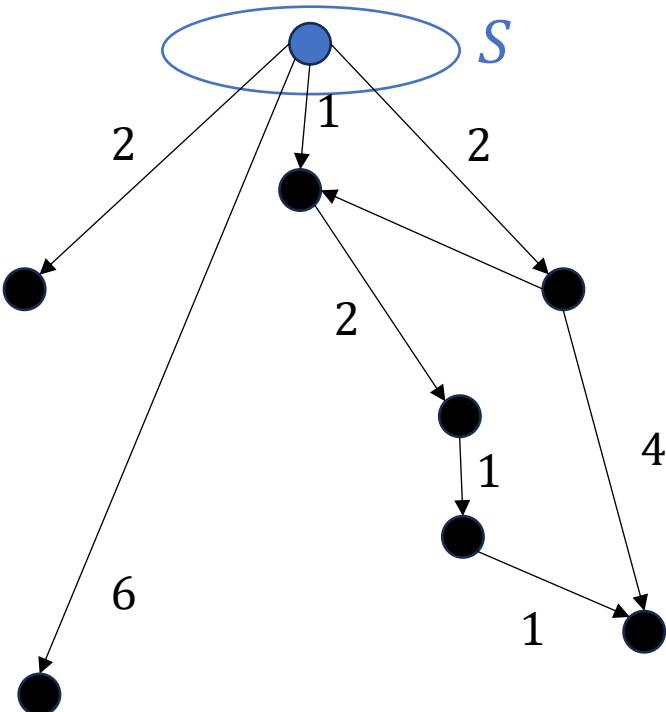
- Suppose we have established correct distances to the k nearest vertices $S \subseteq V$.

Dijkstra recap (non-negative weights)

- Suppose we have established correct distances to the k nearest vertices $S \subseteq V$.
- Then the $(k + 1)$ -th nearest vertex is the one „closest via a **single edge**” from S .

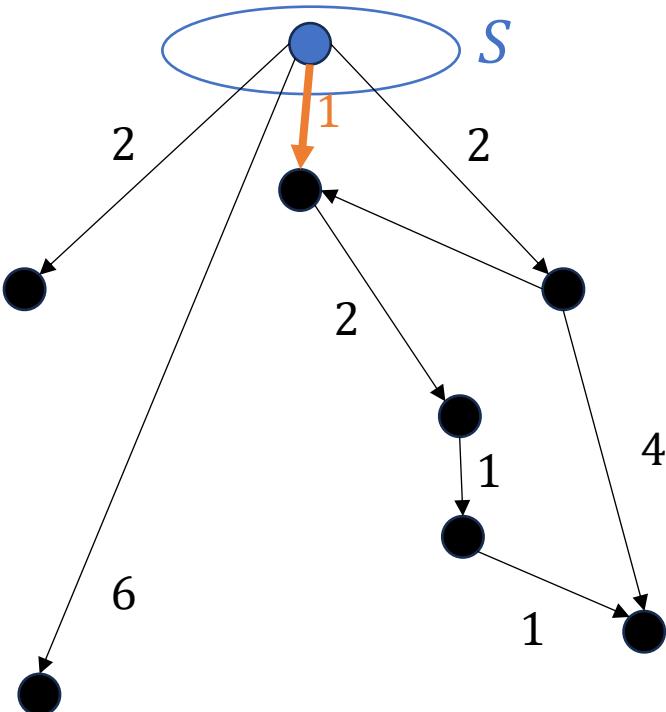
Dijkstra recap (non-negative weights)

- Suppose we have established correct distances to the k nearest vertices $S \subseteq V$.
- Then the $(k + 1)$ -th nearest vertex is the one „closest via a **single edge**” from S .



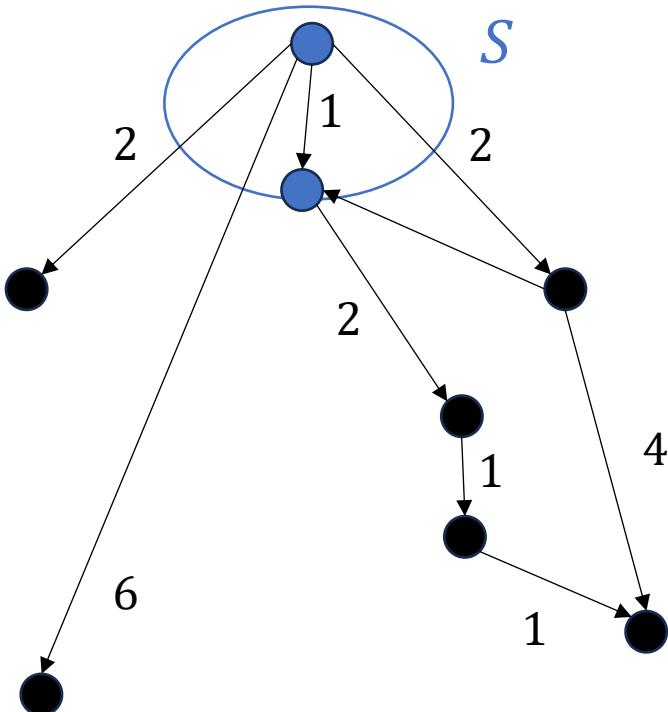
Dijkstra recap (non-negative weights)

- Suppose we have established correct distances to the k nearest vertices $S \subseteq V$.
- Then the $(k + 1)$ -th nearest vertex is the one „closest via a **single edge**” from S .



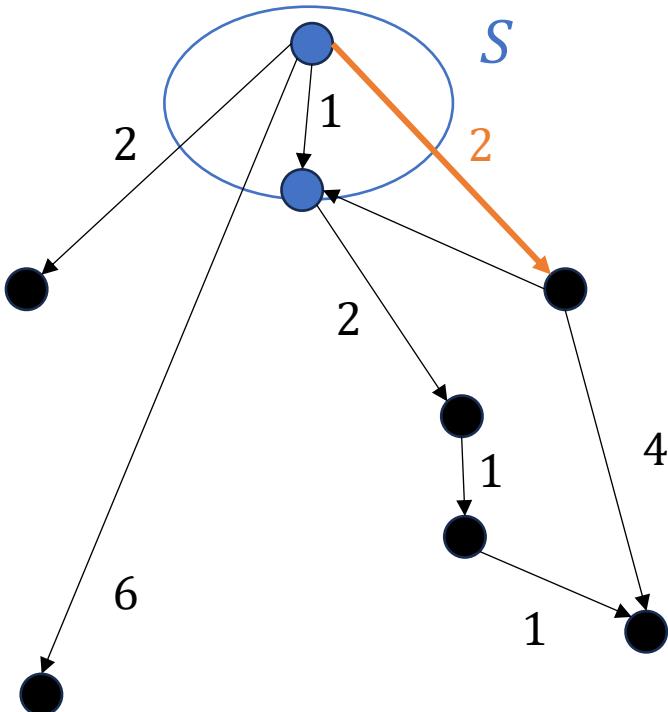
Dijkstra recap (non-negative weights)

- Suppose we have established correct distances to the k nearest vertices $S \subseteq V$.
- Then the $(k + 1)$ -th nearest vertex is the one „closest via a **single edge**” from S .



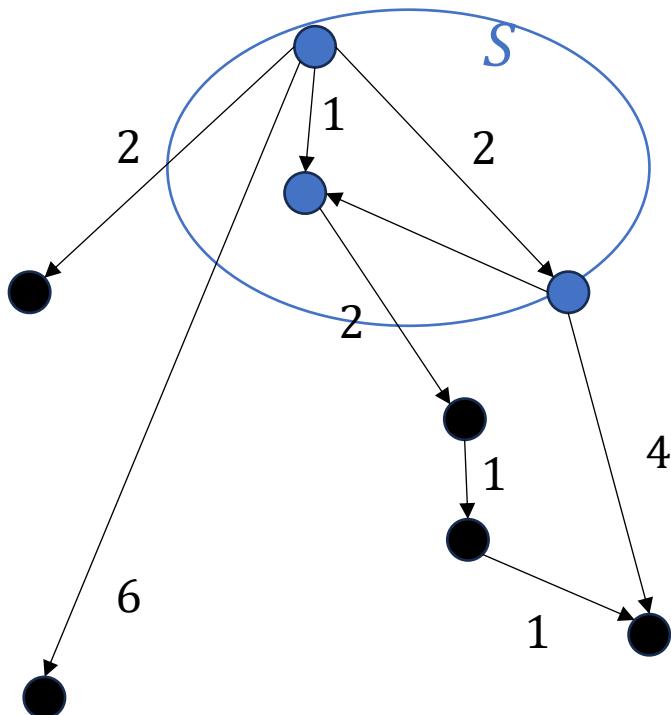
Dijkstra recap (non-negative weights)

- Suppose we have established correct distances to the k nearest vertices $S \subseteq V$.
- Then the $(k + 1)$ -th nearest vertex is the one „closest via a **single edge**” from S .



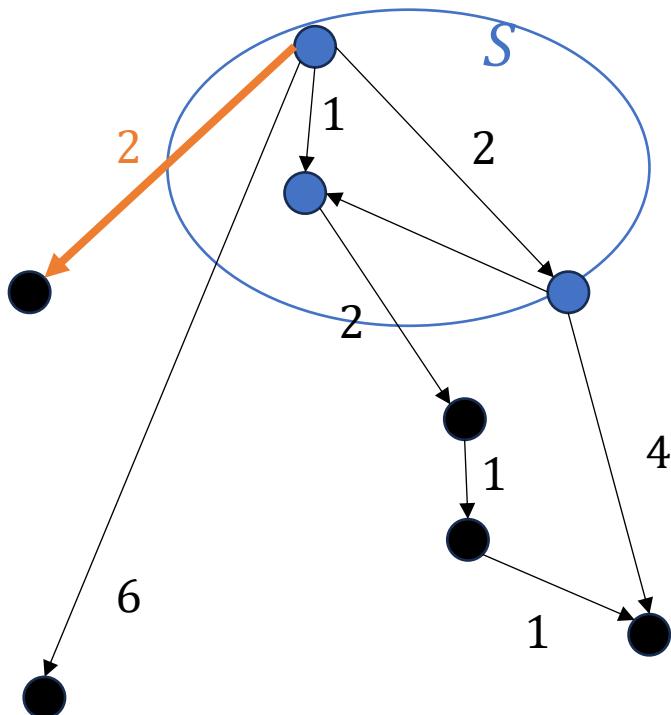
Dijkstra recap (non-negative weights)

- Suppose we have established correct distances to the k nearest vertices $S \subseteq V$.
- Then the $(k + 1)$ -th nearest vertex is the one „closest via a **single edge**” from S .



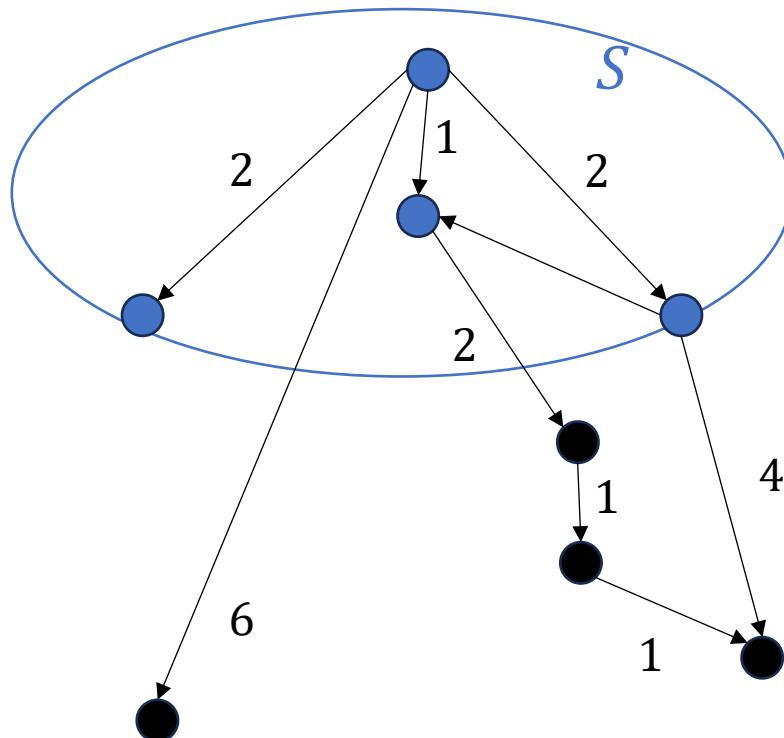
Dijkstra recap (non-negative weights)

- Suppose we have established correct distances to the k nearest vertices $S \subseteq V$.
- Then the $(k + 1)$ -th nearest vertex is the one „closest via a **single edge**” from S .



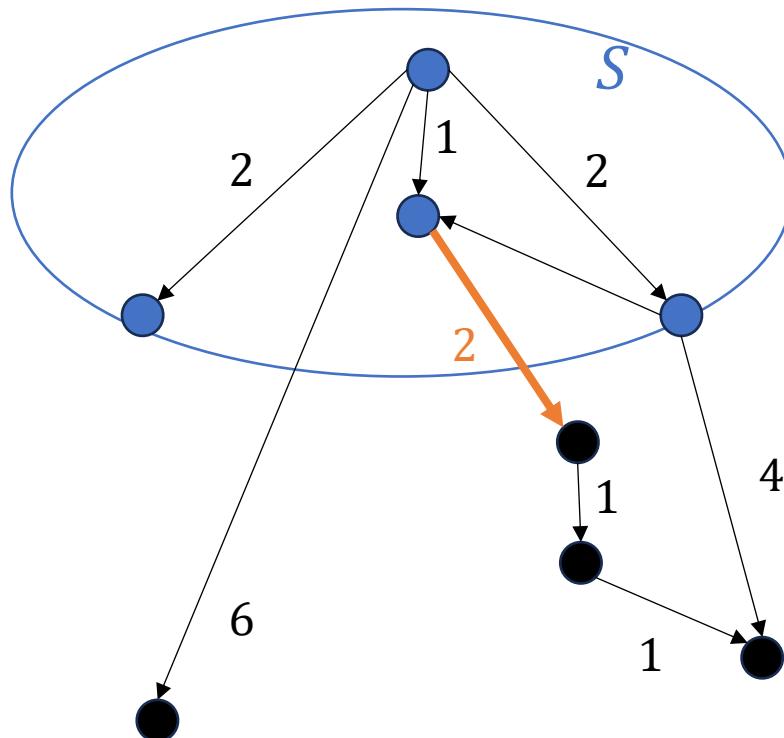
Dijkstra recap (non-negative weights)

- Suppose we have established correct distances to the k nearest vertices $S \subseteq V$.
- Then the $(k + 1)$ -th nearest vertex is the one „closest via a **single edge**” from S .



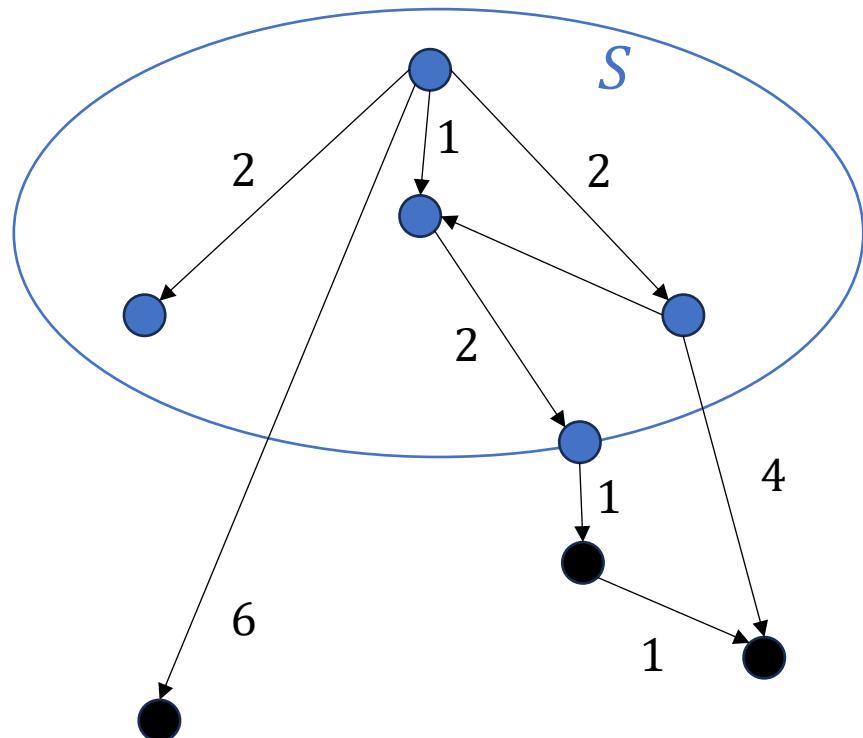
Dijkstra recap (non-negative weights)

- Suppose we have established correct distances to the k nearest vertices $S \subseteq V$.
- Then the $(k + 1)$ -th nearest vertex is the one „closest via a **single edge**” from S .



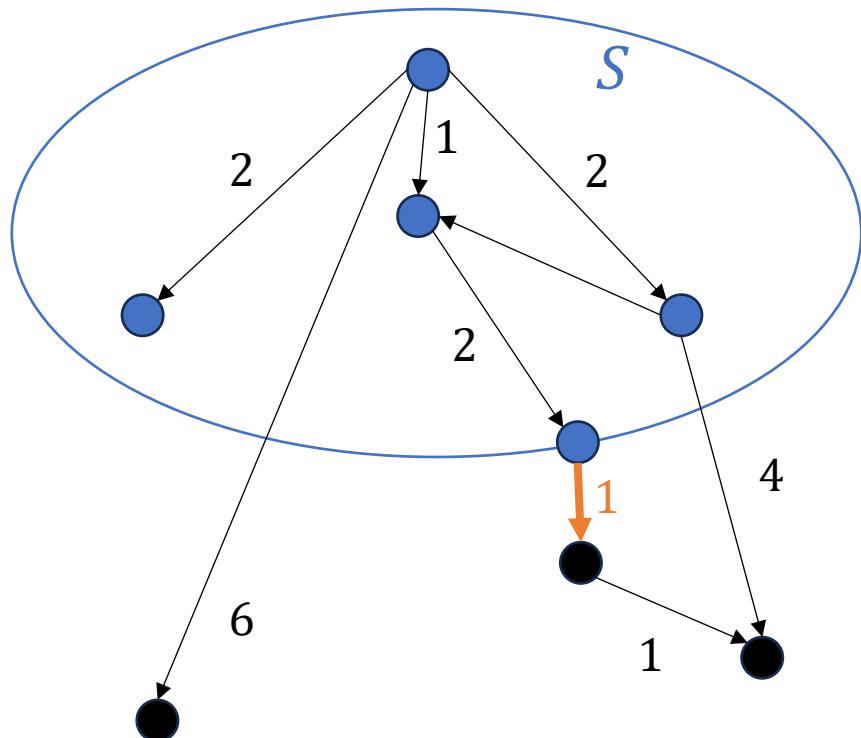
Dijkstra recap (non-negative weights)

- Suppose we have established correct distances to the k nearest vertices $S \subseteq V$.
- Then the $(k + 1)$ -th nearest vertex is the one „closest via a **single edge**” from S .



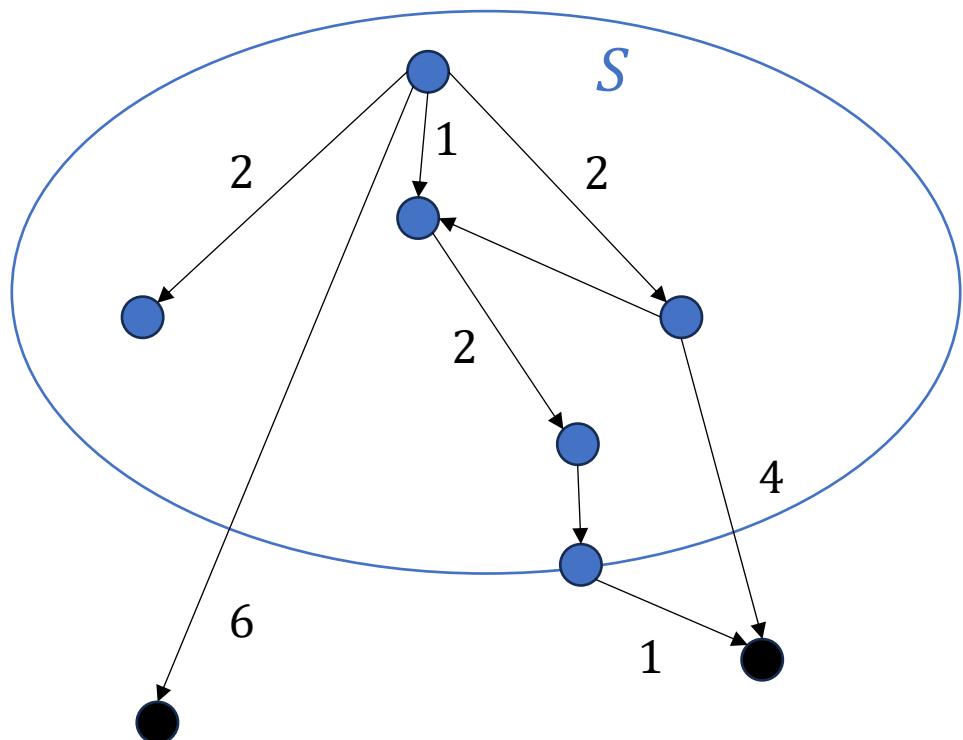
Dijkstra recap (non-negative weights)

- Suppose we have established correct distances to the k nearest vertices $S \subseteq V$.
- Then the $(k + 1)$ -th nearest vertex is the one „closest via a **single edge**” from S .



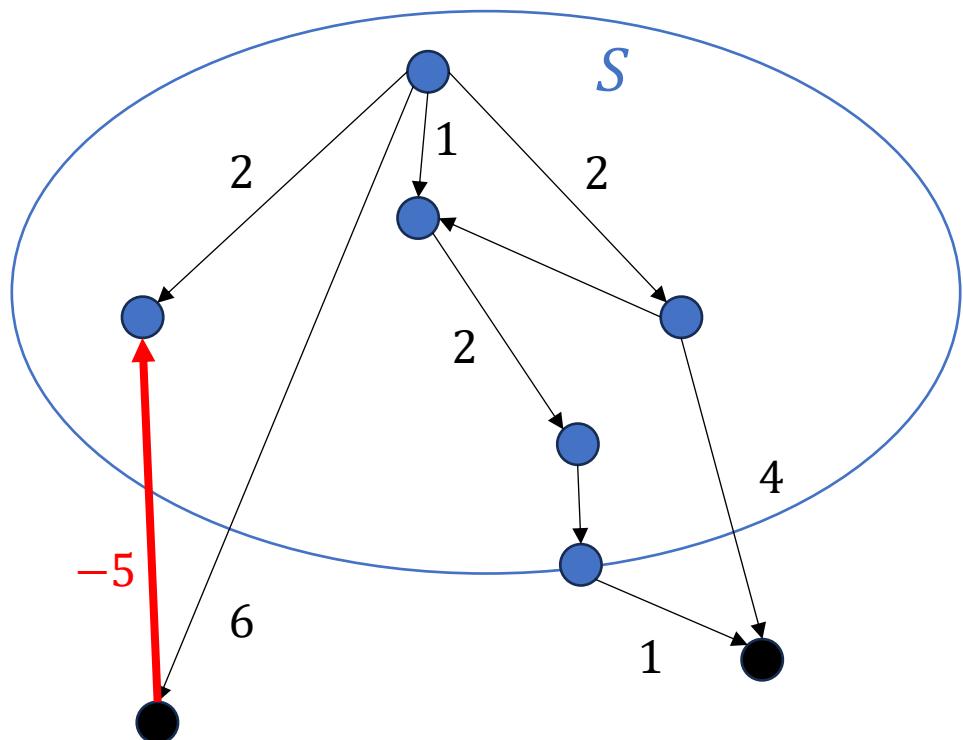
Dijkstra recap (non-negative weights)

- Suppose we have established correct distances to the k nearest vertices $S \subseteq V$.
- Then the $(k + 1)$ -th nearest vertex is the one „closest via a **single edge**” from S .



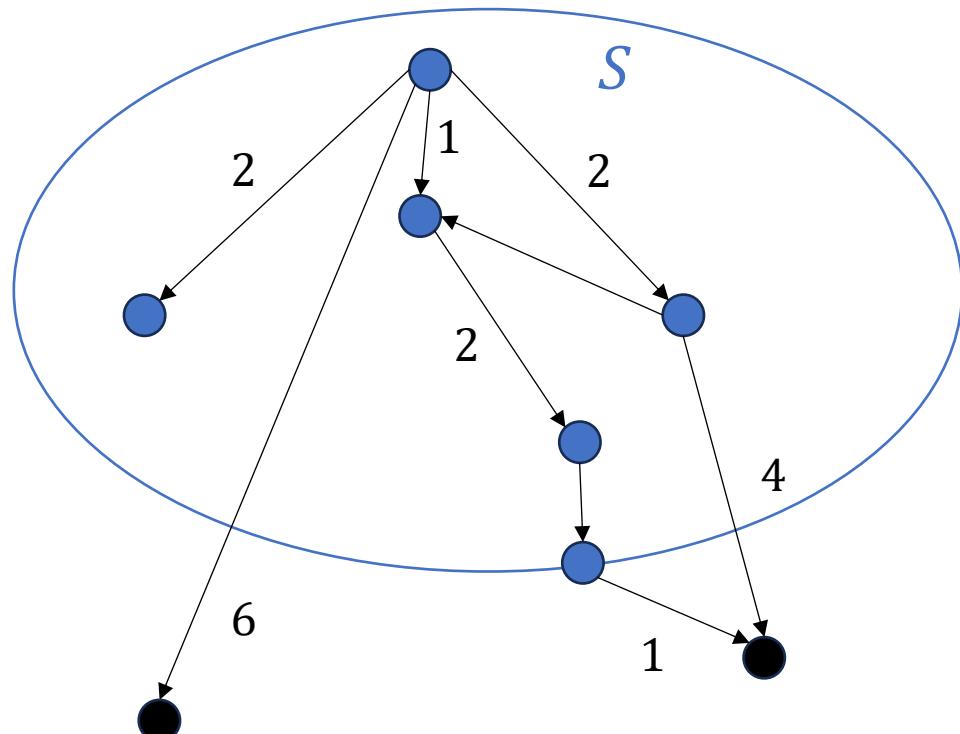
Dijkstra recap (non-negative weights)

- Suppose we have established correct distances to the k nearest vertices $S \subseteq V$.
- Then the $(k + 1)$ -th nearest vertex is the one „closest via a **single edge**” from S .



Dijkstra recap (non-negative weights)

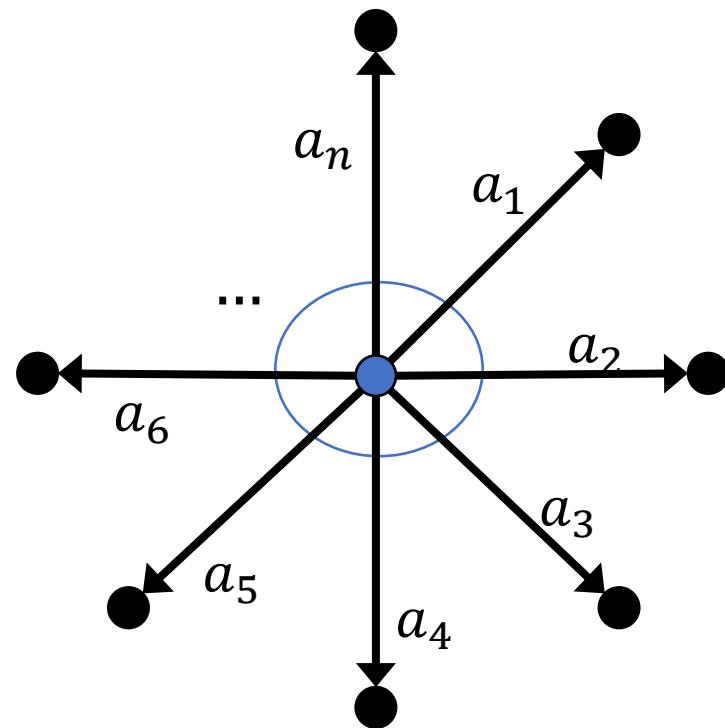
- Suppose we have established correct distances to the k nearest vertices $S \subseteq V$.
- Then the $(k + 1)$ -th nearest vertex is the one „closest via a **single edge**” from S .



A data structure called a priority queue allows finding the next nearest vertex in $O(\log n)$ time.

Dijkstra recap (non-negative weights)

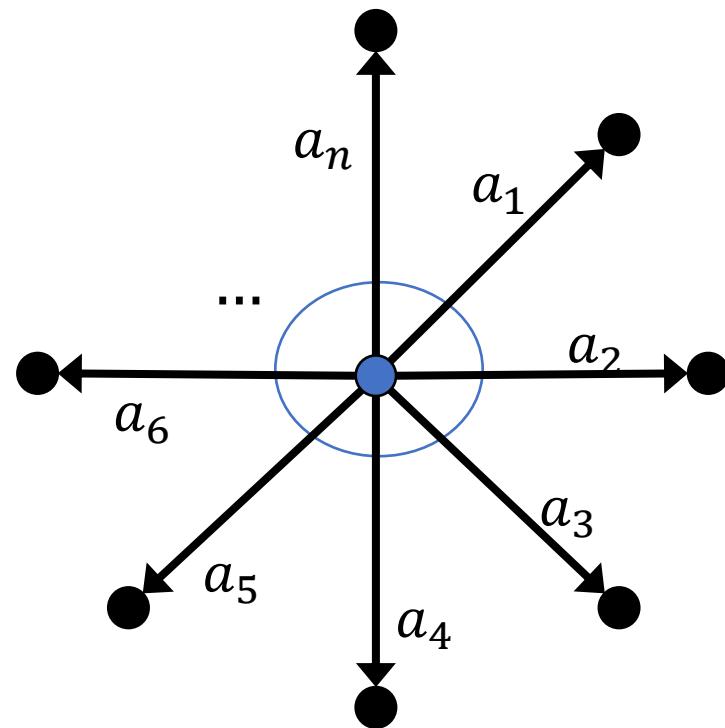
- Suppose we have established correct distances to the k nearest vertices $S \subseteq V$.
- Then the $(k + 1)$ -th nearest vertex is the one „closest via a **single edge**” from S .



A data structure called a priority queue allows finding the next nearest vertex in $O(\log n)$ time.

Dijkstra recap (non-negative weights)

- Suppose we have established correct distances to the k nearest vertices $S \subseteq V$.
- Then the $(k + 1)$ -th nearest vertex is the one „closest via a **single edge**” from S .

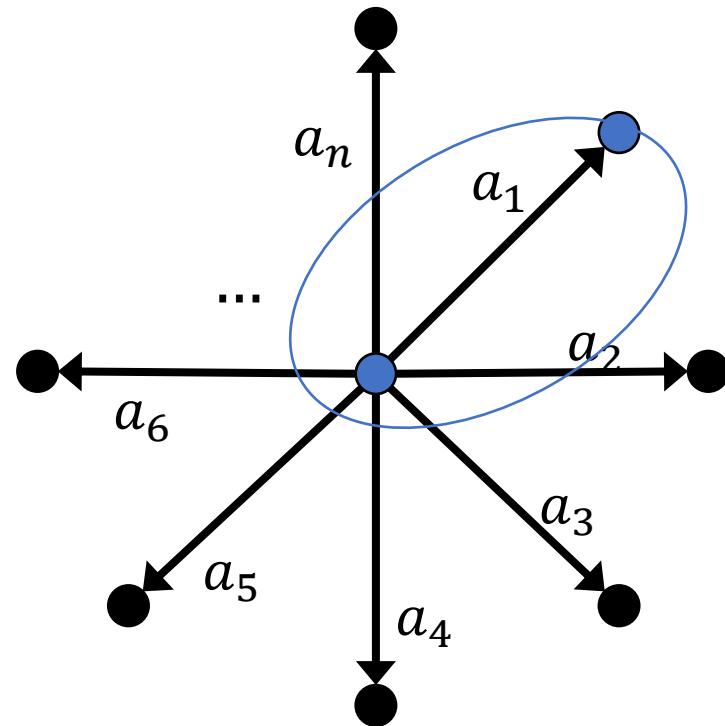


A data structure called a priority queue allows finding the next nearest vertex in $O(\log n)$ time.

If $a_1 < a_2 < \dots < a_n$, Dijkstra's alg. visits vertices specifically in this order.

Dijkstra recap (non-negative weights)

- Suppose we have established correct distances to the k nearest vertices $S \subseteq V$.
- Then the $(k + 1)$ -th nearest vertex is the one „closest via a **single edge**” from S .

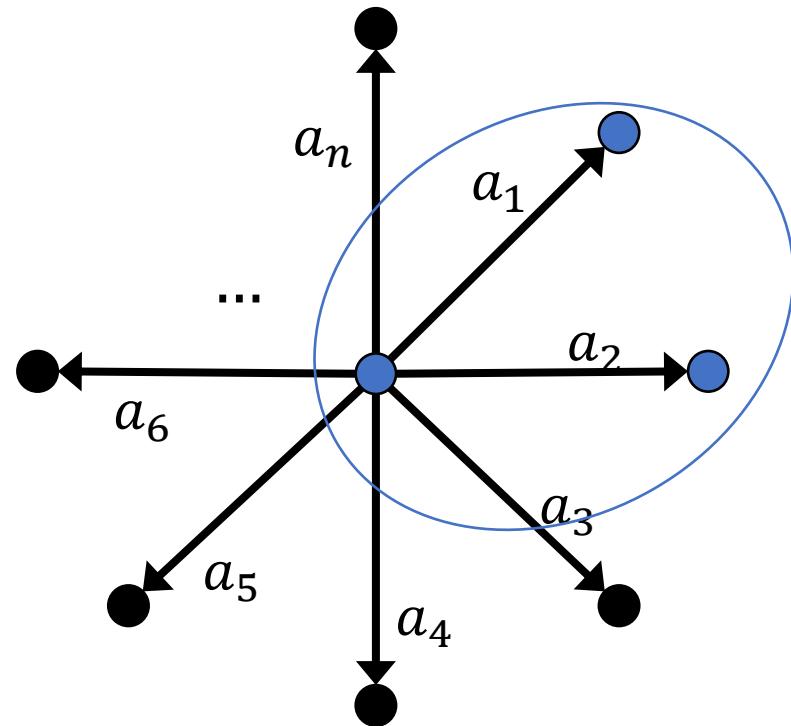


A data structure called a priority queue allows finding the next nearest vertex in $O(\log n)$ time.

If $a_1 < a_2 < \dots < a_n$, Dijkstra's alg. visits vertices specifically in this order.

Dijkstra recap (non-negative weights)

- Suppose we have established correct distances to the k nearest vertices $S \subseteq V$.
- Then the $(k + 1)$ -th nearest vertex is the one „closest via a **single edge**” from S .

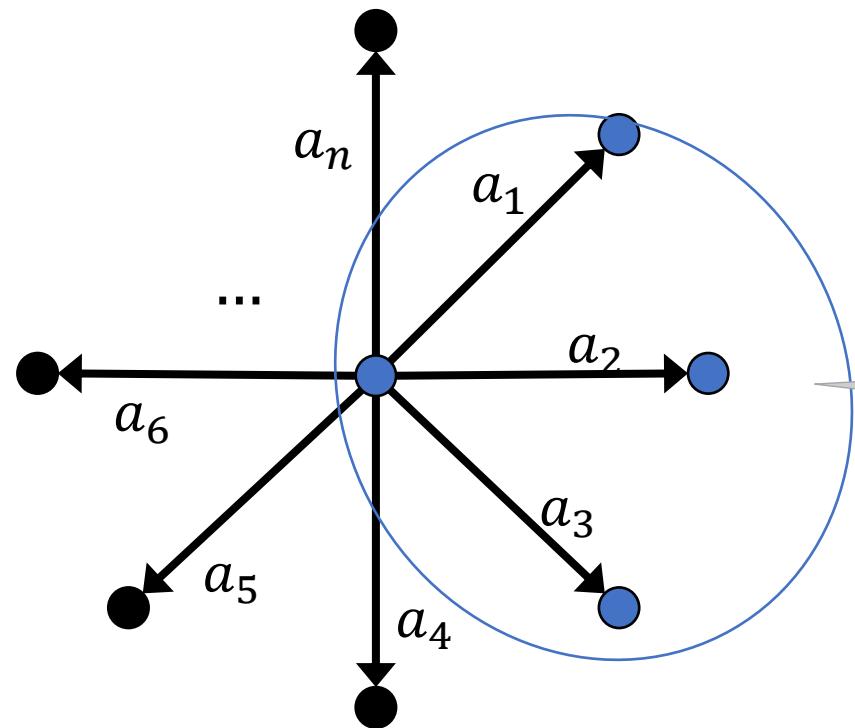


A data structure called a priority queue allows finding the next nearest vertex in $O(\log n)$ time.

If $a_1 < a_2 < \dots < a_n$, Dijkstra's alg. visits vertices specifically in this order.

Dijkstra recap (non-negative weights)

- Suppose we have established correct distances to the k nearest vertices $S \subseteq V$.
- Then the $(k + 1)$ -th nearest vertex is the one „closest via a **single edge**” from S .

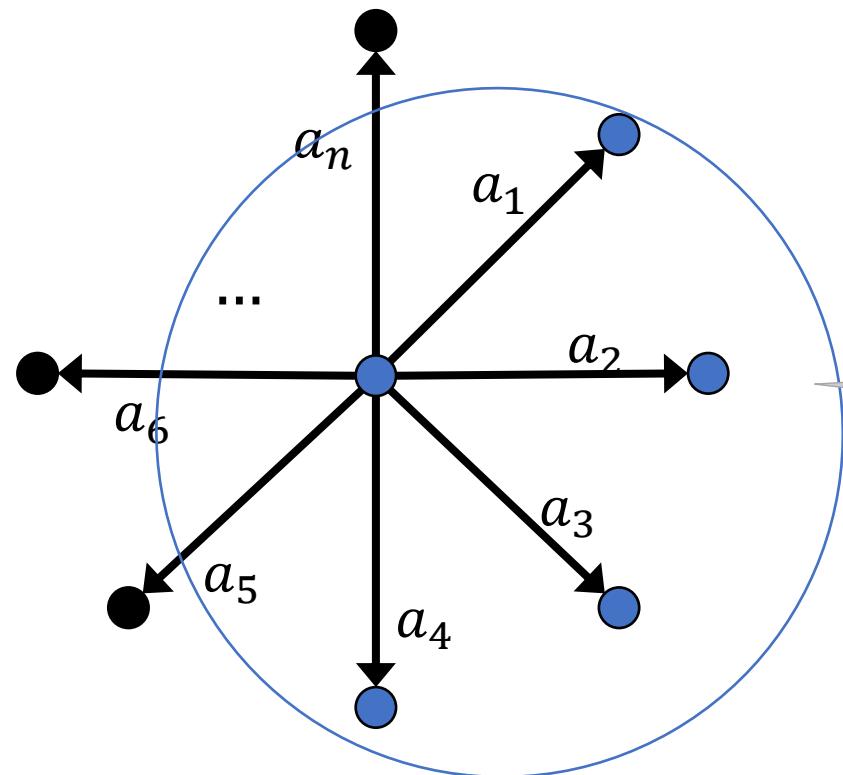


A data structure called a priority queue allows finding the next nearest vertex in $O(\log n)$ time.

If $a_1 < a_2 < \dots < a_n$, Dijkstra's alg. visits vertices specifically in this order.

Dijkstra recap (non-negative weights)

- Suppose we have established correct distances to the k nearest vertices $S \subseteq V$.
- Then the $(k + 1)$ -th nearest vertex is the one „closest via a **single edge**” from S .

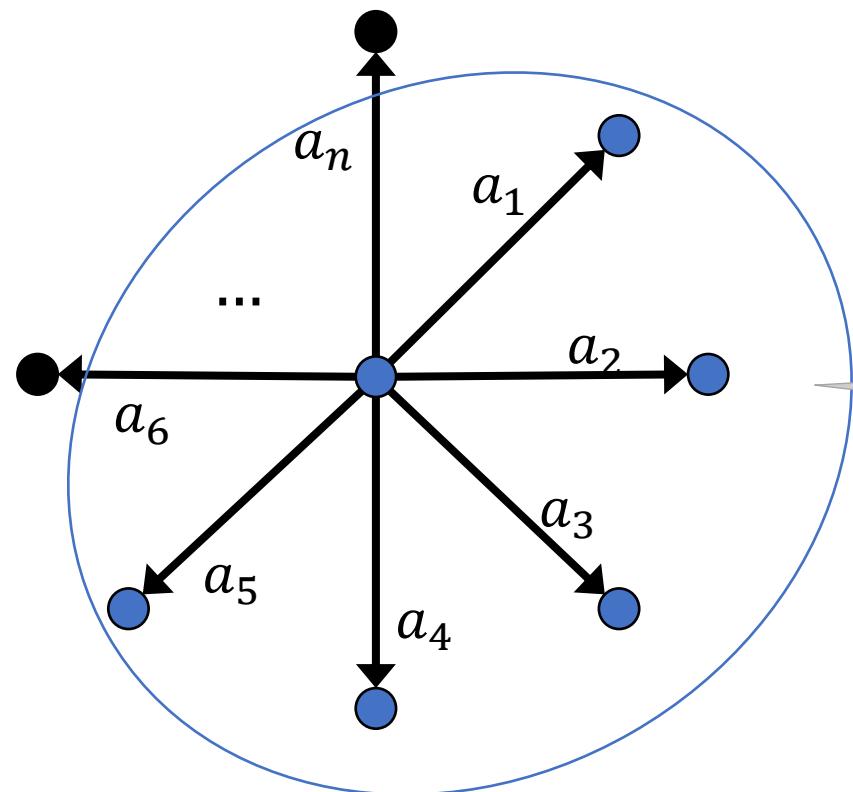


A data structure called a priority queue allows finding the next nearest vertex in $O(\log n)$ time.

If $a_1 < a_2 < \dots < a_n$, Dijkstra's alg. visits vertices specifically in this order.

Dijkstra recap (non-negative weights)

- Suppose we have established correct distances to the k nearest vertices $S \subseteq V$.
- Then the $(k + 1)$ -th nearest vertex is the one „closest via a **single edge**” from S .

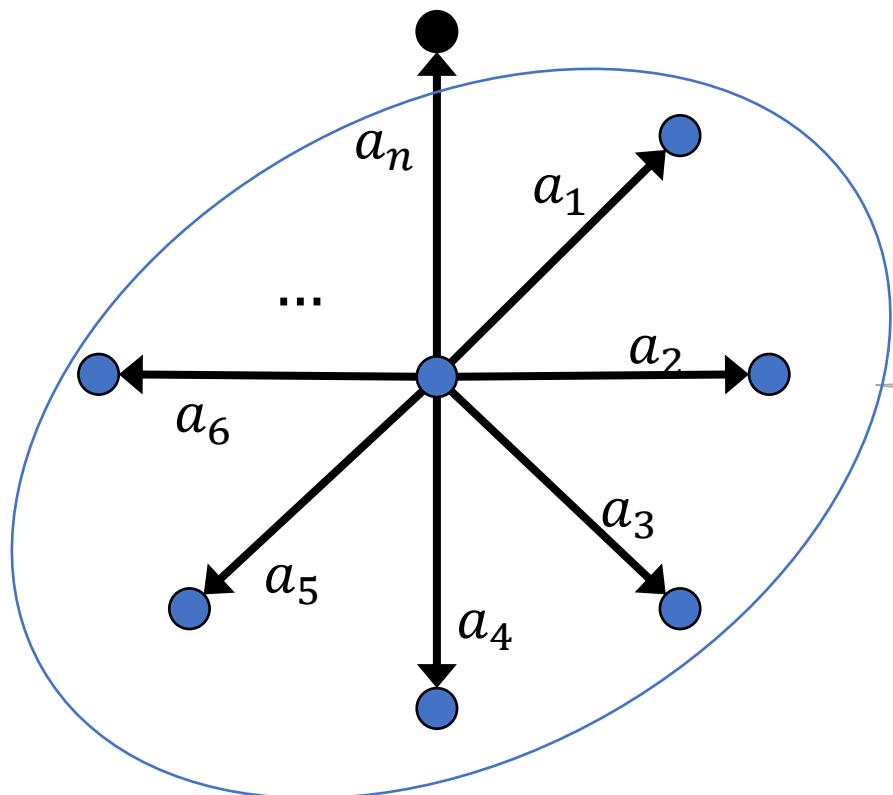


A data structure called a priority queue allows finding the next nearest vertex in $O(\log n)$ time.

If $a_1 < a_2 < \dots < a_n$, Dijkstra's alg. visits vertices specifically in this order.

Dijkstra recap (non-negative weights)

- Suppose we have established correct distances to the k nearest vertices $S \subseteq V$.
- Then the $(k + 1)$ -th nearest vertex is the one „closest via a **single edge**” from S .

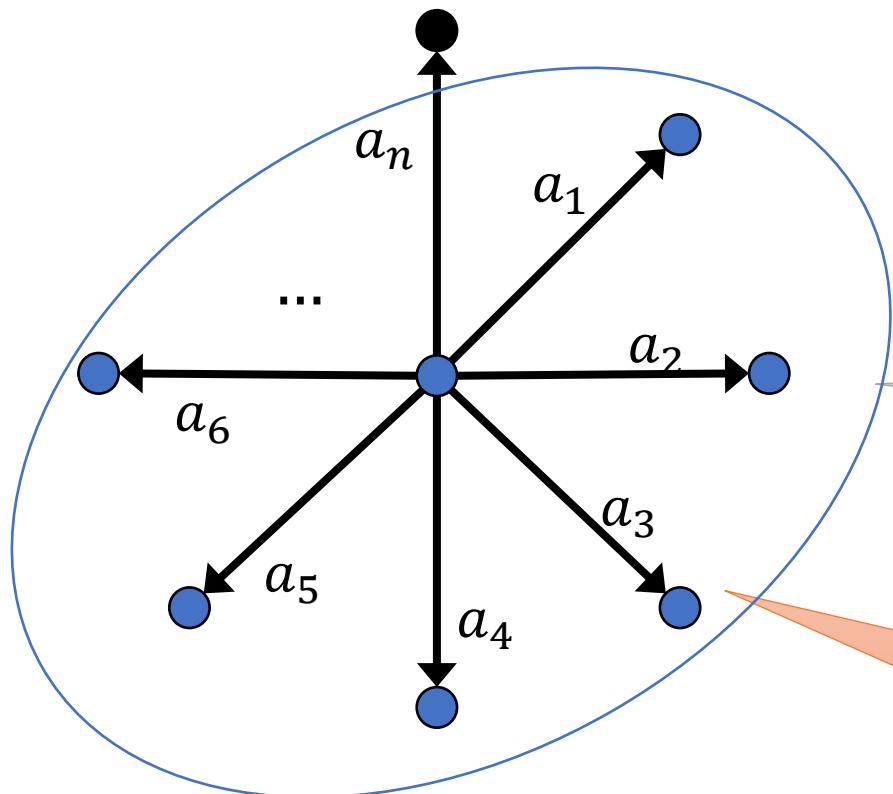


A data structure called a priority queue allows finding the next nearest vertex in $O(\log n)$ time.

If $a_1 < a_2 < \dots < a_n$, Dijkstra's alg. visits vertices specifically in this order.

Dijkstra recap (non-negative weights)

- Suppose we have established correct distances to the k nearest vertices $S \subseteq V$.
- Then the $(k + 1)$ -th nearest vertex is the one „closest via a **single edge**” from S .



A data structure called a priority queue allows finding the next nearest vertex in $O(\log n)$ time.

If $a_1 < a_2 < \dots < a_n$, Dijkstra's alg. visits vertices specifically in this order.

Sorting with binary comparisons requires $\log_2 n! = \Omega(n \log n)$ comparisons.

Recent breakthroughs

- 1) FOCS 2022 Best Paper Award (Bernstein, Nanongkai, Wulff-Nilsen):
“Negative-Weight Single-Source Shortest Paths in Near-linear Time”
- 2) STOC 2024 Best Paper Award (Fineman):
“Single-Source Shortest Paths with Negative Real Weights in $\tilde{O}(mn^{8/9})$ Time”
- 3) STOC 2025 Best Paper Award (Duan, Mao, Mao, Shu, Yin):
“Breaking the Sorting Barrier for Directed Single-Source Shortest Paths”

Recent breakthroughs

- 1) FOCS 2022 Best Paper Award (Bernstein, Nanongkai, Wulff-Nilsen):
“Negative-Weight Single-Source Shortest Paths in Near-linear Time”
- 2) STOC 2024 Best Paper Award (Fineman):
“Single-Source Shortest Paths with Negative Real Weights in $\tilde{O}(mn^{8/9})$ Time”
- 3) STOC 2025 Best Paper Award (Duan, Mao, Mao, Shu, Yin):
“Breaking the Sorting Barrier for Directed Single-Source Shortest Paths”

Recent breakthroughs

- 1) FOCS 2022 Best Paper Award (Bernstein, Nanongkai, Wulff-Nilsen):
“Negative-Weight Single-Source Shortest Paths in Near-linear Time”
- 2) STOC 2024 Best Paper Award (Fineman):
“Single-Source Shortest Paths with Negative Real Weights in $\tilde{O}(mn^{8/9})$ Time”
- 3) STOC 2025 Best Paper Award (Duan, Mao, Mao, Shu, Yin):
“Breaking the Sorting Barrier for Directed Single-Source Shortest Paths”

Non-negative real weights.

Recent breakthroughs

Integer weights.

- 1) FOCS 2022 Best Paper Award (Bernstein, Nanongkai, Wulff-Nilsen):
“Negative-Weight Single-Source Shortest Paths in Near-linear Time”
- 2) STOC 2024 Best Paper Award (Fineman):
“Single-Source Shortest Paths with Negative Real Weights in $\tilde{O}(mn^{8/9})$ Time”
- 3) STOC 2025 Best Paper Award (Duan, Mao, Mao, Shu, Yin):
“Breaking the Sorting Barrier for Directed Single-Source Shortest Paths”

Non-negative real weights.

Recent breakthroughs

Integer weights.

- 1) FOCS 2022 Best Paper Award (Bernstein, Nanongkai, Wulff-Nilsen):
“Negative-Weight Single-Source Shortest Paths in Near-linear Time”
- 2) STOC 2024 Best Paper Award (Fineman):
“Single-Source Shortest Paths with Negative Real Weights in $\tilde{O}(mn^{8/9})$ Time”
- 3) STOC 2025 Best Paper Award (Duan, Mao, Mao, Shu, Yin):
“Breaking the Sorting Barrier for Directed Single-Source Shortest Paths”

Non-negative real weights.

➤ Real/integer regimes very different for SSSP.

Recent breakthroughs

Integer weights.

- 1) FOCS 2022 Best Paper Award (Bernstein, Nanongkai, Wulff-Nilsen):
“Negative-Weight Single-Source Shortest Paths in Near-linear Time”
- 2) STOC 2024 Best Paper Award (Fineman):
“Single-Source Shortest Paths with Negative Real Weights in $\tilde{O}(mn^{8/9})$ Time”
- 3) STOC 2025 Best Paper Award (Duan, Mao, Mao, Shu, Yin):
“Breaking the Sorting Barrier for Directed Single-Source Shortest Paths”

Non-negative real weights.

- Real/integer regimes very different for SSSP.
- What does it even mean to solve optimization problems on real numbers?

Exact optimization on real-weighted graphs

Real RAM:

- Integer-indexed memory cells store **infinite-precision real numbers**,
- basic arithmetic operations ($+$, $-$, \cdot , \div) and comparisons performed in **$O(1)$ time** in a black-box way.

Exact optimization on real-weighted graphs

Real RAM:

- Integer-indexed memory cells store **infinite-precision real numbers**,
- basic arithmetic operations ($+$, $-$, \cdot , \div) and comparisons performed in **$O(1)$ time** in a black-box way.

✓ Super convenient.

Exact optimization on real-weighted graphs

Real RAM:

- Integer-indexed memory cells store **infinite-precision real numbers**,
- basic arithmetic operations ($+$, $-$, \cdot , \div) and comparisons performed in **$O(1)$ time** in a black-box way.

- ✓ Super convenient.
- ✓ Not very realistic.

Exact optimization on real-weighted graphs

Real RAM:

- Integer-indexed memory cells store **infinite-precision real numbers**,
- basic arithmetic operations ($+$, $-$, \cdot , \div) and comparisons performed in **$O(1)$ time** in a black-box way.

✓ Super convenient.

✓ Not very realistic.

✓ Overpowered, e.g.:

- Integer division $[x/a]$ in **$O(1)$ time** \Rightarrow solve NP-hard problems in poly. time.

Exact optimization on real-weighted graphs

Real RAM:

- Integer-indexed memory cells store **infinite-precision real numbers**,
- basic arithmetic operations ($+$, $-$, \cdot , \div) and comparisons performed in **$O(1)$ time** in a black-box way.

✓ Super convenient.

✓ Not very realistic.

✓ Overpowered, e.g.:

- Integer division $[x/a]$ in $O(1)$ time \Rightarrow solve NP-hard problems in poly. time.
- Only $(+, <)$ \Rightarrow e.g., count triangles in a graph in $\tilde{O}(m)$ time.

Exact optimization on real-weighted graphs

Real RAM:

- Integer-indexed memory cells store **infinite-precision real numbers**,
- basic arithmetic operations ($+$, $-$, \cdot , \div) and comparisons performed in **$O(1)$ time** in a black-box way.

- Still, likely the best model for truly exact computation we've got...
- ... if we do not abuse it. E.g. we can:
 - promise to only ever compute values from a natural restricted domain.

Exact optimization on real-weighted graphs

Real RAM:

- Integer-indexed memory cells store **infinite-precision real numbers**,
- basic arithmetic operations ($+$, $-$, \cdot , \div) and comparisons performed in **$O(1)$ time** in a black-box way.

- Still, likely the best model for truly exact computation we've got...
- ... if we do not abuse it. E.g. we can:
 - promise to only ever compute values from a natural restricted domain.
 - promise to use polynomial space if mapped to a realistic model.

Exact optimization on real-weighted graphs

Real RAM:

- Integer-indexed memory cells store **infinite-precision real numbers**,
- basic arithmetic operations ($+$, $-$, \cdot , \div) and comparisons performed in **$O(1)$ time** in a black-box way.

- Still, likely the best model for truly exact computation we've got...
- ... if we do not abuse it. E.g. we can:
 - promise to only ever compute values from a natural restricted domain.
 - promise to use polynomial space if mapped to a realistic model.
- Green flag: running within the same time bound on a realistic model.

Recent breakthroughs (real weights)

- 1) FOCS 2022 Best Paper Award (Bernstein, Nanongkai, Wulff-Nilsen):
“Negative-Weight Single-Source Shortest Paths in Near-linear Time”
- 2) STOC 2024 Best Paper Award (Fineman):
“Single-Source Shortest Paths with Negative Real Weights in $\tilde{O}(mn^{8/9})$ Time”
- 3) STOC 2025 Best Paper Award (Duan, Mao, Mao, Shu, Yin):
“Breaking the Sorting Barrier for Directed Single-Source Shortest Paths”

Non-negative.

In both, all intermediate reals constructed are the graph's path lengths \Rightarrow no abuse!

Recent breakthroughs (real weights)

- 1) FOCS 2022 Best Paper Award (Bernstein, Nanongkai, Wulff-Nilsen):
“Negative-Weight Single-Source Shortest Paths in Near-linear Time”
- 2) STOC 2024 Best Paper Award (Fineman):
“Single-Source Shortest Paths with Negative Real Weights in $\tilde{O}(mn^{8/9})$ Time”
- 3) STOC 2025 Best Paper Award (Duan, Mao, Mao, Shu, Yin):
“Breaking the Sorting Barrier for Directed Single-Source Shortest Paths”

Non-negative.

Runs in $O(m \log^{2/3} n)$ time using $(+, <)$, thus cannot sort via comparisons!

Baseline: $O(m + n \log n)$

In both, all intermediate reals constructed are the graph's path lengths \Rightarrow no abuse!

Word RAM

Think C language, $w = 64$.
 n = “problem size”

Word RAM:

- Memory cells store w -bit integers, where $w = \Omega(\log n)$ is the word size.
- Arithmetic/bitwise/comparison operations on w -bit integers performed in $O(1)$ time.

Word RAM

Think C language, $w = 64$.
 n = “problem size”

Word RAM:

- Memory cells store w -bit integers, where $w = \Omega(\log n)$ is the word size.
- Arithmetic/bitwise/comparison operations on w -bit integers performed in $O(1)$ time.

- Intermediate values sums of $\text{poly}(n)$ input values → **still $O(w)$ -bit ints.**

Word RAM

Think C language, $w = 64$.
 n = “problem size”

Word RAM:

- Memory cells store w -bit integers, where $w = \Omega(\log n)$ is the word size.
- Arithmetic/bitwise/comparison operations on w -bit integers performed in $O(1)$ time.

- Intermediate values sums of $\text{poly}(n)$ input values \rightarrow **still $O(w)$ -bit ints.**
- Typically, for integer weights fitting in a word, real RAM bounds transfer to word RAM bounds.

Word RAM

Think C language, $w = 64$.
 n = “problem size”

Word RAM:

- Memory cells store w -bit integers, where $w = \Omega(\log n)$ is the word size.
- Arithmetic/bitwise/comparison operations on w -bit integers performed in $O(1)$ time.

- Intermediate values sums of $\text{poly}(n)$ input values \rightarrow still $O(w)$ -bit ints.
- Typically, for integer weights fitting in a word, real RAM bounds transfer to word RAM bounds.
- Literature: “exact” means “exact on integer input”.
 - For graphs: edge weights = integers fitting in a single word.

Word RAM

Think C language, $w = 64$.
 n = “problem size”

Word RAM:

- Memory cells store w -bit integers, where $w = \Omega(\log n)$ is the word size.
- Arithmetic/bitwise/comparison operations on w -bit integers performed in $O(1)$ time.

- Intermediate values sums of $\text{poly}(n)$ input values \rightarrow still $O(w)$ -bit ints.
- Typically, for integer weights fitting in a word, real RAM bounds transfer to word RAM bounds.
- Literature: “exact” means “exact on integer input”.
 - For graphs: edge weights = integers fitting in a single word.

For simplicity, let’s assume $w = \Theta(\log n) \Rightarrow$ absolute edge weights $\leq \text{poly}(n)$.

(obsolete) Manual for solving integer SSSP

Single-Source Shortest Paths (SSSP): [integer]

Given a directed graph $G = (V, E)$ with n vertices and m edges whose weights are integers fitting in words, and a source $s \in V$, compute $\text{dist}_G(s, t)$ for all $t \in V$.

Does G have only
non-negative weights?

(obsolete) Manual for solving integer SSSP

Single-Source Shortest Paths (SSSP): [integer]

Given a directed graph $G = (V, E)$ with n vertices and m edges whose weights are integers fitting in words, and a source $s \in V$, compute $\text{dist}_G(s, t)$ for all $t \in V$.

Does G have only
non-negative weights?

Yes? Use Dijkstra's algorithm
with a fancier priority queue.

$O(m + n \log \log n)$ time [Thorup '03].

Or faster; holds even for word size $\gg \log n$!

(obsolete) Manual for solving integer SSSP

Single-Source Shortest Paths (SSSP): [integer]

Given a directed graph $G = (V, E)$ with n vertices and m edges whose weights are integers fitting in words, and a source $s \in V$, compute $\text{dist}_G(s, t)$ for all $t \in V$.

Does G have only
non-negative weights?

Yes? Use Dijkstra's algorithm
with a fancier priority queue.

$\tilde{O}(m + n \log \log n)$ time [Thorup '03].

No? Use a “scaling” algorithm.
E.g. Gabow's $\tilde{O}(mn^{3/4})$ ('83)
Or Goldberg's $\tilde{O}(m\sqrt{n})$ ('93)

Or faster; holds even for word size $\gg \log n$!

Reweighting via Price functions

- Consider vertex prices $p(v)$ for all $v \in V$.

Reweighting via Price functions

- Consider vertex prices $p(v)$ for all $v \in V$.
- One can prove that for a well-defined SSSP problem there exist prices such that:

$$w(uv) + p(u) - p(v) \geq 0 \quad \text{for all edges } uv \in E$$

Reweighting via Price functions

- Consider vertex prices $p(v)$ for all $v \in V$.
- One can prove that for a well-defined SSSP problem there exist prices such that:

$$w(uv) + p(u) - p(v) \geq 0 \quad \text{for all edges } uv \in E$$

- $p(u) := \text{dist}_G(s, u)$ is one such function...

Reweighting via Price functions

- Consider vertex prices $p(v)$ for all $v \in V$.
- One can prove that for a well-defined SSSP problem there exist prices such that:

$$w(uv) + p(u) - p(v) \geq 0 \quad \text{for all edges } uv \in E$$

- $p(u) := \text{dist}_G(s, u)$ is one such function...
- Changing edge weights to:

$$w_p(uv) := w(uv) + p(u) - p(v) \geq 0.$$

Reweighting via Price functions

- Consider vertex prices $p(v)$ for all $v \in V$.
- One can prove that for a well-defined SSSP problem there exist prices such that:

$$w(uv) + p(u) - p(v) \geq 0 \quad \text{for all edges } uv \in E$$

- $p(u) := \text{dist}_G(s, u)$ is one such function...
- Changing edge weights to:

$$w_p(uv) := w(uv) + p(u) - p(v) \geq 0.$$

- 1) does not change the shortest paths structure,

Reweighting via Price functions

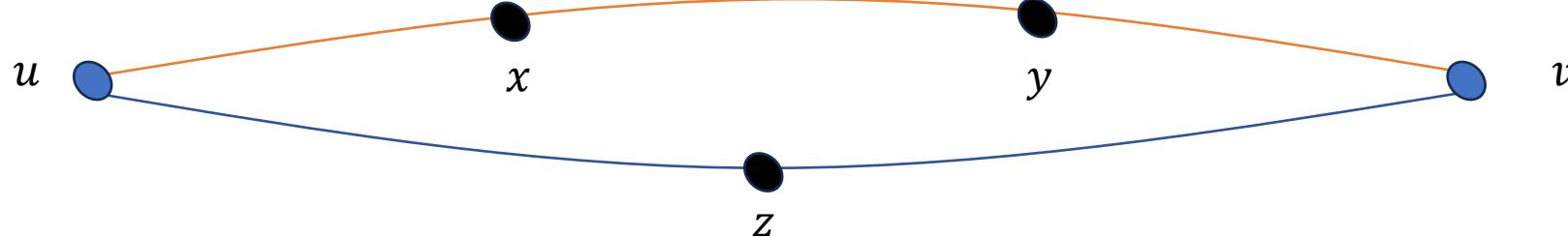
- Consider vertex prices $p(v)$ for all $v \in V$.
- One can prove that for a well-defined SSSP problem there exist prices such that:

$$w(uv) + p(u) - p(v) \geq 0 \quad \text{for all edges } uv \in E$$

- $p(u) := \text{dist}_G(s, u)$ is one such function...
- Changing edge weights to:

$$w_p(uv) := w(uv) + p(u) - p(v) \geq 0.$$

- 1) does not change the shortest paths structure,



Reweighting via Price functions

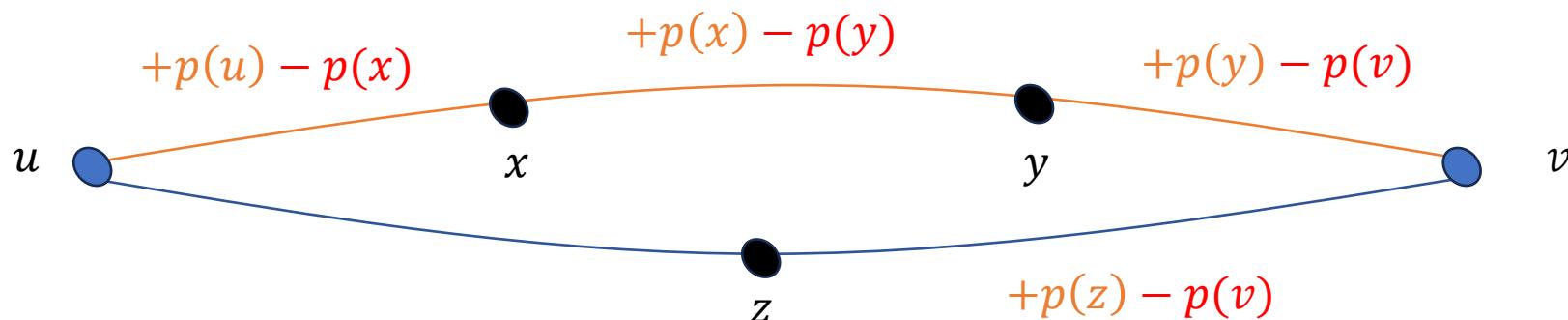
- Consider vertex prices $p(v)$ for all $v \in V$.
- One can prove that for a well-defined SSSP problem there exist prices such that:

$$w(uv) + p(u) - p(v) \geq 0 \quad \text{for all edges } uv \in E$$

- $p(u) := \text{dist}_G(s, u)$ is one such function...
- Changing edge weights to:

$$w_p(uv) := w(uv) + p(u) - p(v) \geq 0.$$

- 1) does not change the shortest paths structure,



Reweighting via Price functions

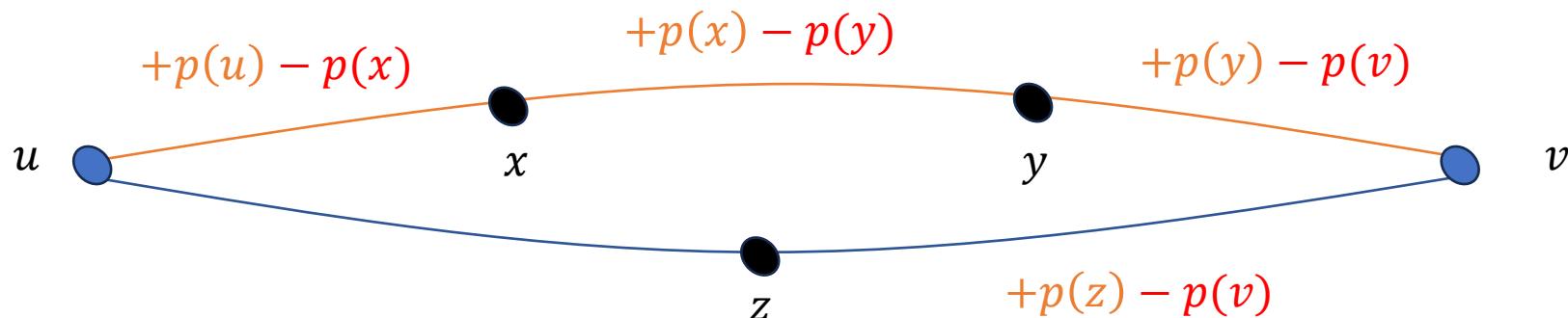
- Consider vertex prices $p(v)$ for all $v \in V$.
- One can prove that for a well-defined SSSP problem there exist prices such that:

$$w(uv) + p(u) - p(v) \geq 0 \quad \text{for all edges } uv \in E$$

- $p(u) := \text{dist}_G(s, u)$ is one such function...
- Changing edge weights to:

$$w_p(uv) := w(uv) + p(u) - p(v) \geq 0.$$

- 1) does not change the shortest paths structure,



$$w_p(Q) = w(Q) + p(u) - p(v)$$

Reweighting via Price functions

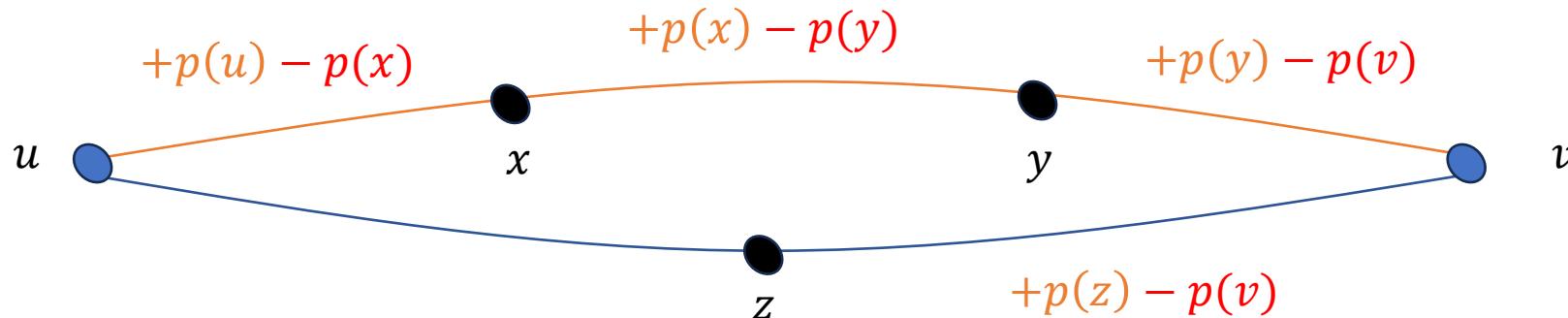
- Consider vertex prices $p(v)$ for all $v \in V$.
- One can prove that for a well-defined SSSP problem there exist prices such that:

$$w(uv) + p(u) - p(v) \geq 0 \quad \text{for all edges } uv \in E$$

- $p(u) := \text{dist}_G(s, u)$ is one such function...
- Changing edge weights to:

$$w_p(uv) := w(uv) + p(u) - p(v) \geq 0.$$

- 1) does not change the shortest paths structure,



$$w_p(Q) = w(Q) + p(u) - p(v)$$

$$w_p(R) = w(R) + p(u) - p(v)$$

Reweighting via Price functions

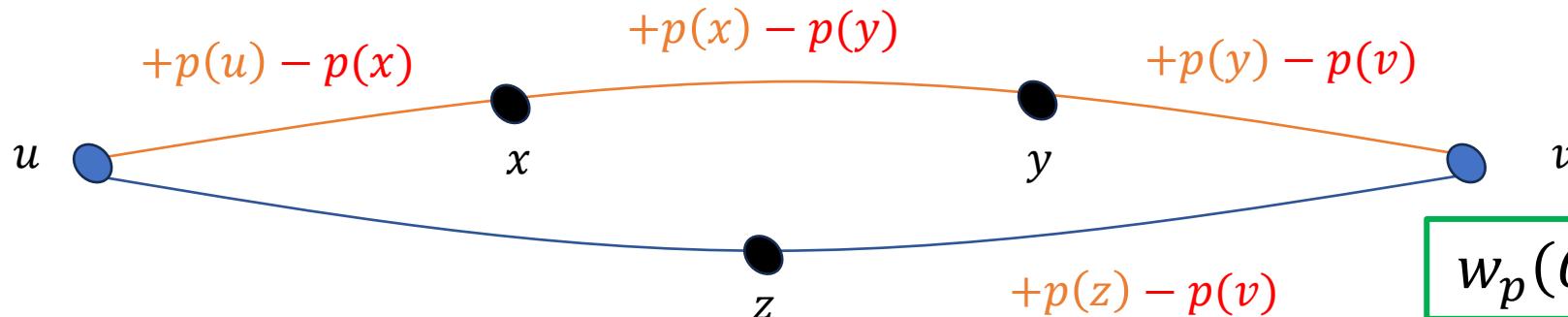
- Consider vertex prices $p(v)$ for all $v \in V$.
- One can prove that for a well-defined SSSP problem there exist prices such that:

$$w(uv) + p(u) - p(v) \geq 0 \quad \text{for all edges } uv \in E$$

- $p(u) := \text{dist}_G(s, u)$ is one such function...
- Changing edge weights to:

$$w_p(uv) := w(uv) + p(u) - p(v) \geq 0.$$

- 1) does not change the shortest paths structure,



$$w_p(Q) = w(Q) + p(u) - p(v)$$

$$w_p(R) = w(R) + p(u) - p(v)$$

$$w_p(Q) - w_p(R) = w(Q) - w(R)$$

Reweighting via Price functions

- Consider vertex prices $p(v)$ for all $v \in V$.
- One can prove that for a well-defined SSSP problem there exist prices such that:

$$w(uv) + p(u) - p(v) \geq 0 \quad \text{for all edges } uv \in E$$

- $p(u) := \text{dist}_G(s, u)$ is one such function...
- Changing edge weights to:

$$w_p(uv) := w(uv) + p(u) - p(v) \geq 0.$$

- 1) does not change the shortest paths structure,
- 2) makes the problem amenable to Dijkstra.

Approximation scheme

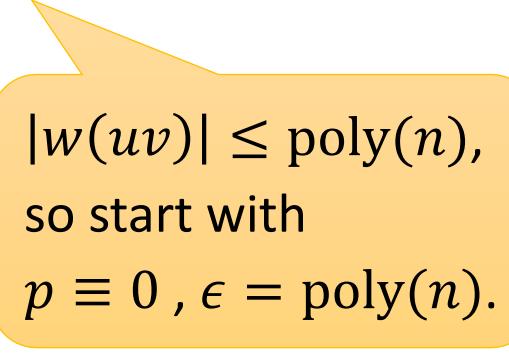
- 1) Relax the inequalities with an error parameter ϵ that you can initialize easily

$$w(uv) + p(u) - p(v) \geq -\epsilon \quad \text{for all edges } uv \in E$$

Approximation scheme

- 1) Relax the inequalities with an error parameter ϵ that you can initialize easily

$$w(uv) + p(u) - p(v) \geq -\epsilon \quad \text{for all edges } uv \in E$$



$|w(uv)| \leq \text{poly}(n)$,
so start with
 $p \equiv 0, \epsilon = \text{poly}(n)$.

Approximation scheme

- 1) Relax the inequalities with an error parameter ϵ that you can initialize easily

$$w(uv) + p(u) - p(v) \geq -\epsilon \quad \text{for all edges } uv \in E$$

- 2) Devise a refinement procedure that improves p to p' such that

$$w(uv) + p'(u) - p'(v) \geq -\epsilon/2 \quad \text{for all edges } uv \in E$$

Approximation scheme

- 1) Relax the inequalities with an error parameter ϵ that you can initialize easily

$$w(uv) + p(u) - p(v) \geq -\epsilon \quad \text{for all edges } uv \in E$$

- 2) Devise a refinement procedure that improves p to p' such that

$$w(uv) + p'(u) - p'(v) \geq -\epsilon/2 \quad \text{for all edges } uv \in E$$

- 3) After $O(\log n)$ iterations we will have

$$w_p(uv) := w(uv) + p(u) - p(v) \geq -\frac{1}{2n}.$$

Approximation scheme

- 1) Relax the inequalities with an error parameter ϵ that you can initialize easily

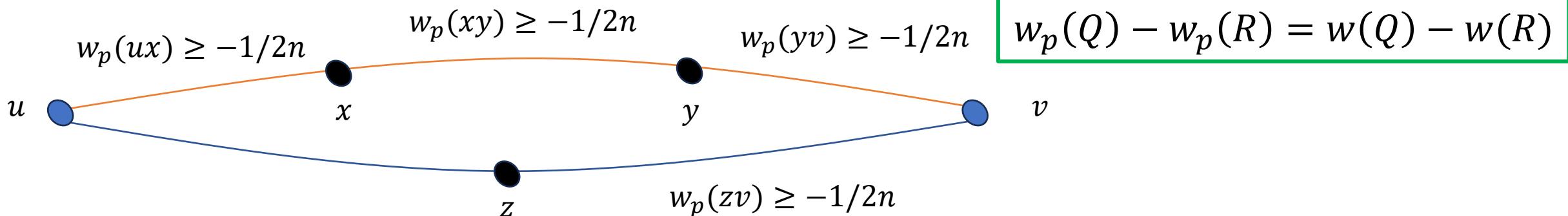
$$w(uv) + p(u) - p(v) \geq -\epsilon \quad \text{for all edges } uv \in E$$

- 2) Devise a refinement procedure that improves p to p' such that

$$w(uv) + p'(u) - p'(v) \geq -\epsilon/2 \quad \text{for all edges } uv \in E$$

- 3) After $O(\log n)$ iterations we will have

$$w_p(uv) := w(uv) + p(u) - p(v) \geq -\frac{1}{2n}.$$



Approximation scheme

- 1) Relax the inequalities with an error parameter ϵ that you can initialize easily

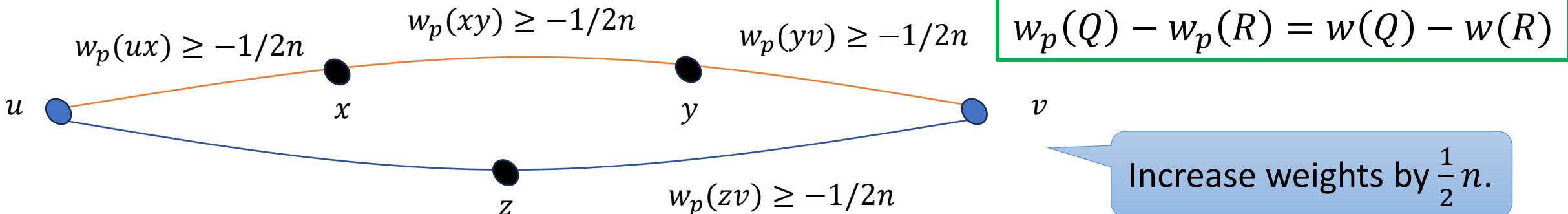
$$w(uv) + p(u) - p(v) \geq -\epsilon \quad \text{for all edges } uv \in E$$

- 2) Devise a refinement procedure that improves p to p' such that

$$w(uv) + p'(u) - p'(v) \geq -\epsilon/2 \quad \text{for all edges } uv \in E$$

- 3) After $O(\log n)$ iterations we will have

$$w_p(uv) := w(uv) + p(u) - p(v) \geq -\frac{1}{2n}.$$



Approximation scheme

- 1) Relax the inequalities with an error parameter ϵ that you can initialize easily

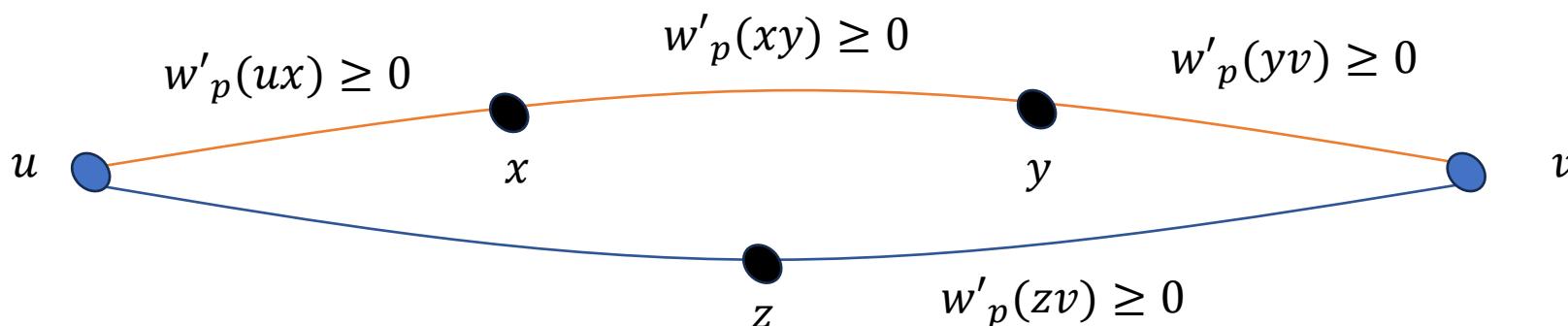
$$w(uv) + p(u) - p(v) \geq -\epsilon \quad \text{for all edges } uv \in E$$

- 2) Devise a refinement procedure that improves p to p' such that

$$w(uv) + p'(u) - p'(v) \geq -\epsilon/2 \quad \text{for all edges } uv \in E$$

- 3) After $O(\log n)$ iterations we will have

$$w_p(uv) := w(uv) + p(u) - p(v) \geq -\frac{1}{2n}.$$



Approximation scheme

- 1) Relax the inequalities with an error parameter ϵ that you can initialize easily

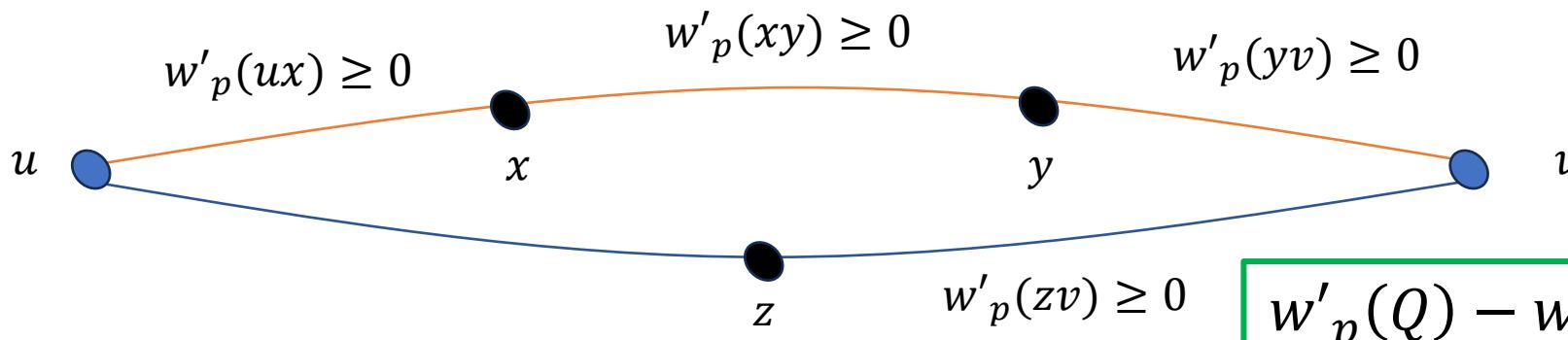
$$w(uv) + p(u) - p(v) \geq -\epsilon \quad \text{for all edges } uv \in E$$

- 2) Devise a refinement procedure that improves p to p' such that

$$w(uv) + p'(u) - p'(v) \geq -\epsilon/2 \quad \text{for all edges } uv \in E$$

- 3) After $O(\log n)$ iterations we will have

$$w_p(uv) := w(uv) + p(u) - p(v) \geq -\frac{1}{2n}.$$



Approximation scheme

- 1) Relax the inequalities with an error parameter ϵ that you can initialize easily

$$w(uv) + p(u) - p(v) \geq -\epsilon \quad \text{for all edges } uv \in E$$

- 2) Devise a refinement procedure that improves p to p' such that

$$w(uv) + p'(u) - p'(v) \geq -\epsilon/2 \quad \text{for all edges } uv \in E$$

- 3) After $O(\log n)$ iterations we will have

$$w_p(uv) := w(uv) + p(u) - p(v) \geq -\frac{1}{2n}.$$

- 4) Increasing edge weights by $\frac{1}{2n}$ increases path weight by at most $\frac{1}{2}$.

- 5) But, by integrality, shortest and non-shortest path weights differ by ≥ 1 .

- 6) Dijkstra applicable and correct after increase.

Approximation scheme

- 1) Relax the inequalities with an error parameter ϵ that you can initialize easily

$$w(uv) + p(u) - p(v) \geq -\epsilon \quad \text{for all edges } uv \in E$$

- 2) Devise a refinement procedure that improves p to p' such that

$$w(uv) + p'(u) - p'(v) \geq -\epsilon/2 \quad \text{for all edges } uv \in E$$

- 3) After $O(\log(\text{poly}(n)))$ iterations we will have

$$w_p(uv) := w(uv) + p(u) - p(v) \geq -\frac{1}{2n}.$$

- 4) Increasing edge weights by $\frac{1}{2n}$ increases path weight by at most $\frac{1}{2}$.

- 5) But, by integrality, shortest and non-shortest path weights differ by ≥ 1 .

- 6) Dijkstra applicable and correct after increase.

Integrality and scaling

Scaling framework = very efficient approximation scheme!

- Single “refinement” iteration: decrease error by a constant factor.
- Additive error ϵ achieved in $\text{polylog}(n, \epsilon^{-1})$ iterations.

Integrality and scaling

Scaling framework = very efficient approximation scheme!

- Single “refinement” iteration: decrease error by a constant factor.
- Additive error ϵ achieved in $\text{polylog}(n, \epsilon^{-1})$ iterations.

- Could be used even real data, e.g., irrational...
- ... but would never terminate with an exact solution in $\text{poly}(n, m)$ time.

Integrality and scaling

Scaling framework = very efficient approximation scheme!

- Single “refinement” iteration: decrease error by a constant factor.
- Additive error ϵ achieved in $\text{polylog}(n, \epsilon^{-1})$ iterations.

- Could be used even real data, e.g., irrational...
- ... but would never terminate with an exact solution in $\text{poly}(n, m)$ time.
- Integrality \Rightarrow accuracy $\epsilon^{-1} = \text{poly}(n)$ enough to correctly round.

Recent breakthroughs (integer)

- 1) FOCS 2022 Best Paper Award (Bernstein, Nanongkai, Wulff-Nilsen):
“Negative-Weight Single-Source Shortest Paths in Near-linear Time”
- 2) STOC 2024 Best Paper Award (Fineman):
“Single-Source Shortest Paths with Negative Weights in $\tilde{O}(m)$ Time”
- 3) STOC 2025 Best Paper Award (Duan, Mao, Mao, Shu, Yin):
“Breaking the Sorting Barrier for Directed Single-Source Shortest Paths”

Approximation refinement in $\tilde{O}(m)$ time!

Recent breakthroughs (integer)

- 1) FOCS 2022 Best Paper Award (Bernstein, Nanongkai, Wulff-Nilsen):
“Negative-Weight Single-Source Shortest Paths in Near-linear Time”
- 2) STOC 2024 Best Paper Award (Fineman):
“Single-Source Shortest Paths with Negative Weights in $\tilde{O}(m)$ Time”
- 3) STOC 2025 Best Paper Award (Duan, Mao, Mao, Shu, Yin):
“Breaking the Sorting Barrier for Directed Single-Source Shortest Paths”

Approximation refinement in $\tilde{O}(m)$ time!

Other recent achievements:

- max flow with integer weights in $m^{1+o(1)}$ time [Chen et al. ‘22].

Recent breakthroughs (integer)

- 1) FOCS 2022 Best Paper Award (Bernstein, Nanongkai, Wulff-Nilsen):
“Negative-Weight Single-Source Shortest Paths in Near-linear Time”

- 2) STOC 2024 Best Paper Award (Fineman):

“Single-Source Shortest Paths with Negative Weights in $\tilde{O}(m)$ Time”

- 3) STOC 2025 Best Paper Award (Duan, Mao, Mao, Shu, Yin):
“Breaking the Sorting Barrier for Directed Single-Source Shortest Paths”

Approximation refinement in $\tilde{O}(m)$ time!

Other recent achievements:

- max flow with integer weights in $m^{1+o(1)}$ time [Chen et al. ‘22].

Best real RAM bound:
 $O(nm)$ [Orlin ‘13]

Recent breakthroughs (real weights)

- 1) FOCS 2022 Best Paper Award (Bernstein, Nanongkai, Wulff-Nilsen):
“Negative-Weight Single-Source Shortest Paths in Near-linear Time”
- 2) STOC 2024 Best Paper Award (Fineman):
“Single-Source Shortest Paths with Negative Real Weights in $\tilde{O}(mn^{8/9})$ Time”
- 3) STOC 2025 Best Paper Award (Jian, Mao, Mao, Shu, Yin):
“Breaking the Sort Barrier for Directed Single-Source Shortest Paths”

Given a price function $p: V \rightarrow \mathbb{R}$ such that k vertices have adjacent negative edges, in $\tilde{O}(mk^{2/9})$ time one can compute a price fun. p' with $k^{1/3}$ fewer such negative vertices.

Recent breakthroughs

- 1) FOCS 2022 Best Paper Award (Bernstein, Nanongkai, Wulff-Nilsen):
“Negative-Weight Single-Source Shortest Paths in Near-linear Time”
- 2) STOC 2024 Best Paper Award (Fineman):
“Single-Source Shortest Paths with Negative Real Weights in $\tilde{O}(mn^{8/9})$ Time”
- 3) STOC 2025 Best Paper Award (Duan, Mao, Mao, Shu, Yin):
“Breaking the Sorting Barrier for Directed Single-Source Shortest Paths”

What about rational data?

Exact optimization on graphs studied:

- either in an **unrealistic** real RAM model,
- or for **integer** data in a realistic word RAM model.

What about rational data?

Exact optimization on graphs studied:

- either in an **unrealistic** real RAM model,
- or for **integer** data in a realistic word RAM model.

✓ A rational number $\frac{p}{q}$ with $p, q = \Theta(\text{poly}(n))$ can be represented exactly using a single machine word in the word RAM.

What about rational data?

Exact optimization on graphs studied:

- either in an **unrealistic** real RAM model,
- or for **integer** data in a realistic word RAM model.

✓ A rational number $\frac{p}{q}$ with $p, q = \Theta(\text{poly}(n))$ can be represented exactly using a single machine word in the word RAM.

Can optimization problems on rational-weighted graphs be solved on the word RAM **exactly** and as efficiently as on integer-weighted graphs?

Rational SSSP

Single-Source Shortest Paths (SSSP): [rational]

Given a directed graph $G = (V, E)$ with n vertices and m edges whose weights are word-fitting rationals, and a source $s \in V$, compute $\text{dist}_G(s, t)$ for all $t \in V$.

Rational SSSP

Single-Source Shortest Paths (SSSP): [rational]

Given a directed graph $G = (V, E)$ with n vertices and m edges whose weights are word-fitting rationals, and a source $s \in V$, compute $\text{dist}_G(s, t)$ for all $t \in V$.

- Suppose we adapt Dijkstra's algorithm: use exact arithmetic on rationals.

Rational SSSP

Single-Source Shortest Paths (SSSP): [rational]

Given a directed graph $G = (V, E)$ with n vertices and m edges whose weights are word-fitting rationals, and a source $s \in V$, compute $\text{dist}_G(s, t)$ for all $t \in V$.

- Suppose we adapt Dijkstra's algorithm: use exact arithmetic on rationals.
- Intermediate values = path lengths \rightarrow sums of $O(n)$ word-fitting rationals.

Rational SSSP

Single-Source Shortest Paths (SSSP): [rational]

Given a directed graph $G = (V, E)$ with n vertices and m edges whose weights are word-fitting rationals, and a source $s \in V$, compute $\text{dist}_G(s, t)$ for all $t \in V$.

- Suppose we adapt Dijkstra's algorithm: use exact arithmetic on rationals.
- Intermediate values = path lengths \rightarrow sums of $O(n)$ word-fitting rationals.

$$\frac{1}{p_1} + \frac{1}{p_2} + \cdots + \frac{1}{p_k} = \frac{\text{something}}{p_1 p_2 \cdots p_k}$$

Rational SSSP

Single-Source Shortest Paths (SSSP): [rational]

Given a directed graph $G = (V, E)$ with n vertices and m edges whose weights are word-fitting rationals, and a source $s \in V$, compute $\text{dist}_G(s, t)$ for all $t \in V$.

- Suppose we adapt Dijkstra's algorithm: use exact arithmetic on rationals.
- Intermediate values = path lengths \rightarrow sums of $O(n)$ word-fitting rationals.

$$\frac{1}{p_1} + \frac{1}{p_2} + \cdots + \frac{1}{p_k} = \frac{\text{something}}{p_1 p_2 \cdots p_k}$$

Rational SSSP

Single-Source Shortest Paths (SSSP): [rational]

Given a directed graph $G = (V, E)$ with n vertices and m edges whose weights are word-fitting rationals, and a source $s \in V$, compute a shortest paths tree from s .

- Suppose we adapt Dijkstra's algorithm: use exact arithmetic on rationals.
- Intermediate values = path lengths \rightarrow sums of $O(n)$ word-fitting rationals.

Rational SSSP

Single-Source Shortest Paths (SSSP): [rational]

Given a directed graph $G = (V, E)$ with n vertices and m edges whose weights are word-fitting rationals, and a source $s \in V$, compute a shortest paths tree from s .

- Suppose we adapt Dijkstra's algorithm: use exact arithmetic on rationals.
- Intermediate values = path lengths \rightarrow sums of $O(n)$ word-fitting rationals.
- Intermediate values may require $\Omega(n)$ bits \rightarrow arithmetic cost linear!

Rational SSSP

Single-Source Shortest Paths (SSSP): [rational]

Given a directed graph $G = (V, E)$ with n vertices and m edges whose weights are word-fitting rationals, and a source $s \in V$, compute a shortest paths tree from s .

- Suppose we adapt Dijkstra's algorithm: use exact arithmetic on rationals.
- Intermediate values = path lengths \rightarrow sums of $O(n)$ word-fitting rationals.
- Intermediate values may require $\Omega(n)$ bits \rightarrow arithmetic cost linear!

Trivial adaptation of Dijkstra runs in $\tilde{O}(mn)$ time on rationals ≥ 0 !

Rational SSSP

Single-Source Shortest Paths (SSSP): [rational]

Given a directed graph $G = (V, E)$ with n vertices and m edges whose weights are word-fitting rationals, and a source $s \in V$, compute a shortest paths tree from s .

- Maybe apply some form of scaling then?

Rational SSSP

Single-Source Shortest Paths (SSSP): [rational]

Given a directed graph $G = (V, E)$ with n vertices and m edges whose weights are word-fitting rationals, and a source $s \in V$, compute a shortest paths tree from s .

- Maybe apply some form of scaling then?
- But the second shortest path might differ from OPT by $2^{-\tilde{\Theta}(n)}$.

Rational SSSP

Single-Source Shortest Paths (SSSP): [rational]

Given a directed graph $G = (V, E)$ with n vertices and m edges whose weights are word-fitting rationals, and a source $s \in V$, compute a shortest paths tree from s .

- Maybe apply some form of scaling then?
- But the second shortest path might differ from OPT by $2^{-\tilde{\Theta}(n)}$.
- Scaling needs accuracy $\epsilon = 2^{-\tilde{\Theta}(n)}$.

Rational SSSP

Single-Source Shortest Paths (SSSP): [rational]

Given a directed graph $G = (V, E)$ with n vertices and m edges whose weights are word-fitting rationals, and a source $s \in V$, compute a shortest paths tree from s .

- Maybe apply some form of scaling then?
- But the second shortest path might differ from OPT by $2^{-\tilde{\Theta}(n)}$.
- Scaling needs accuracy $\epsilon = 2^{-\tilde{\Theta}(n)}$.

At least $\Theta(n)$ -factor time slowdown compared to integer data!

Our results

Joint work with W. Nadara and M. Sokołowski (SODA 2024):

Theorem:

SSSP with non-negative word-fitting rational weights can be solved in $\tilde{O}(n + m)$ time on the word RAM.

Our results

Joint work with W. Nadara and M. Sokołowski (SODA 2024):

Theorem:

SSSP with non-negative word-fitting rational weights can be solved in $\tilde{O}(n + m)$ time on the word RAM.

➤ ... even though arithmetic operations on k -bit rationals take $\tilde{O}(k)$ time.

Our results

Joint work with W. Nadara and M. Sokołowski (SODA 2024):

Theorem:

SSSP with non-negative word-fitting rational weights can be solved in $\tilde{O}(n + m)$ time on the word RAM.

- ... even though arithmetic operations on k -bit rationals take $\tilde{O}(k)$ time.
- Indeed, almost matching the best-known integer bound possible for $\text{SSSP}_{\geq 0}$.

Our results

Joint work with W. Nadara and M. Sokołowski (SODA 2024):

Theorem:

SSSP with **word-fitting rational** weights can be solved in $\tilde{O}(m + n^{2.5})$ time on the word RAM.

Our results

Joint work with W. Nadara and M. Sokołowski (SODA 2024):

Theorem:

SSSP with **word-fitting rational** weights can be solved in $\tilde{O}(m + n^{2.5})$ time on the word RAM.

- Beats scaling with exponential accuracy for very dense graphs $m = \Omega(n^{2.51})$.

Our results

Joint work with W. Nadara and M. Sokołowski (SODA 2024):

Theorem:

SSSP with **word-fitting rational** weights can be solved in $\tilde{O}(m + n^{2.5})$ time on the word RAM.

- Beats scaling with exponential accuracy for very dense graphs $m = \Omega(n^{2.51})$.
- No reason to believe near-linear time is impossible.

Conclusion

- 1) Model choice and low-level details can make a huge difference even for very basic polynomial algorithmic optimization problems.

Conclusion

- 1) Model choice and low-level details can make a huge difference even for very basic polynomial algorithmic optimization problems.
- 2) What we've been taught about computing single-source shortest paths is now completely obsolete at last.

Conclusion

- 1) Model choice and low-level details can make a huge difference even for very basic polynomial algorithmic optimization problems.
- 2) What we've been taught about computing single-source shortest paths is now completely obsolete at last.
- 3) Very fast-converging **approximation schemes** can be considered **exact algorithms** in realistic models of computation.

Conclusion

- 1) Model choice and low-level details can make a huge difference even for very basic polynomial algorithmic optimization problems.
- 2) What we've been taught about computing single-source shortest paths is now completely obsolete at last.
- 3) Very fast-converging **approximation schemes** can be considered **exact algorithms** in realistic models of computation.
- 4) Studying truly exact computation in unrealistic models is okay and timely, but don't abuse them!

Open problem

See https://en.wikipedia.org/wiki/Smale's_problems

Big open problem in Real RAM vs. Word RAM optimization:

Can Linear Programming be solved exactly on a Real RAM in polynomial time (as a function of #(variables + constraints)) without model abuse?

Open problem

See https://en.wikipedia.org/wiki/Smale's_problems

Big open problem in Real RAM vs. Word RAM optimization:

Can Linear Programming be solved exactly on a Real RAM in polynomial time (as a function of #(variables + constraints)) without model abuse?

Khachiyan'79: Linear programming with rational data can be solved in polynomial time (in #(variables + constraints), on the word RAM).