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1. Problem definition.

2. Recap of some basic techniques.

3. Recent breakthroughs.

4. On the way:

• models of computations,

• how restricted edge weight domain is exploited,

5. Briefly about one related result of ours.
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The shortest path problem

Input:
• 𝐺 = (𝑉, 𝐸): a weighted directed graph with 𝑛 vertices and 𝑚 ≥ 𝑛 edges.
• Two vertices: source/target 𝑠, 𝑡 ∈ 𝑉.

Goal:
Compute a shortest 𝑠 → 𝑡 path in 𝐺.
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• Two vertices: source/target 𝑠, 𝑡 ∈ 𝑉.

Goal:
Compute a shortest 𝑠 → 𝑡 path in 𝐺.

We want to solve the problem:
➢ exactly,
➢ fast in the worst case (asymptotically).
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Some facts:

➢ In general, solving the problem for all targets 𝑡 ∈ 𝑉 does not look any easier.

➢ Finding paths not easier than computing optimal path lengths (distances). 

Single-Source Shortest Paths (SSSP): [vague]
Given a weighted directed graph 𝐺 = (𝑉, 𝐸) with 𝑛 vertices and 𝑚 edges,
and a source 𝑠 ∈ 𝑉, compute dist𝐺(𝑠, 𝑡) for all 𝑡 ∈ 𝑉.

Notation:

• poly 𝑛 , poly 𝑛,𝑚 ; polylog 𝑛 = log𝑂(1)𝑛,

• ෨𝑂 𝑓 𝑛,𝑚 ∶= 𝑂 𝑓 𝑛,𝑚 polylog 𝑛 .

• 𝑤 𝑢𝑣  ≔ weight of a (directed) edge 𝑢𝑣.

Well-defined:
|dist𝐺 𝑢, 𝑣 | ≠ ∞ for all 𝑢, 𝑣 ∈ 𝑉
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If 𝑎1 < 𝑎2 < ⋯ < 𝑎𝑛, Dijkstra’s alg.
visits vertices specifically in this order.

Sorting with binary comparisons requires 
log2 𝑛! = Ω 𝑛 log 𝑛 comparisons.

A data structure called a priority
queue allows finding the next
nearest vertex in 𝑂 log 𝑛 time.
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➢… if we do not abuse it. E.g. we can:

▪ promise to only ever compute values from a natural restricted domain.

▪ promise to use polynomial space if mapped to a realistic model.

➢Green flag: running within the same time bound on a realistic model.

Real RAM:
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3) STOC 2025 Best Paper Award (Duan, Mao, Mao, Shu, Yin):

“Breaking the Sorting Barrier for Directed Single-Source Shortest Paths”

In both, all intermediate reals constructed are the graph’s path lengths ⇒ no abuse!

Runs in 𝑂 𝑚 log2/3 𝑛 time using (+,<), thus cannot sort via comparisons!

Baseline: 𝑂 𝑚 + 𝑛 log 𝑛

Non-negative.
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Word RAM

Word RAM:
➢ Memory cells store 𝑤-bit integers, where 𝑤 = Ω(log 𝑛) is the word size.
➢ Arithmetic/bitwise/comparison operations on 𝑤-bit integers performed

in 𝑂 1 time.

➢ Intermediate values sums of poly(𝑛) input values → still 𝑂 𝑤 -bit ints.

➢ Typically, for integer weights fitting in a word, real RAM bounds transfer to 

word RAM bounds.

➢ Literature: “exact” means “exact on integer input”.

➢ For graphs: edge weights = integers fitting in a single word.

For simplicity, let’s assume 𝑤 = Θ log 𝑛 ⇒ absolute edge weights ≤ poly 𝑛 .

Think C language, 𝑤 = 64.
𝑛 = “problem size”
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(obsolete) Manual for solving integer SSSP

Single-Source Shortest Paths (SSSP): [integer]
Given a directed graph 𝐺 = (𝑉, 𝐸) with 𝑛 vertices and 𝑚 edges whose weights are
integers fitting in words, and a source 𝑠 ∈ 𝑉, compute dist𝐺(𝑠, 𝑡) for all 𝑡 ∈ 𝑉.

Does 𝐺 have only
non-negative weights?

Yes? Use Dijkstra’s algorithm
with a fancier priority queue.

𝑂 𝑚 + 𝑛 log log 𝑛 time [Thorup ’03].

No? Use a “scaling” algorithm.

E.g. Gabow’s ෨𝑂 𝑚𝑛3/4 (‘83)

Or Goldberg’s ෨𝑂(𝑚 𝑛) (’93)

Or faster; holds even for word size  ≫ log𝑛!
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Reweighting via Price functions
➢ Consider vertex prices 𝑝 𝑣 for all 𝑣 ∈ 𝑉.

➢ One can prove that for a well-defined SSSP problem there exist prices such that:

𝑤 𝑢𝑣 + 𝑝 𝑢 − 𝑝 𝑣 ≥ 0 for all edges 𝑢𝑣 ∈ 𝐸

➢ 𝑝 𝑢 ≔ dist𝐺(𝑠, 𝑢) is one such function…

➢ Changing edge weights to: 

𝑤𝑝 𝑢𝑣 ≔ 𝑤 𝑢𝑣 + 𝑝 𝑢 − 𝑝 𝑣 ≥ 0.

1) does not change the shortest paths structure,

2) makes the problem amenable to Dijkstra.



Approximation scheme

1) Relax the inequalities with an error parameter 𝜖 that you can initialize easily

𝑤 𝑢𝑣 + 𝑝 𝑢 − 𝑝 𝑣 ≥ −𝜖 for all edges 𝑢𝑣 ∈ 𝐸



Approximation scheme

1) Relax the inequalities with an error parameter 𝜖 that you can initialize easily

𝑤 𝑢𝑣 + 𝑝 𝑢 − 𝑝 𝑣 ≥ −𝜖 for all edges 𝑢𝑣 ∈ 𝐸

𝑤 𝑢𝑣 ≤ poly(𝑛),

so start with

𝑝 ≡ 0 , 𝜖 = poly(𝑛).



Approximation scheme

1) Relax the inequalities with an error parameter 𝜖 that you can initialize easily

𝑤 𝑢𝑣 + 𝑝 𝑢 − 𝑝 𝑣 ≥ −𝜖 for all edges 𝑢𝑣 ∈ 𝐸

2) Devise a refinement procedure that improves 𝑝 to 𝑝′ such that

𝑤 𝑢𝑣 + 𝑝′ 𝑢 − 𝑝′ 𝑣 ≥ −𝜖/2 for all edges 𝑢𝑣 ∈ 𝐸



Approximation scheme

1) Relax the inequalities with an error parameter 𝜖 that you can initialize easily

𝑤 𝑢𝑣 + 𝑝 𝑢 − 𝑝 𝑣 ≥ −𝜖 for all edges 𝑢𝑣 ∈ 𝐸

2) Devise a refinement procedure that improves 𝑝 to 𝑝′ such that

𝑤 𝑢𝑣 + 𝑝′ 𝑢 − 𝑝′ 𝑣 ≥ −𝜖/2 for all edges 𝑢𝑣 ∈ 𝐸

3) After 𝑂 log 𝑛 iterations we will have

𝑤𝑝 𝑢𝑣 ≔ 𝑤 𝑢𝑣 + 𝑝 𝑢 − 𝑝 𝑣 ≥ −
1

2𝑛
.



Approximation scheme

1) Relax the inequalities with an error parameter 𝜖 that you can initialize easily

𝑤 𝑢𝑣 + 𝑝 𝑢 − 𝑝 𝑣 ≥ −𝜖 for all edges 𝑢𝑣 ∈ 𝐸

2) Devise a refinement procedure that improves 𝑝 to 𝑝′ such that

𝑤 𝑢𝑣 + 𝑝′ 𝑢 − 𝑝′ 𝑣 ≥ −𝜖/2 for all edges 𝑢𝑣 ∈ 𝐸

3) After 𝑂 log 𝑛 iterations we will have

𝑤𝑝 𝑢𝑣 ≔ 𝑤 𝑢𝑣 + 𝑝 𝑢 − 𝑝 𝑣 ≥ −
1

2𝑛
.

𝑤𝑝(𝑥𝑦) ≥ −1/2𝑛 𝑤𝑝(𝑦𝑣) ≥ −1/2𝑛

𝑢 𝑣𝑥 𝑦

𝑧

𝑤𝑝(𝑢𝑥) ≥ −1/2𝑛

𝑤𝑝(𝑧𝑣) ≥ −1/2𝑛

𝑤𝑝 𝑄 − 𝑤𝑝 𝑅 = 𝑤 𝑄 −𝑤(𝑅)



Approximation scheme

1) Relax the inequalities with an error parameter 𝜖 that you can initialize easily

𝑤 𝑢𝑣 + 𝑝 𝑢 − 𝑝 𝑣 ≥ −𝜖 for all edges 𝑢𝑣 ∈ 𝐸
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Increase weights by 
1

2
𝑛.



Approximation scheme

𝑢 𝑣𝑥 𝑦

𝑧

𝑤′𝑝(𝑢𝑥) ≥ 0
𝑤′𝑝(𝑥𝑦) ≥ 0 𝑤′𝑝(𝑦𝑣) ≥ 0
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➢ Single ``refinement” iteration: decrease error by a constant factor.
➢ Additive error 𝜖 achieved in polylog 𝑛, 𝜖−1 iterations.

➢ Could be used even real data, e.g., irrational... 

➢ … but would never terminate with an exact solution in poly(𝑛,𝑚) time.

➢ Integrality ⇒ accuracy 𝜖−1 = poly(𝑛) enough to correctly round.
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Best real RAM bound:
𝑂(𝑛𝑚) [Orlin ‘13]



Recent breakthroughs (real weights)

1) FOCS 2022 Best Paper Award (Bernstein, Nanongkai, Wulff-Nilsen):

“Negative-Weight Single-Source Shortest Paths in Near-linear Time”

2) STOC 2024 Best Paper Award (Fineman):

“Single-Source Shortest Paths with Negative Real Weights in ෨𝑂 𝑚𝑛8/9 Time”

3) STOC 2025 Best Paper Award (Duan, Mao, Mao, Shu, Yin):

“Breaking the Sorting Barrier for Directed Single-Source Shortest Paths”

Given a price function 𝑝: 𝑉 → ℝ such that 𝑘 vertices have adjacent negative edges, in
෨𝑂 𝑚𝑘2/9 time one can compute a price fun. 𝑝′ with 𝑘1/3 fewer such negative vertices.
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What about rational data?

✓ A rational number
𝑝

𝑞
with 𝑝, 𝑞 = Θ poly 𝑛 can be represented exactly

using a single machine word in the word RAM.

Exact optimization on graphs studied:

➢either in an unrealistic real RAM model,

➢or for integer data in a realistic word RAM model.

Can optimization problems on rational-weighted graphs be solved on the 
word RAM exactly and as efficiently as on integer-weighted graphs?
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word-fitting rationals, and a source 𝑠 ∈ 𝑉, compute dist𝐺(𝑠, 𝑡) for all 𝑡 ∈ 𝑉.
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Rational SSSP

➢ Maybe apply some form of scaling then? 

➢ But the second shortest path might differ from OPT by 2−
෩Θ(𝑛).

➢ Scaling needs accuracy 𝜖 = 2−
෩Θ(𝑛).

At least Θ(𝑛)-factor time slowdown compared to integer data!

Single-Source Shortest Paths (SSSP): [rational]
Given a directed graph 𝐺 = (𝑉, 𝐸) with 𝑛 vertices and 𝑚 edges whose weights are
word-fitting rationals, and a source 𝑠 ∈ 𝑉, compute a shortest paths tree from 𝑠.



Our results

Theorem:
SSSP with non-negative word-fitting rational weights can be solved in
෨𝑂(𝑛 +𝑚) time on the word RAM.

Joint work with W. Nadara and M. Sokołowski (SODA 2024):



Our results

Theorem:
SSSP with non-negative word-fitting rational weights can be solved in
෨𝑂(𝑛 +𝑚) time on the word RAM.

➢… even though arithmetic operations on 𝑘-bit rationals take ෨𝑂(𝑘) time.

Joint work with W. Nadara and M. Sokołowski (SODA 2024):



Our results

Theorem:
SSSP with non-negative word-fitting rational weights can be solved in
෨𝑂(𝑛 +𝑚) time on the word RAM.
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Our results

Theorem:
SSSP with word-fitting rational weights can be solved in ෨𝑂 𝑚 + 𝑛2.5 time
on the word RAM.

Joint work with W. Nadara and M. Sokołowski (SODA 2024):

➢Beats scaling with exponential accuracy for very dense graphs 𝑚 = Ω 𝑛2.51 .

➢No reason to believe near-linear time is impossible.
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Conclusion
1) Model choice and low-level details can make a huge difference even for very

basic polynomial algorithmic optimization problems.

2) What we’ve been taught about computing single-source shortest paths is now
completely obsolete at last.

3) Very fast-converging approximation schemes can be considered exact
algorithms in realistic models of computation.

4) Studying truly exact computation in unrealistic models is okay and timely, but
don’t abuse them!
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Open problem

Big open problem in Real RAM vs. Word RAM optimization:

Can Linear Programming be solved exactly on a Real RAM in polynomial time (as a
function of #(variables + constraints)) without model abuse?

Khachiyan‘79: Linear programming with rational data can be solved in polynomial
time (in #(variables + constraints), on the word RAM).

See https://en.wikipedia.org/wiki/Smale's_problems

https://en.wikipedia.org/wiki/Smale%27s_problems
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