
Shortest paths, edge weights, and
models of computation

Adam Karczmarz
22/01/2026

Plan

1. Problem definition.

2. Recap of some basic techniques.

3. Recent breakthroughs.

4. On the way:

• models of computations,

• how restricted edge weight domain is exploited,

5. Briefly about one related result of ours.

2

1

0.5

2

1

0.5

𝑡

2

1

0.5

The shortest path problem

Input:
• 𝐺 = (𝑉, 𝐸): a weighted directed graph with 𝑛 vertices and 𝑚 ≥ 𝑛 edges.
• Two vertices: source/target 𝑠, 𝑡 ∈ 𝑉.

Goal:
Compute a shortest 𝑠 → 𝑡 path in 𝐺.

The shortest path problem

Input:
• 𝐺 = (𝑉, 𝐸): a weighted directed graph with 𝑛 vertices and 𝑚 ≥ 𝑛 edges.
• Two vertices: source/target 𝑠, 𝑡 ∈ 𝑉.

Goal:
Compute a shortest 𝑠 → 𝑡 path in 𝐺.

We want to solve the problem:
➢ exactly,

The shortest path problem

Input:
• 𝐺 = (𝑉, 𝐸): a weighted directed graph with 𝑛 vertices and 𝑚 ≥ 𝑛 edges.
• Two vertices: source/target 𝑠, 𝑡 ∈ 𝑉.

Goal:
Compute a shortest 𝑠 → 𝑡 path in 𝐺.

We want to solve the problem:
➢ exactly,
➢ fast in the worst case (asymptotically).

SSSP

Some facts:

➢ In general, solving the problem for all targets 𝑡 ∈ 𝑉 does not look any easier.

SSSP

Some facts:

➢ In general, solving the problem for all targets 𝑡 ∈ 𝑉 does not look any easier.

➢ Finding paths not easier than computing optimal path lengths (distances).

SSSP

Some facts:

➢ In general, solving the problem for all targets 𝑡 ∈ 𝑉 does not look any easier.

➢ Finding paths not easier than computing optimal path lengths (distances).

Single-Source Shortest Paths (SSSP): [vague]
Given a weighted directed graph 𝐺 = (𝑉, 𝐸) with 𝑛 vertices and 𝑚 edges,
and a source 𝑠 ∈ 𝑉, compute dist𝐺(𝑠, 𝑡) for all 𝑡 ∈ 𝑉.

SSSP

Some facts:

➢ In general, solving the problem for all targets 𝑡 ∈ 𝑉 does not look any easier.

➢ Finding paths not easier than computing optimal path lengths (distances).

Single-Source Shortest Paths (SSSP): [vague]
Given a weighted directed graph 𝐺 = (𝑉, 𝐸) with 𝑛 vertices and 𝑚 edges,
and a source 𝑠 ∈ 𝑉, compute dist𝐺(𝑠, 𝑡) for all 𝑡 ∈ 𝑉.

Well-defined:
|dist𝐺 𝑢, 𝑣 | ≠ ∞ for all 𝑢, 𝑣 ∈ 𝑉
Equiv: every pair reachable
no negative-weight cycles in 𝐺.

SSSP

Some facts:

➢ In general, solving the problem for all targets 𝑡 ∈ 𝑉 does not look any easier.

➢ Finding paths not easier than computing optimal path lengths (distances).

Single-Source Shortest Paths (SSSP): [vague]
Given a weighted directed graph 𝐺 = (𝑉, 𝐸) with 𝑛 vertices and 𝑚 edges,
and a source 𝑠 ∈ 𝑉, compute dist𝐺(𝑠, 𝑡) for all 𝑡 ∈ 𝑉.

Notation:

• poly 𝑛 , poly 𝑛,𝑚 ; polylog 𝑛 = log𝑂(1)𝑛,

• ෨𝑂 𝑓 𝑛,𝑚 ∶= 𝑂 𝑓 𝑛,𝑚 polylog 𝑛 .

• 𝑤 𝑢𝑣 ≔ weight of a (directed) edge 𝑢𝑣.

Well-defined:
|dist𝐺 𝑢, 𝑣 | ≠ ∞ for all 𝑢, 𝑣 ∈ 𝑉
Equiv: every pair reachable
no negative-weight cycles in 𝐺.

(obsolete) Manual for solving SSSP

Single-Source Shortest Paths (SSSP): [vague]
Given a weighted directed graph 𝐺 = (𝑉, 𝐸) with 𝑛 vertices and 𝑚 edges,
and a source 𝑠 ∈ 𝑉, compute dist𝐺(𝑠, 𝑡) for all 𝑡 ∈ 𝑉.

Does 𝐺 have only
non-negative weights?

(obsolete) Manual for solving SSSP

Single-Source Shortest Paths (SSSP): [vague]
Given a weighted directed graph 𝐺 = (𝑉, 𝐸) with 𝑛 vertices and 𝑚 edges,
and a source 𝑠 ∈ 𝑉, compute dist𝐺(𝑠, 𝑡) for all 𝑡 ∈ 𝑉.

Does 𝐺 have only
non-negative weights?

(obsolete) Manual for solving SSSP

Single-Source Shortest Paths (SSSP): [vague]
Given a weighted directed graph 𝐺 = (𝑉, 𝐸) with 𝑛 vertices and 𝑚 edges,
and a source 𝑠 ∈ 𝑉, compute dist𝐺(𝑠, 𝑡) for all 𝑡 ∈ 𝑉.

Does 𝐺 have only
non-negative weights?

Yes? Use Dijkstra’s algorithm (‘56).
𝑂 𝑚 + 𝑛 log 𝑛 time [FT’86].

Or 𝑂 𝑚 log𝑛 time without fancy data structures.

(obsolete) Manual for solving SSSP

Single-Source Shortest Paths (SSSP): [vague]
Given a weighted directed graph 𝐺 = (𝑉, 𝐸) with 𝑛 vertices and 𝑚 edges,
and a source 𝑠 ∈ 𝑉, compute dist𝐺(𝑠, 𝑡) for all 𝑡 ∈ 𝑉.

Does 𝐺 have only
non-negative weights?

Yes? Use Dijkstra’s algorithm (‘56).
𝑂 𝑚 + 𝑛 log 𝑛 time [FT’86].

No? Use Bellman-Ford algorithm (‘56).
𝑂 𝑚 ⋅ 𝑛 time.

Or 𝑂 𝑚 log𝑛 time without fancy data structures.

Bellman-Ford recap

• If SSSP is well-defined, then an optimal path 𝑃𝑠𝑡 = 𝑠 → 𝑡 has < 𝑛 edges.

Bellman-Ford recap

• If SSSP is well-defined, then an optimal path 𝑃𝑠𝑡 = 𝑠 → 𝑡 has < 𝑛 edges.

• Let 𝑃𝑠𝑣
𝑘 be the shortest out of 𝑠 → 𝑣 paths with at most 𝑘 edges, i.e., 𝑃𝑠𝑡 = 𝑃𝑠,𝑡

𝑛 .

Bellman-Ford recap

• If SSSP is well-defined, then an optimal path 𝑃𝑠𝑡 = 𝑠 → 𝑡 has < 𝑛 edges.

• Let 𝑃𝑠𝑣
𝑘 be the shortest out of 𝑠 → 𝑣 paths with at most 𝑘 edges, i.e., 𝑃𝑠𝑡 = 𝑃𝑠,𝑡

𝑛 .

• The (weight of) 𝑃𝑠𝑣
𝑘 can be computed inductively:

➢ Either it is an empty path, which can only exist if 𝑠 = 𝑣.

Bellman-Ford recap

• If SSSP is well-defined, then an optimal path 𝑃𝑠𝑡 = 𝑠 → 𝑡 has < 𝑛 edges.

• Let 𝑃𝑠𝑣
𝑘 be the shortest out of 𝑠 → 𝑣 paths with at most 𝑘 edges, i.e., 𝑃𝑠𝑡 = 𝑃𝑠,𝑡

𝑛 .

• The (weight of) 𝑃𝑠𝑣
𝑘 can be computed inductively:

➢ Either it is an empty path, which can only exist if 𝑠 = 𝑣.

➢ Or it ends with some edge 𝑢𝑣 ∈ 𝐸, and starts with 𝑃𝑠𝑢
𝑘−1; try all of them.

Bellman-Ford recap

• If SSSP is well-defined, then an optimal path 𝑃𝑠𝑡 = 𝑠 → 𝑡 has < 𝑛 edges.

• Let 𝑃𝑠𝑣
𝑘 be the shortest out of 𝑠 → 𝑣 paths with at most 𝑘 edges, i.e., 𝑃𝑠𝑡 = 𝑃𝑠,𝑡

𝑛 .

• The (weight of) 𝑃𝑠𝑣
𝑘 can be computed inductively:

➢ Either it is an empty path, which can only exist if 𝑠 = 𝑣.

➢ Or it ends with some edge 𝑢𝑣 ∈ 𝐸, and starts with 𝑃𝑠𝑢
𝑘−1; try all of them.

𝑠 𝑣𝑢

𝑃𝑠𝑢
𝑘−1

Bellman-Ford recap

• If SSSP is well-defined, then an optimal path 𝑃𝑠𝑡 = 𝑠 → 𝑡 has < 𝑛 edges.

• Let 𝑃𝑠𝑣
𝑘 be the shortest out of 𝑠 → 𝑣 paths with at most 𝑘 edges, i.e., 𝑃𝑠𝑡 = 𝑃𝑠,𝑡

𝑛 .

• The (weight of) 𝑃𝑠𝑣
𝑘 can be computed inductively:

➢ Either it is an empty path, which can only exist if 𝑠 = 𝑣.

➢ Or it ends with some edge 𝑢𝑣 ∈ 𝐸, and starts with 𝑃𝑠𝑢
𝑘−1; try all of them.

𝑠 𝑣𝑢

𝑃𝑠𝑢
𝑘−1 𝑤 𝑃𝑠𝑣

𝑘 = min
𝑢𝑣∈𝐸

𝑤 𝑃𝑠𝑢
𝑘−1 +𝑤(𝑢𝑣)

Bellman-Ford recap

• If SSSP is well-defined, then an optimal path 𝑃𝑠𝑡 = 𝑠 → 𝑡 has < 𝑛 edges.

• Let 𝑃𝑠𝑣
𝑘 be the shortest out of 𝑠 → 𝑣 paths with at most 𝑘 edges, i.e., 𝑃𝑠𝑡 = 𝑃𝑠,𝑡

𝑛 .

• The (weight of) 𝑃𝑠𝑣
𝑘 can be computed inductively:

➢ Either it is an empty path, which can only exist if 𝑠 = 𝑣.

➢ Or it ends with some edge 𝑢𝑣 ∈ 𝐸, and starts with 𝑃𝑠𝑢
𝑘−1; try all of them.

All weights of 𝑃𝑠𝑡
𝑘 for 𝑡 ∈ 𝑉, 𝑘 = 0,… , 𝑛 and can be computed in 𝑂 𝑚 ⋅ 𝑛 time.

𝑠 𝑣𝑢

𝑃𝑠𝑢
𝑘−1 𝑤 𝑃𝑠𝑣

𝑘 = min
𝑢𝑣∈𝐸

𝑤 𝑃𝑠𝑢
𝑘−1 +𝑤(𝑢𝑣)

Dijkstra recap (non-negative weights)

• Suppose we have established correct distances to the 𝑘 nearest vertices 𝑆 ⊆ 𝑉.

Dijkstra recap (non-negative weights)

• Suppose we have established correct distances to the 𝑘 nearest vertices 𝑆 ⊆ 𝑉.

• Then the (𝑘 + 1)-th nearest vertex is the one „closest via a single edge” from 𝑆.

Dijkstra recap (non-negative weights)

• Suppose we have established correct distances to the 𝑘 nearest vertices 𝑆 ⊆ 𝑉.

• Then the (𝑘 + 1)-th nearest vertex is the one „closest via a single edge” from 𝑆.

1

2 2
1

2

6

4

1

𝑆

Dijkstra recap (non-negative weights)

• Suppose we have established correct distances to the 𝑘 nearest vertices 𝑆 ⊆ 𝑉.

• Then the (𝑘 + 1)-th nearest vertex is the one „closest via a single edge” from 𝑆.

1

2 2
1

2

6

4

1

𝑆

Dijkstra recap (non-negative weights)

• Suppose we have established correct distances to the 𝑘 nearest vertices 𝑆 ⊆ 𝑉.

• Then the (𝑘 + 1)-th nearest vertex is the one „closest via a single edge” from 𝑆.

1

2 2
1

2

6

4

1

𝑆

Dijkstra recap (non-negative weights)

• Suppose we have established correct distances to the 𝑘 nearest vertices 𝑆 ⊆ 𝑉.

• Then the (𝑘 + 1)-th nearest vertex is the one „closest via a single edge” from 𝑆.

1

2 2
1

2

6

4

1

𝑆

Dijkstra recap (non-negative weights)

• Suppose we have established correct distances to the 𝑘 nearest vertices 𝑆 ⊆ 𝑉.

• Then the (𝑘 + 1)-th nearest vertex is the one „closest via a single edge” from 𝑆.

1

2 2
1

2

6

4

1

𝑆

Dijkstra recap (non-negative weights)

• Suppose we have established correct distances to the 𝑘 nearest vertices 𝑆 ⊆ 𝑉.

• Then the (𝑘 + 1)-th nearest vertex is the one „closest via a single edge” from 𝑆.

1

2 2
1

2

6

4

1

𝑆

Dijkstra recap (non-negative weights)

• Suppose we have established correct distances to the 𝑘 nearest vertices 𝑆 ⊆ 𝑉.

• Then the (𝑘 + 1)-th nearest vertex is the one „closest via a single edge” from 𝑆.

1

2 2
1

2

6

4

1

𝑆

Dijkstra recap (non-negative weights)

• Suppose we have established correct distances to the 𝑘 nearest vertices 𝑆 ⊆ 𝑉.

• Then the (𝑘 + 1)-th nearest vertex is the one „closest via a single edge” from 𝑆.

1

2 2
1

2

6

4

1

𝑆

Dijkstra recap (non-negative weights)

• Suppose we have established correct distances to the 𝑘 nearest vertices 𝑆 ⊆ 𝑉.

• Then the (𝑘 + 1)-th nearest vertex is the one „closest via a single edge” from 𝑆.

1

2 2
1

2

6

4

1

𝑆

Dijkstra recap (non-negative weights)

• Suppose we have established correct distances to the 𝑘 nearest vertices 𝑆 ⊆ 𝑉.

• Then the (𝑘 + 1)-th nearest vertex is the one „closest via a single edge” from 𝑆.

1

2 2
1

2

6

4

1

𝑆

Dijkstra recap (non-negative weights)

• Suppose we have established correct distances to the 𝑘 nearest vertices 𝑆 ⊆ 𝑉.

• Then the (𝑘 + 1)-th nearest vertex is the one „closest via a single edge” from 𝑆.

1

2 2
1

2

6

4

1

𝑆

Dijkstra recap (non-negative weights)

• Suppose we have established correct distances to the 𝑘 nearest vertices 𝑆 ⊆ 𝑉.

• Then the (𝑘 + 1)-th nearest vertex is the one „closest via a single edge” from 𝑆.

1

2 2
1

2

6

4

1

𝑆

−5

Dijkstra recap (non-negative weights)

• Suppose we have established correct distances to the 𝑘 nearest vertices 𝑆 ⊆ 𝑉.

• Then the (𝑘 + 1)-th nearest vertex is the one „closest via a single edge” from 𝑆.

1

2 2
1

2

6

4

1

𝑆
A data structure called a priority
queue allows finding the next
nearest vertex in 𝑂 log 𝑛 time.

Dijkstra recap (non-negative weights)

• Suppose we have established correct distances to the 𝑘 nearest vertices 𝑆 ⊆ 𝑉.

• Then the (𝑘 + 1)-th nearest vertex is the one „closest via a single edge” from 𝑆.

𝑎1

𝑎2

𝑎3

𝑎4

𝑎6

𝑎5

𝑎𝑛

…

A data structure called a priority
queue allows finding the next
nearest vertex in 𝑂 log 𝑛 time.

Dijkstra recap (non-negative weights)

• Suppose we have established correct distances to the 𝑘 nearest vertices 𝑆 ⊆ 𝑉.

• Then the (𝑘 + 1)-th nearest vertex is the one „closest via a single edge” from 𝑆.

𝑎1

𝑎2

𝑎3

𝑎4

𝑎6

𝑎5

𝑎𝑛

…

A data structure called a priority
queue allows finding the next
nearest vertex in 𝑂 log 𝑛 time.

If 𝑎1 < 𝑎2 < ⋯ < 𝑎𝑛, Dijkstra’s alg.
visits vertices specifically in this order.

Dijkstra recap (non-negative weights)

• Suppose we have established correct distances to the 𝑘 nearest vertices 𝑆 ⊆ 𝑉.

• Then the (𝑘 + 1)-th nearest vertex is the one „closest via a single edge” from 𝑆.

𝑎1

𝑎2

𝑎3

𝑎4

𝑎6

𝑎5

𝑎𝑛

…

A data structure called a priority
queue allows finding the next
nearest vertex in 𝑂 log 𝑛 time.

If 𝑎1 < 𝑎2 < ⋯ < 𝑎𝑛, Dijkstra’s alg.
visits vertices specifically in this order.

Dijkstra recap (non-negative weights)

• Suppose we have established correct distances to the 𝑘 nearest vertices 𝑆 ⊆ 𝑉.

• Then the (𝑘 + 1)-th nearest vertex is the one „closest via a single edge” from 𝑆.

𝑎1

𝑎2

𝑎3

𝑎4

𝑎6

𝑎5

𝑎𝑛

…

A data structure called a priority
queue allows finding the next
nearest vertex in 𝑂 log 𝑛 time.

If 𝑎1 < 𝑎2 < ⋯ < 𝑎𝑛, Dijkstra’s alg.
visits vertices specifically in this order.

Dijkstra recap (non-negative weights)

• Suppose we have established correct distances to the 𝑘 nearest vertices 𝑆 ⊆ 𝑉.

• Then the (𝑘 + 1)-th nearest vertex is the one „closest via a single edge” from 𝑆.

𝑎1

𝑎2

𝑎3

𝑎4

𝑎6

𝑎5

𝑎𝑛

…

A data structure called a priority
queue allows finding the next
nearest vertex in 𝑂 log 𝑛 time.

If 𝑎1 < 𝑎2 < ⋯ < 𝑎𝑛, Dijkstra’s alg.
visits vertices specifically in this order.

Dijkstra recap (non-negative weights)

• Suppose we have established correct distances to the 𝑘 nearest vertices 𝑆 ⊆ 𝑉.

• Then the (𝑘 + 1)-th nearest vertex is the one „closest via a single edge” from 𝑆.

𝑎1

𝑎2

𝑎3

𝑎4

𝑎6

𝑎5

𝑎𝑛

…

A data structure called a priority
queue allows finding the next
nearest vertex in 𝑂 log 𝑛 time.

If 𝑎1 < 𝑎2 < ⋯ < 𝑎𝑛, Dijkstra’s alg.
visits vertices specifically in this order.

Dijkstra recap (non-negative weights)

• Suppose we have established correct distances to the 𝑘 nearest vertices 𝑆 ⊆ 𝑉.

• Then the (𝑘 + 1)-th nearest vertex is the one „closest via a single edge” from 𝑆.

𝑎1

𝑎2

𝑎3

𝑎4

𝑎6

𝑎5

𝑎𝑛

…

A data structure called a priority
queue allows finding the next
nearest vertex in 𝑂 log 𝑛 time.

If 𝑎1 < 𝑎2 < ⋯ < 𝑎𝑛, Dijkstra’s alg.
visits vertices specifically in this order.

Dijkstra recap (non-negative weights)

• Suppose we have established correct distances to the 𝑘 nearest vertices 𝑆 ⊆ 𝑉.

• Then the (𝑘 + 1)-th nearest vertex is the one „closest via a single edge” from 𝑆.

𝑎1

𝑎2

𝑎3

𝑎4

𝑎6

𝑎5

𝑎𝑛

…

If 𝑎1 < 𝑎2 < ⋯ < 𝑎𝑛, Dijkstra’s alg.
visits vertices specifically in this order.

A data structure called a priority
queue allows finding the next
nearest vertex in 𝑂 log 𝑛 time.

Dijkstra recap (non-negative weights)

• Suppose we have established correct distances to the 𝑘 nearest vertices 𝑆 ⊆ 𝑉.

• Then the (𝑘 + 1)-th nearest vertex is the one „closest via a single edge” from 𝑆.

𝑎1

𝑎2

𝑎3

𝑎4

𝑎6

𝑎5

𝑎𝑛

…

If 𝑎1 < 𝑎2 < ⋯ < 𝑎𝑛, Dijkstra’s alg.
visits vertices specifically in this order.

Sorting with binary comparisons requires
log2 𝑛! = Ω 𝑛 log 𝑛 comparisons.

A data structure called a priority
queue allows finding the next
nearest vertex in 𝑂 log 𝑛 time.

Recent breakthroughs

1) FOCS 2022 Best Paper Award (Bernstein, Nanongkai, Wulff-Nilsen):

“Negative-Weight Single-Source Shortest Paths in Near-linear Time”

2) STOC 2024 Best Paper Award (Fineman):

“Single-Source Shortest Paths with Negative Real Weights in ෨𝑂 𝑚𝑛8/9 Time”

3) STOC 2025 Best Paper Award (Duan, Mao, Mao, Shu, Yin):

“Breaking the Sorting Barrier for Directed Single-Source Shortest Paths”

Recent breakthroughs

1) FOCS 2022 Best Paper Award (Bernstein, Nanongkai, Wulff-Nilsen):

“Negative-Weight Single-Source Shortest Paths in Near-linear Time”

2) STOC 2024 Best Paper Award (Fineman):

“Single-Source Shortest Paths with Negative Real Weights in ෨𝑂 𝑚𝑛8/9 Time”

3) STOC 2025 Best Paper Award (Duan, Mao, Mao, Shu, Yin):

“Breaking the Sorting Barrier for Directed Single-Source Shortest Paths”

Recent breakthroughs

1) FOCS 2022 Best Paper Award (Bernstein, Nanongkai, Wulff-Nilsen):

“Negative-Weight Single-Source Shortest Paths in Near-linear Time”

2) STOC 2024 Best Paper Award (Fineman):

“Single-Source Shortest Paths with Negative Real Weights in ෨𝑂 𝑚𝑛8/9 Time”

3) STOC 2025 Best Paper Award (Duan, Mao, Mao, Shu, Yin):

“Breaking the Sorting Barrier for Directed Single-Source Shortest Paths”

Non-negative real weights.

Recent breakthroughs

1) FOCS 2022 Best Paper Award (Bernstein, Nanongkai, Wulff-Nilsen):

“Negative-Weight Single-Source Shortest Paths in Near-linear Time”

2) STOC 2024 Best Paper Award (Fineman):

“Single-Source Shortest Paths with Negative Real Weights in ෨𝑂 𝑚𝑛8/9 Time”

3) STOC 2025 Best Paper Award (Duan, Mao, Mao, Shu, Yin):

“Breaking the Sorting Barrier for Directed Single-Source Shortest Paths”

Non-negative real weights.

Integer weights.

Recent breakthroughs

1) FOCS 2022 Best Paper Award (Bernstein, Nanongkai, Wulff-Nilsen):

“Negative-Weight Single-Source Shortest Paths in Near-linear Time”

2) STOC 2024 Best Paper Award (Fineman):

“Single-Source Shortest Paths with Negative Real Weights in ෨𝑂 𝑚𝑛8/9 Time”

3) STOC 2025 Best Paper Award (Duan, Mao, Mao, Shu, Yin):

“Breaking the Sorting Barrier for Directed Single-Source Shortest Paths”

Non-negative real weights.

➢Real/integer regimes very different for SSSP.

Integer weights.

Recent breakthroughs

1) FOCS 2022 Best Paper Award (Bernstein, Nanongkai, Wulff-Nilsen):

“Negative-Weight Single-Source Shortest Paths in Near-linear Time”

2) STOC 2024 Best Paper Award (Fineman):

“Single-Source Shortest Paths with Negative Real Weights in ෨𝑂 𝑚𝑛8/9 Time”

3) STOC 2025 Best Paper Award (Duan, Mao, Mao, Shu, Yin):

“Breaking the Sorting Barrier for Directed Single-Source Shortest Paths”

Non-negative real weights.

➢Real/integer regimes very different for SSSP.

➢What does it even mean to solve optimization problems on real numbers?

Integer weights.

Exact optimization on real-weighted graphs

Real RAM:
➢ Integer-indexed memory cells store infinite-precision real numbers,
➢ basic arithmetic operations (+, −, ⋅, ÷) and comparisons performed in

𝑂 1 time in a black-box way.

Exact optimization on real-weighted graphs

Real RAM:
➢ Integer-indexed memory cells store infinite-precision real numbers,
➢ basic arithmetic operations (+, −, ⋅, ÷) and comparisons performed in

𝑂 1 time in a black-box way.

✓ Super convenient.

Exact optimization on real-weighted graphs

Real RAM:
➢ Integer-indexed memory cells store infinite-precision real numbers,
➢ basic arithmetic operations (+, −, ⋅, ÷) and comparisons performed in

𝑂 1 time in a black-box way.

✓ Super convenient.

✓Not very realistic.

Exact optimization on real-weighted graphs

Real RAM:
➢ Integer-indexed memory cells store infinite-precision real numbers,
➢ basic arithmetic operations (+, −, ⋅, ÷) and comparisons performed in

𝑂 1 time in a black-box way.

✓ Super convenient.

✓Not very realistic.

✓Overpowered, e.g.:

• Integer division ⌊𝑥/𝑎⌋ in 𝑂(1) time ⇒ solve NP-hard problems in poly. time.

Exact optimization on real-weighted graphs

Real RAM:
➢ Integer-indexed memory cells store infinite-precision real numbers,
➢ basic arithmetic operations (+, −, ⋅, ÷) and comparisons performed in

𝑂 1 time in a black-box way.

✓ Super convenient.

✓Not very realistic.

✓Overpowered, e.g.:

• Integer division ⌊𝑥/𝑎⌋ in 𝑂(1) time ⇒ solve NP-hard problems in poly. time.

• Only (+, <) ⇒ e.g., count triangles in a graph in ෨𝑂(𝑚) time.

Exact optimization on real-weighted graphs

➢Still, likely the best model for truly exact computation we’ve got…

➢… if we do not abuse it. E.g. we can:

▪ promise to only ever compute values from a natural restricted domain.

Real RAM:
➢ Integer-indexed memory cells store infinite-precision real numbers,
➢ basic arithmetic operations (+, −, ⋅, ÷) and comparisons performed in

𝑂 1 time in a black-box way.

Exact optimization on real-weighted graphs

➢Still, likely the best model for truly exact computation we’ve got…

➢… if we do not abuse it. E.g. we can:

▪ promise to only ever compute values from a natural restricted domain.

▪ promise to use polynomial space if mapped to a realistic model.

Real RAM:
➢ Integer-indexed memory cells store infinite-precision real numbers,
➢ basic arithmetic operations (+, −, ⋅, ÷) and comparisons performed in

𝑂 1 time in a black-box way.

Exact optimization on real-weighted graphs

➢Still, likely the best model for truly exact computation we’ve got…

➢… if we do not abuse it. E.g. we can:

▪ promise to only ever compute values from a natural restricted domain.

▪ promise to use polynomial space if mapped to a realistic model.

➢Green flag: running within the same time bound on a realistic model.

Real RAM:
➢ Integer-indexed memory cells store infinite-precision real numbers,
➢ basic arithmetic operations (+, −, ⋅, ÷) and comparisons performed in

𝑂 1 time in a black-box way.

Recent breakthroughs (real weights)

1) FOCS 2022 Best Paper Award (Bernstein, Nanongkai, Wulff-Nilsen):

“Negative-Weight Single-Source Shortest Paths in Near-linear Time”

2) STOC 2024 Best Paper Award (Fineman):

“Single-Source Shortest Paths with Negative Real Weights in ෨𝑂 𝑚𝑛8/9 Time”

3) STOC 2025 Best Paper Award (Duan, Mao, Mao, Shu, Yin):

“Breaking the Sorting Barrier for Directed Single-Source Shortest Paths”

In both, all intermediate reals constructed are the graph’s path lengths ⇒ no abuse!

Non-negative.

Recent breakthroughs (real weights)

1) FOCS 2022 Best Paper Award (Bernstein, Nanongkai, Wulff-Nilsen):

“Negative-Weight Single-Source Shortest Paths in Near-linear Time”

2) STOC 2024 Best Paper Award (Fineman):

“Single-Source Shortest Paths with Negative Real Weights in ෨𝑂 𝑚𝑛8/9 Time”

3) STOC 2025 Best Paper Award (Duan, Mao, Mao, Shu, Yin):

“Breaking the Sorting Barrier for Directed Single-Source Shortest Paths”

In both, all intermediate reals constructed are the graph’s path lengths ⇒ no abuse!

Runs in 𝑂 𝑚 log2/3 𝑛 time using (+,<), thus cannot sort via comparisons!

Baseline: 𝑂 𝑚 + 𝑛 log 𝑛

Non-negative.

Word RAM

Word RAM:
➢ Memory cells store 𝑤-bit integers, where 𝑤 = Ω(log 𝑛) is the word size.
➢ Arithmetic/bitwise/comparison operations on 𝑤-bit integers performed

in 𝑂 1 time.

Think C language, 𝑤 = 64.
𝑛 = “problem size”

Word RAM

Word RAM:
➢ Memory cells store 𝑤-bit integers, where 𝑤 = Ω(log 𝑛) is the word size.
➢ Arithmetic/bitwise/comparison operations on 𝑤-bit integers performed

in 𝑂 1 time.

➢ Intermediate values sums of poly(𝑛) input values → still 𝑂 𝑤 -bit ints.

Think C language, 𝑤 = 64.
𝑛 = “problem size”

Word RAM

Word RAM:
➢ Memory cells store 𝑤-bit integers, where 𝑤 = Ω(log 𝑛) is the word size.
➢ Arithmetic/bitwise/comparison operations on 𝑤-bit integers performed

in 𝑂 1 time.

➢ Intermediate values sums of poly(𝑛) input values → still 𝑂 𝑤 -bit ints.

➢ Typically, for integer weights fitting in a word, real RAM bounds transfer to

word RAM bounds.

Think C language, 𝑤 = 64.
𝑛 = “problem size”

Word RAM

Word RAM:
➢ Memory cells store 𝑤-bit integers, where 𝑤 = Ω(log 𝑛) is the word size.
➢ Arithmetic/bitwise/comparison operations on 𝑤-bit integers performed

in 𝑂 1 time.

➢ Intermediate values sums of poly(𝑛) input values → still 𝑂 𝑤 -bit ints.

➢ Typically, for integer weights fitting in a word, real RAM bounds transfer to

word RAM bounds.

➢ Literature: “exact” means “exact on integer input”.

➢ For graphs: edge weights = integers fitting in a single word.

Think C language, 𝑤 = 64.
𝑛 = “problem size”

Word RAM

Word RAM:
➢ Memory cells store 𝑤-bit integers, where 𝑤 = Ω(log 𝑛) is the word size.
➢ Arithmetic/bitwise/comparison operations on 𝑤-bit integers performed

in 𝑂 1 time.

➢ Intermediate values sums of poly(𝑛) input values → still 𝑂 𝑤 -bit ints.

➢ Typically, for integer weights fitting in a word, real RAM bounds transfer to

word RAM bounds.

➢ Literature: “exact” means “exact on integer input”.

➢ For graphs: edge weights = integers fitting in a single word.

For simplicity, let’s assume 𝑤 = Θ log 𝑛 ⇒ absolute edge weights ≤ poly 𝑛 .

Think C language, 𝑤 = 64.
𝑛 = “problem size”

(obsolete) Manual for solving integer SSSP

Single-Source Shortest Paths (SSSP): [integer]
Given a directed graph 𝐺 = (𝑉, 𝐸) with 𝑛 vertices and 𝑚 edges whose weights are
integers fitting in words, and a source 𝑠 ∈ 𝑉, compute dist𝐺(𝑠, 𝑡) for all 𝑡 ∈ 𝑉.

Does 𝐺 have only
non-negative weights?

(obsolete) Manual for solving integer SSSP

Single-Source Shortest Paths (SSSP): [integer]
Given a directed graph 𝐺 = (𝑉, 𝐸) with 𝑛 vertices and 𝑚 edges whose weights are
integers fitting in words, and a source 𝑠 ∈ 𝑉, compute dist𝐺(𝑠, 𝑡) for all 𝑡 ∈ 𝑉.

Does 𝐺 have only
non-negative weights?

Yes? Use Dijkstra’s algorithm
with a fancier priority queue.

𝑂 𝑚 + 𝑛 log log 𝑛 time [Thorup ’03].

Or faster; holds even for word size ≫ log𝑛!

(obsolete) Manual for solving integer SSSP

Single-Source Shortest Paths (SSSP): [integer]
Given a directed graph 𝐺 = (𝑉, 𝐸) with 𝑛 vertices and 𝑚 edges whose weights are
integers fitting in words, and a source 𝑠 ∈ 𝑉, compute dist𝐺(𝑠, 𝑡) for all 𝑡 ∈ 𝑉.

Does 𝐺 have only
non-negative weights?

Yes? Use Dijkstra’s algorithm
with a fancier priority queue.

𝑂 𝑚 + 𝑛 log log 𝑛 time [Thorup ’03].

No? Use a “scaling” algorithm.

E.g. Gabow’s ෨𝑂 𝑚𝑛3/4 (‘83)

Or Goldberg’s ෨𝑂(𝑚 𝑛) (’93)

Or faster; holds even for word size ≫ log𝑛!

➢ Consider vertex prices 𝑝 𝑣 for all 𝑣 ∈ 𝑉.

Reweighting via Price functions

➢ Consider vertex prices 𝑝 𝑣 for all 𝑣 ∈ 𝑉.

➢ One can prove that for a well-defined SSSP problem there exist prices such that:

𝑤 𝑢𝑣 + 𝑝 𝑢 − 𝑝 𝑣 ≥ 0 for all edges 𝑢𝑣 ∈ 𝐸

Reweighting via Price functions

➢ Consider vertex prices 𝑝 𝑣 for all 𝑣 ∈ 𝑉.

➢ One can prove that for a well-defined SSSP problem there exist prices such that:

𝑤 𝑢𝑣 + 𝑝 𝑢 − 𝑝 𝑣 ≥ 0 for all edges 𝑢𝑣 ∈ 𝐸

➢ 𝑝 𝑢 ≔ dist𝐺(𝑠, 𝑢) is one such function…

Reweighting via Price functions

➢ Consider vertex prices 𝑝 𝑣 for all 𝑣 ∈ 𝑉.

➢ One can prove that for a well-defined SSSP problem there exist prices such that:

𝑤 𝑢𝑣 + 𝑝 𝑢 − 𝑝 𝑣 ≥ 0 for all edges 𝑢𝑣 ∈ 𝐸

➢ 𝑝 𝑢 ≔ dist𝐺(𝑠, 𝑢) is one such function…

➢ Changing edge weights to:

𝑤𝑝 𝑢𝑣 ≔ 𝑤 𝑢𝑣 + 𝑝 𝑢 − 𝑝 𝑣 ≥ 0.

Reweighting via Price functions

➢ Consider vertex prices 𝑝 𝑣 for all 𝑣 ∈ 𝑉.

➢ One can prove that for a well-defined SSSP problem there exist prices such that:

𝑤 𝑢𝑣 + 𝑝 𝑢 − 𝑝 𝑣 ≥ 0 for all edges 𝑢𝑣 ∈ 𝐸

➢ 𝑝 𝑢 ≔ dist𝐺(𝑠, 𝑢) is one such function…

➢ Changing edge weights to:

𝑤𝑝 𝑢𝑣 ≔ 𝑤 𝑢𝑣 + 𝑝 𝑢 − 𝑝 𝑣 ≥ 0.

1) does not change the shortest paths structure,

Reweighting via Price functions

➢ Consider vertex prices 𝑝 𝑣 for all 𝑣 ∈ 𝑉.

➢ One can prove that for a well-defined SSSP problem there exist prices such that:

𝑤 𝑢𝑣 + 𝑝 𝑢 − 𝑝 𝑣 ≥ 0 for all edges 𝑢𝑣 ∈ 𝐸

➢ 𝑝 𝑢 ≔ dist𝐺(𝑠, 𝑢) is one such function…

➢ Changing edge weights to:

𝑤𝑝 𝑢𝑣 ≔ 𝑤 𝑢𝑣 + 𝑝 𝑢 − 𝑝 𝑣 ≥ 0.

1) does not change the shortest paths structure,

Reweighting via Price functions

𝑢 𝑣𝑥 𝑦

𝑧

➢ Consider vertex prices 𝑝 𝑣 for all 𝑣 ∈ 𝑉.

➢ One can prove that for a well-defined SSSP problem there exist prices such that:

𝑤 𝑢𝑣 + 𝑝 𝑢 − 𝑝 𝑣 ≥ 0 for all edges 𝑢𝑣 ∈ 𝐸

➢ 𝑝 𝑢 ≔ dist𝐺(𝑠, 𝑢) is one such function…

➢ Changing edge weights to:

𝑤𝑝 𝑢𝑣 ≔ 𝑤 𝑢𝑣 + 𝑝 𝑢 − 𝑝 𝑣 ≥ 0.

1) does not change the shortest paths structure,

Reweighting via Price functions

𝑢 𝑣𝑥 𝑦

𝑧

+𝑝 𝑢 − 𝑝(𝑥)
+𝑝 𝑥 − 𝑝(𝑦)

+𝑝 𝑦 − 𝑝(𝑣)

+𝑝 𝑧 − 𝑝(𝑣)

➢ Consider vertex prices 𝑝 𝑣 for all 𝑣 ∈ 𝑉.

➢ One can prove that for a well-defined SSSP problem there exist prices such that:

𝑤 𝑢𝑣 + 𝑝 𝑢 − 𝑝 𝑣 ≥ 0 for all edges 𝑢𝑣 ∈ 𝐸

➢ 𝑝 𝑢 ≔ dist𝐺(𝑠, 𝑢) is one such function…

➢ Changing edge weights to:

𝑤𝑝 𝑢𝑣 ≔ 𝑤 𝑢𝑣 + 𝑝 𝑢 − 𝑝 𝑣 ≥ 0.

1) does not change the shortest paths structure,

Reweighting via Price functions

𝑢 𝑣𝑥 𝑦

𝑧

+𝑝 𝑢 − 𝑝(𝑥)
+𝑝 𝑥 − 𝑝(𝑦)

+𝑝 𝑦 − 𝑝(𝑣)

+𝑝 𝑧 − 𝑝(𝑣)

𝑤𝑝 𝑄 = 𝑤 𝑄 + 𝑝 𝑢 − 𝑝(𝑣)

➢ Consider vertex prices 𝑝 𝑣 for all 𝑣 ∈ 𝑉.

➢ One can prove that for a well-defined SSSP problem there exist prices such that:

𝑤 𝑢𝑣 + 𝑝 𝑢 − 𝑝 𝑣 ≥ 0 for all edges 𝑢𝑣 ∈ 𝐸

➢ 𝑝 𝑢 ≔ dist𝐺(𝑠, 𝑢) is one such function…

➢ Changing edge weights to:

𝑤𝑝 𝑢𝑣 ≔ 𝑤 𝑢𝑣 + 𝑝 𝑢 − 𝑝 𝑣 ≥ 0.

1) does not change the shortest paths structure,

Reweighting via Price functions

𝑢 𝑣𝑥 𝑦

𝑧

+𝑝 𝑢 − 𝑝(𝑥)
+𝑝 𝑥 − 𝑝(𝑦)

+𝑝 𝑦 − 𝑝(𝑣)

+𝑝 𝑧 − 𝑝(𝑣)

𝑤𝑝 𝑄 = 𝑤 𝑄 + 𝑝 𝑢 − 𝑝(𝑣)

𝑤𝑝 𝑅 = 𝑤 𝑅 + 𝑝 𝑢 − 𝑝(𝑣)

➢ Consider vertex prices 𝑝 𝑣 for all 𝑣 ∈ 𝑉.

➢ One can prove that for a well-defined SSSP problem there exist prices such that:

𝑤 𝑢𝑣 + 𝑝 𝑢 − 𝑝 𝑣 ≥ 0 for all edges 𝑢𝑣 ∈ 𝐸

➢ 𝑝 𝑢 ≔ dist𝐺(𝑠, 𝑢) is one such function…

➢ Changing edge weights to:

𝑤𝑝 𝑢𝑣 ≔ 𝑤 𝑢𝑣 + 𝑝 𝑢 − 𝑝 𝑣 ≥ 0.

1) does not change the shortest paths structure,

Reweighting via Price functions

𝑢 𝑣𝑥 𝑦

𝑧

+𝑝 𝑢 − 𝑝(𝑥)
+𝑝 𝑥 − 𝑝(𝑦)

+𝑝 𝑦 − 𝑝(𝑣)

+𝑝 𝑧 − 𝑝(𝑣)

𝑤𝑝 𝑄 = 𝑤 𝑄 + 𝑝 𝑢 − 𝑝(𝑣)

𝑤𝑝 𝑅 = 𝑤 𝑅 + 𝑝 𝑢 − 𝑝(𝑣)

𝑤𝑝 𝑄 − 𝑤𝑝 𝑅 = 𝑤 𝑄 −𝑤(𝑅)

Reweighting via Price functions
➢ Consider vertex prices 𝑝 𝑣 for all 𝑣 ∈ 𝑉.

➢ One can prove that for a well-defined SSSP problem there exist prices such that:

𝑤 𝑢𝑣 + 𝑝 𝑢 − 𝑝 𝑣 ≥ 0 for all edges 𝑢𝑣 ∈ 𝐸

➢ 𝑝 𝑢 ≔ dist𝐺(𝑠, 𝑢) is one such function…

➢ Changing edge weights to:

𝑤𝑝 𝑢𝑣 ≔ 𝑤 𝑢𝑣 + 𝑝 𝑢 − 𝑝 𝑣 ≥ 0.

1) does not change the shortest paths structure,

2) makes the problem amenable to Dijkstra.

Approximation scheme

1) Relax the inequalities with an error parameter 𝜖 that you can initialize easily

𝑤 𝑢𝑣 + 𝑝 𝑢 − 𝑝 𝑣 ≥ −𝜖 for all edges 𝑢𝑣 ∈ 𝐸

Approximation scheme

1) Relax the inequalities with an error parameter 𝜖 that you can initialize easily

𝑤 𝑢𝑣 + 𝑝 𝑢 − 𝑝 𝑣 ≥ −𝜖 for all edges 𝑢𝑣 ∈ 𝐸

𝑤 𝑢𝑣 ≤ poly(𝑛),

so start with

𝑝 ≡ 0 , 𝜖 = poly(𝑛).

Approximation scheme

1) Relax the inequalities with an error parameter 𝜖 that you can initialize easily

𝑤 𝑢𝑣 + 𝑝 𝑢 − 𝑝 𝑣 ≥ −𝜖 for all edges 𝑢𝑣 ∈ 𝐸

2) Devise a refinement procedure that improves 𝑝 to 𝑝′ such that

𝑤 𝑢𝑣 + 𝑝′ 𝑢 − 𝑝′ 𝑣 ≥ −𝜖/2 for all edges 𝑢𝑣 ∈ 𝐸

Approximation scheme

1) Relax the inequalities with an error parameter 𝜖 that you can initialize easily

𝑤 𝑢𝑣 + 𝑝 𝑢 − 𝑝 𝑣 ≥ −𝜖 for all edges 𝑢𝑣 ∈ 𝐸

2) Devise a refinement procedure that improves 𝑝 to 𝑝′ such that

𝑤 𝑢𝑣 + 𝑝′ 𝑢 − 𝑝′ 𝑣 ≥ −𝜖/2 for all edges 𝑢𝑣 ∈ 𝐸

3) After 𝑂 log 𝑛 iterations we will have

𝑤𝑝 𝑢𝑣 ≔ 𝑤 𝑢𝑣 + 𝑝 𝑢 − 𝑝 𝑣 ≥ −
1

2𝑛
.

Approximation scheme

1) Relax the inequalities with an error parameter 𝜖 that you can initialize easily

𝑤 𝑢𝑣 + 𝑝 𝑢 − 𝑝 𝑣 ≥ −𝜖 for all edges 𝑢𝑣 ∈ 𝐸

2) Devise a refinement procedure that improves 𝑝 to 𝑝′ such that

𝑤 𝑢𝑣 + 𝑝′ 𝑢 − 𝑝′ 𝑣 ≥ −𝜖/2 for all edges 𝑢𝑣 ∈ 𝐸

3) After 𝑂 log 𝑛 iterations we will have

𝑤𝑝 𝑢𝑣 ≔ 𝑤 𝑢𝑣 + 𝑝 𝑢 − 𝑝 𝑣 ≥ −
1

2𝑛
.

𝑤𝑝(𝑥𝑦) ≥ −1/2𝑛 𝑤𝑝(𝑦𝑣) ≥ −1/2𝑛

𝑢 𝑣𝑥 𝑦

𝑧

𝑤𝑝(𝑢𝑥) ≥ −1/2𝑛

𝑤𝑝(𝑧𝑣) ≥ −1/2𝑛

𝑤𝑝 𝑄 − 𝑤𝑝 𝑅 = 𝑤 𝑄 −𝑤(𝑅)

Approximation scheme

1) Relax the inequalities with an error parameter 𝜖 that you can initialize easily

𝑤 𝑢𝑣 + 𝑝 𝑢 − 𝑝 𝑣 ≥ −𝜖 for all edges 𝑢𝑣 ∈ 𝐸

2) Devise a refinement procedure that improves 𝑝 to 𝑝′ such that

𝑤 𝑢𝑣 + 𝑝′ 𝑢 − 𝑝′ 𝑣 ≥ −𝜖/2 for all edges 𝑢𝑣 ∈ 𝐸

3) After 𝑂 log 𝑛 iterations we will have

𝑤𝑝 𝑢𝑣 ≔ 𝑤 𝑢𝑣 + 𝑝 𝑢 − 𝑝 𝑣 ≥ −
1

2𝑛
.

𝑤𝑝(𝑥𝑦) ≥ −1/2𝑛 𝑤𝑝(𝑦𝑣) ≥ −1/2𝑛

𝑢 𝑣𝑥 𝑦

𝑧

𝑤𝑝(𝑢𝑥) ≥ −1/2𝑛

𝑤𝑝(𝑧𝑣) ≥ −1/2𝑛

𝑤𝑝 𝑄 − 𝑤𝑝 𝑅 = 𝑤 𝑄 −𝑤(𝑅)

Increase weights by
1

2
𝑛.

Approximation scheme

𝑢 𝑣𝑥 𝑦

𝑧

𝑤′𝑝(𝑢𝑥) ≥ 0
𝑤′𝑝(𝑥𝑦) ≥ 0 𝑤′𝑝(𝑦𝑣) ≥ 0

𝑤′𝑝(𝑧𝑣) ≥ 0

1) Relax the inequalities with an error parameter 𝜖 that you can initialize easily

𝑤 𝑢𝑣 + 𝑝 𝑢 − 𝑝 𝑣 ≥ −𝜖 for all edges 𝑢𝑣 ∈ 𝐸

2) Devise a refinement procedure that improves 𝑝 to 𝑝′ such that

𝑤 𝑢𝑣 + 𝑝′ 𝑢 − 𝑝′ 𝑣 ≥ −𝜖/2 for all edges 𝑢𝑣 ∈ 𝐸

3) After 𝑂 log 𝑛 iterations we will have

𝑤𝑝 𝑢𝑣 ≔ 𝑤 𝑢𝑣 + 𝑝 𝑢 − 𝑝 𝑣 ≥ −
1

2𝑛
.

Approximation scheme

𝑢 𝑣𝑥 𝑦

𝑧

𝑤′𝑝(𝑢𝑥) ≥ 0
𝑤′𝑝(𝑥𝑦) ≥ 0 𝑤′𝑝(𝑦𝑣) ≥ 0

𝑤′𝑝(𝑧𝑣) ≥ 0 𝑤′𝑝 𝑄 − 𝑤′
𝑝 𝑅 ≤ 𝑤 𝑄 −𝑤 𝑅 + 1/2

1) Relax the inequalities with an error parameter 𝜖 that you can initialize easily

𝑤 𝑢𝑣 + 𝑝 𝑢 − 𝑝 𝑣 ≥ −𝜖 for all edges 𝑢𝑣 ∈ 𝐸

2) Devise a refinement procedure that improves 𝑝 to 𝑝′ such that

𝑤 𝑢𝑣 + 𝑝′ 𝑢 − 𝑝′ 𝑣 ≥ −𝜖/2 for all edges 𝑢𝑣 ∈ 𝐸

3) After 𝑂 log 𝑛 iterations we will have

𝑤𝑝 𝑢𝑣 ≔ 𝑤 𝑢𝑣 + 𝑝 𝑢 − 𝑝 𝑣 ≥ −
1

2𝑛
.

1) Relax the inequalities with an error parameter 𝜖 that you can initialize easily

𝑤 𝑢𝑣 + 𝑝 𝑢 − 𝑝 𝑣 ≥ −𝜖 for all edges 𝑢𝑣 ∈ 𝐸

2) Devise a refinement procedure that improves 𝑝 to 𝑝′ such that

𝑤 𝑢𝑣 + 𝑝′ 𝑢 − 𝑝′ 𝑣 ≥ −𝜖/2 for all edges 𝑢𝑣 ∈ 𝐸

3) After 𝑂 log 𝑛 iterations we will have

𝑤𝑝 𝑢𝑣 ≔ 𝑤 𝑢𝑣 + 𝑝 𝑢 − 𝑝 𝑣 ≥ −
1

2𝑛
.

4) Increasing edge weights by
1

2𝑛
increases path weight by at most

1

2
.

5) But, by integrality, shortest and non-shortest path weights differ by ≥ 1.

6) Dijkstra applicable and correct after increase.

Approximation scheme

1) Relax the inequalities with an error parameter 𝜖 that you can initialize easily

𝑤 𝑢𝑣 + 𝑝 𝑢 − 𝑝 𝑣 ≥ −𝜖 for all edges 𝑢𝑣 ∈ 𝐸

2) Devise a refinement procedure that improves 𝑝 to 𝑝′ such that

𝑤 𝑢𝑣 + 𝑝′ 𝑢 − 𝑝′ 𝑣 ≥ −𝜖/2 for all edges 𝑢𝑣 ∈ 𝐸

3) After 𝑂 log poly 𝑛 iterations we will have

𝑤𝑝 𝑢𝑣 ≔ 𝑤 𝑢𝑣 + 𝑝 𝑢 − 𝑝 𝑣 ≥ −
1

2𝑛
.

4) Increasing edge weights by
1

2𝑛
increases path weight by at most

1

2
.

5) But, by integrality, shortest and non-shortest path weights differ by ≥ 1.

6) Dijkstra applicable and correct after increase.

Approximation scheme

Integrality and scaling

Scaling framework = very efficient approximation scheme!
➢ Single ``refinement” iteration: decrease error by a constant factor.
➢ Additive error 𝜖 achieved in polylog 𝑛, 𝜖−1 iterations.

Integrality and scaling

Scaling framework = very efficient approximation scheme!
➢ Single ``refinement” iteration: decrease error by a constant factor.
➢ Additive error 𝜖 achieved in polylog 𝑛, 𝜖−1 iterations.

➢ Could be used even real data, e.g., irrational...

➢ … but would never terminate with an exact solution in poly(𝑛,𝑚) time.

Integrality and scaling

Scaling framework = very efficient approximation scheme!
➢ Single ``refinement” iteration: decrease error by a constant factor.
➢ Additive error 𝜖 achieved in polylog 𝑛, 𝜖−1 iterations.

➢ Could be used even real data, e.g., irrational...

➢ … but would never terminate with an exact solution in poly(𝑛,𝑚) time.

➢ Integrality ⇒ accuracy 𝜖−1 = poly(𝑛) enough to correctly round.

Recent breakthroughs (integer)

1) FOCS 2022 Best Paper Award (Bernstein, Nanongkai, Wulff-Nilsen):

“Negative-Weight Single-Source Shortest Paths in Near-linear Time”

2) STOC 2024 Best Paper Award (Fineman):

“Single-Source Shortest Paths with Negative Real Weights in ෨𝑂 𝑚𝑛8/9 Time”

3) STOC 2025 Best Paper Award (Duan, Mao, Mao, Shu, Yin):

“Breaking the Sorting Barrier for Directed Single-Source Shortest Paths”

Approximation refinement in ෨𝑂 𝑚 time!

Recent breakthroughs (integer)

1) FOCS 2022 Best Paper Award (Bernstein, Nanongkai, Wulff-Nilsen):

“Negative-Weight Single-Source Shortest Paths in Near-linear Time”

2) STOC 2024 Best Paper Award (Fineman):

“Single-Source Shortest Paths with Negative Real Weights in ෨𝑂 𝑚𝑛8/9 Time”

3) STOC 2025 Best Paper Award (Duan, Mao, Mao, Shu, Yin):

“Breaking the Sorting Barrier for Directed Single-Source Shortest Paths”

Approximation refinement in ෨𝑂 𝑚 time!

Other recent achievements:

➢max flow with integer weights in 𝑚1+𝑜(1) time [Chen et al. ‘22].

Recent breakthroughs (integer)

1) FOCS 2022 Best Paper Award (Bernstein, Nanongkai, Wulff-Nilsen):

“Negative-Weight Single-Source Shortest Paths in Near-linear Time”

2) STOC 2024 Best Paper Award (Fineman):

“Single-Source Shortest Paths with Negative Real Weights in ෨𝑂 𝑚𝑛8/9 Time”

3) STOC 2025 Best Paper Award (Duan, Mao, Mao, Shu, Yin):

“Breaking the Sorting Barrier for Directed Single-Source Shortest Paths”

Approximation refinement in ෨𝑂 𝑚 time!

Other recent achievements:

➢max flow with integer weights in 𝑚1+𝑜(1) time [Chen et al. ‘22].

Best real RAM bound:
𝑂(𝑛𝑚) [Orlin ‘13]

Recent breakthroughs (real weights)

1) FOCS 2022 Best Paper Award (Bernstein, Nanongkai, Wulff-Nilsen):

“Negative-Weight Single-Source Shortest Paths in Near-linear Time”

2) STOC 2024 Best Paper Award (Fineman):

“Single-Source Shortest Paths with Negative Real Weights in ෨𝑂 𝑚𝑛8/9 Time”

3) STOC 2025 Best Paper Award (Duan, Mao, Mao, Shu, Yin):

“Breaking the Sorting Barrier for Directed Single-Source Shortest Paths”

Given a price function 𝑝: 𝑉 → ℝ such that 𝑘 vertices have adjacent negative edges, in
෨𝑂 𝑚𝑘2/9 time one can compute a price fun. 𝑝′ with 𝑘1/3 fewer such negative vertices.

Recent breakthroughs

1) FOCS 2022 Best Paper Award (Bernstein, Nanongkai, Wulff-Nilsen):

“Negative-Weight Single-Source Shortest Paths in Near-linear Time”

2) STOC 2024 Best Paper Award (Fineman):

“Single-Source Shortest Paths with Negative Real Weights in ෨𝑂 𝑚𝑛8/9 Time”

3) STOC 2025 Best Paper Award (Duan, Mao, Mao, Shu, Yin):

“Breaking the Sorting Barrier for Directed Single-Source Shortest Paths”

What about rational data?
Exact optimization on graphs studied:

➢either in an unrealistic real RAM model,

➢or for integer data in a realistic word RAM model.

What about rational data?

✓ A rational number
𝑝

𝑞
with 𝑝, 𝑞 = Θ poly 𝑛 can be represented exactly

using a single machine word in the word RAM.

Exact optimization on graphs studied:

➢either in an unrealistic real RAM model,

➢or for integer data in a realistic word RAM model.

What about rational data?

✓ A rational number
𝑝

𝑞
with 𝑝, 𝑞 = Θ poly 𝑛 can be represented exactly

using a single machine word in the word RAM.

Exact optimization on graphs studied:

➢either in an unrealistic real RAM model,

➢or for integer data in a realistic word RAM model.

Can optimization problems on rational-weighted graphs be solved on the
word RAM exactly and as efficiently as on integer-weighted graphs?

Rational SSSP

Single-Source Shortest Paths (SSSP): [rational]
Given a directed graph 𝐺 = (𝑉, 𝐸) with 𝑛 vertices and 𝑚 edges whose weights are
word-fitting rationals, and a source 𝑠 ∈ 𝑉, compute dist𝐺(𝑠, 𝑡) for all 𝑡 ∈ 𝑉.

Rational SSSP

➢ Suppose we adapt Dijkstra’s algorithm: use exact arithmetic on rationals.

Single-Source Shortest Paths (SSSP): [rational]
Given a directed graph 𝐺 = (𝑉, 𝐸) with 𝑛 vertices and 𝑚 edges whose weights are
word-fitting rationals, and a source 𝑠 ∈ 𝑉, compute dist𝐺(𝑠, 𝑡) for all 𝑡 ∈ 𝑉.

Rational SSSP

➢ Suppose we adapt Dijkstra’s algorithm: use exact arithmetic on rationals.

➢ Intermediate values = path lengths → sums of 𝑂(𝑛) word-fitting rationals.

Single-Source Shortest Paths (SSSP): [rational]
Given a directed graph 𝐺 = (𝑉, 𝐸) with 𝑛 vertices and 𝑚 edges whose weights are
word-fitting rationals, and a source 𝑠 ∈ 𝑉, compute dist𝐺(𝑠, 𝑡) for all 𝑡 ∈ 𝑉.

Rational SSSP

➢ Suppose we adapt Dijkstra’s algorithm: use exact arithmetic on rationals.

➢ Intermediate values = path lengths → sums of 𝑂(𝑛) word-fitting rationals.

1

𝑝1
+

1

𝑝2
+⋯+

1

𝑝𝑘
=
something

𝑝1𝑝2…𝑝𝑘

Single-Source Shortest Paths (SSSP): [rational]
Given a directed graph 𝐺 = (𝑉, 𝐸) with 𝑛 vertices and 𝑚 edges whose weights are
word-fitting rationals, and a source 𝑠 ∈ 𝑉, compute dist𝐺(𝑠, 𝑡) for all 𝑡 ∈ 𝑉.

Rational SSSP

Single-Source Shortest Paths (SSSP): [rational]
Given a directed graph 𝐺 = (𝑉, 𝐸) with 𝑛 vertices and 𝑚 edges whose weights are
word-fitting rationals, and a source 𝑠 ∈ 𝑉, compute dist𝐺(𝑠, 𝑡) for all 𝑡 ∈ 𝑉.

➢ Suppose we adapt Dijkstra’s algorithm: use exact arithmetic on rationals.

➢ Intermediate values = path lengths → sums of 𝑂(𝑛) word-fitting rationals.

1

𝑝1
+

1

𝑝2
+⋯+

1

𝑝𝑘
=
something

𝑝1𝑝2…𝑝𝑘

Rational SSSP

Single-Source Shortest Paths (SSSP): [rational]
Given a directed graph 𝐺 = (𝑉, 𝐸) with 𝑛 vertices and 𝑚 edges whose weights are
word-fitting rationals, and a source 𝑠 ∈ 𝑉, compute a shortest paths tree from 𝑠.

➢ Suppose we adapt Dijkstra’s algorithm: use exact arithmetic on rationals.

➢ Intermediate values = path lengths → sums of 𝑂(𝑛) word-fitting rationals.

Rational SSSP

Single-Source Shortest Paths (SSSP): [rational]
Given a directed graph 𝐺 = (𝑉, 𝐸) with 𝑛 vertices and 𝑚 edges whose weights are
word-fitting rationals, and a source 𝑠 ∈ 𝑉, compute a shortest paths tree from 𝑠.

➢ Suppose we adapt Dijkstra’s algorithm: use exact arithmetic on rationals.

➢ Intermediate values = path lengths → sums of 𝑂(𝑛) word-fitting rationals.

➢ Intermediate values may require Ω(𝑛) bits → arithmetic cost linear!

Rational SSSP

Trivial adaptation of Dijkstra runs in ෨𝑂(𝑚𝑛) time on rationals ≥ 0!

Single-Source Shortest Paths (SSSP): [rational]
Given a directed graph 𝐺 = (𝑉, 𝐸) with 𝑛 vertices and 𝑚 edges whose weights are
word-fitting rationals, and a source 𝑠 ∈ 𝑉, compute a shortest paths tree from 𝑠.

➢ Suppose we adapt Dijkstra’s algorithm: use exact arithmetic on rationals.

➢ Intermediate values = path lengths → sums of 𝑂(𝑛) word-fitting rationals.

➢ Intermediate values may require Ω(𝑛) bits → arithmetic cost linear!

Rational SSSP

➢ Maybe apply some form of scaling then?

Single-Source Shortest Paths (SSSP): [rational]
Given a directed graph 𝐺 = (𝑉, 𝐸) with 𝑛 vertices and 𝑚 edges whose weights are
word-fitting rationals, and a source 𝑠 ∈ 𝑉, compute a shortest paths tree from 𝑠.

Rational SSSP

➢ Maybe apply some form of scaling then?

➢ But the second shortest path might differ from OPT by 2−
෩Θ(𝑛).

Single-Source Shortest Paths (SSSP): [rational]
Given a directed graph 𝐺 = (𝑉, 𝐸) with 𝑛 vertices and 𝑚 edges whose weights are
word-fitting rationals, and a source 𝑠 ∈ 𝑉, compute a shortest paths tree from 𝑠.

Rational SSSP

➢ Maybe apply some form of scaling then?

➢ But the second shortest path might differ from OPT by 2−
෩Θ(𝑛).

➢ Scaling needs accuracy 𝜖 = 2−
෩Θ(𝑛).

Single-Source Shortest Paths (SSSP): [rational]
Given a directed graph 𝐺 = (𝑉, 𝐸) with 𝑛 vertices and 𝑚 edges whose weights are
word-fitting rationals, and a source 𝑠 ∈ 𝑉, compute a shortest paths tree from 𝑠.

Rational SSSP

➢ Maybe apply some form of scaling then?

➢ But the second shortest path might differ from OPT by 2−
෩Θ(𝑛).

➢ Scaling needs accuracy 𝜖 = 2−
෩Θ(𝑛).

At least Θ(𝑛)-factor time slowdown compared to integer data!

Single-Source Shortest Paths (SSSP): [rational]
Given a directed graph 𝐺 = (𝑉, 𝐸) with 𝑛 vertices and 𝑚 edges whose weights are
word-fitting rationals, and a source 𝑠 ∈ 𝑉, compute a shortest paths tree from 𝑠.

Our results

Theorem:
SSSP with non-negative word-fitting rational weights can be solved in
෨𝑂(𝑛 +𝑚) time on the word RAM.

Joint work with W. Nadara and M. Sokołowski (SODA 2024):

Our results

Theorem:
SSSP with non-negative word-fitting rational weights can be solved in
෨𝑂(𝑛 +𝑚) time on the word RAM.

➢… even though arithmetic operations on 𝑘-bit rationals take ෨𝑂(𝑘) time.

Joint work with W. Nadara and M. Sokołowski (SODA 2024):

Our results

Theorem:
SSSP with non-negative word-fitting rational weights can be solved in
෨𝑂(𝑛 +𝑚) time on the word RAM.

➢… even though arithmetic operations on 𝑘-bit rationals take ෨𝑂(𝑘) time.

➢ Indeed, almost matching the best-known integer bound possible for SSSP≥0.

Joint work with W. Nadara and M. Sokołowski (SODA 2024):

Our results

Theorem:
SSSP with word-fitting rational weights can be solved in ෨𝑂 𝑚 + 𝑛2.5 time
on the word RAM.

Joint work with W. Nadara and M. Sokołowski (SODA 2024):

Our results

Theorem:
SSSP with word-fitting rational weights can be solved in ෨𝑂 𝑚 + 𝑛2.5 time
on the word RAM.

Joint work with W. Nadara and M. Sokołowski (SODA 2024):

➢Beats scaling with exponential accuracy for very dense graphs 𝑚 = Ω 𝑛2.51 .

Our results

Theorem:
SSSP with word-fitting rational weights can be solved in ෨𝑂 𝑚 + 𝑛2.5 time
on the word RAM.

Joint work with W. Nadara and M. Sokołowski (SODA 2024):

➢Beats scaling with exponential accuracy for very dense graphs 𝑚 = Ω 𝑛2.51 .

➢No reason to believe near-linear time is impossible.

Conclusion
1) Model choice and low-level details can make a huge difference even for very

basic polynomial algorithmic optimization problems.

Conclusion
1) Model choice and low-level details can make a huge difference even for very

basic polynomial algorithmic optimization problems.

2) What we’ve been taught about computing single-source shortest paths is now
completely obsolete at last.

Conclusion
1) Model choice and low-level details can make a huge difference even for very

basic polynomial algorithmic optimization problems.

2) What we’ve been taught about computing single-source shortest paths is now
completely obsolete at last.

3) Very fast-converging approximation schemes can be considered exact
algorithms in realistic models of computation.

Conclusion
1) Model choice and low-level details can make a huge difference even for very

basic polynomial algorithmic optimization problems.

2) What we’ve been taught about computing single-source shortest paths is now
completely obsolete at last.

3) Very fast-converging approximation schemes can be considered exact
algorithms in realistic models of computation.

4) Studying truly exact computation in unrealistic models is okay and timely, but
don’t abuse them!

Open problem

Big open problem in Real RAM vs. Word RAM optimization:

Can Linear Programming be solved exactly on a Real RAM in polynomial time (as a
function of #(variables + constraints)) without model abuse?

See https://en.wikipedia.org/wiki/Smale's_problems

https://en.wikipedia.org/wiki/Smale%27s_problems

Open problem

Big open problem in Real RAM vs. Word RAM optimization:

Can Linear Programming be solved exactly on a Real RAM in polynomial time (as a
function of #(variables + constraints)) without model abuse?

Khachiyan‘79: Linear programming with rational data can be solved in polynomial
time (in #(variables + constraints), on the word RAM).

See https://en.wikipedia.org/wiki/Smale's_problems

https://en.wikipedia.org/wiki/Smale%27s_problems

	Slajd 1: Shortest paths, edge weights, and models of computation
	Slajd 2: Plan
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6: The shortest path problem
	Slajd 7: The shortest path problem
	Slajd 8: The shortest path problem
	Slajd 9: SSSP
	Slajd 10: SSSP
	Slajd 11: SSSP
	Slajd 12: SSSP
	Slajd 13: SSSP
	Slajd 14: (obsolete) Manual for solving SSSP
	Slajd 15: (obsolete) Manual for solving SSSP
	Slajd 16: (obsolete) Manual for solving SSSP
	Slajd 17: (obsolete) Manual for solving SSSP
	Slajd 18: Bellman-Ford recap
	Slajd 19: Bellman-Ford recap
	Slajd 20: Bellman-Ford recap
	Slajd 21: Bellman-Ford recap
	Slajd 22: Bellman-Ford recap
	Slajd 23: Bellman-Ford recap
	Slajd 24: Bellman-Ford recap
	Slajd 25: Dijkstra recap (non-negative weights)
	Slajd 26: Dijkstra recap (non-negative weights)
	Slajd 27: Dijkstra recap (non-negative weights)
	Slajd 28: Dijkstra recap (non-negative weights)
	Slajd 29: Dijkstra recap (non-negative weights)
	Slajd 30: Dijkstra recap (non-negative weights)
	Slajd 31: Dijkstra recap (non-negative weights)
	Slajd 32: Dijkstra recap (non-negative weights)
	Slajd 33: Dijkstra recap (non-negative weights)
	Slajd 34: Dijkstra recap (non-negative weights)
	Slajd 35: Dijkstra recap (non-negative weights)
	Slajd 36: Dijkstra recap (non-negative weights)
	Slajd 37: Dijkstra recap (non-negative weights)
	Slajd 38: Dijkstra recap (non-negative weights)
	Slajd 39: Dijkstra recap (non-negative weights)
	Slajd 40: Dijkstra recap (non-negative weights)
	Slajd 41: Dijkstra recap (non-negative weights)
	Slajd 42: Dijkstra recap (non-negative weights)
	Slajd 43: Dijkstra recap (non-negative weights)
	Slajd 44: Dijkstra recap (non-negative weights)
	Slajd 45: Dijkstra recap (non-negative weights)
	Slajd 46: Dijkstra recap (non-negative weights)
	Slajd 47: Dijkstra recap (non-negative weights)
	Slajd 48: Dijkstra recap (non-negative weights)
	Slajd 49: Recent breakthroughs
	Slajd 50: Recent breakthroughs
	Slajd 51: Recent breakthroughs
	Slajd 52: Recent breakthroughs
	Slajd 53: Recent breakthroughs
	Slajd 54: Recent breakthroughs
	Slajd 55: Exact optimization on real-weighted graphs
	Slajd 56: Exact optimization on real-weighted graphs
	Slajd 57: Exact optimization on real-weighted graphs
	Slajd 58: Exact optimization on real-weighted graphs
	Slajd 59: Exact optimization on real-weighted graphs
	Slajd 60: Exact optimization on real-weighted graphs
	Slajd 61: Exact optimization on real-weighted graphs
	Slajd 62: Exact optimization on real-weighted graphs
	Slajd 63: Recent breakthroughs (real weights)
	Slajd 64: Recent breakthroughs (real weights)
	Slajd 65: Word RAM
	Slajd 66: Word RAM
	Slajd 67: Word RAM
	Slajd 68: Word RAM
	Slajd 69: Word RAM
	Slajd 70: (obsolete) Manual for solving integer SSSP
	Slajd 71: (obsolete) Manual for solving integer SSSP
	Slajd 72: (obsolete) Manual for solving integer SSSP
	Slajd 73: Reweighting via Price functions
	Slajd 74: Reweighting via Price functions
	Slajd 75: Reweighting via Price functions
	Slajd 76: Reweighting via Price functions
	Slajd 77: Reweighting via Price functions
	Slajd 78: Reweighting via Price functions
	Slajd 79: Reweighting via Price functions
	Slajd 80: Reweighting via Price functions
	Slajd 81: Reweighting via Price functions
	Slajd 82: Reweighting via Price functions
	Slajd 83: Reweighting via Price functions
	Slajd 84: Approximation scheme
	Slajd 85: Approximation scheme
	Slajd 86: Approximation scheme
	Slajd 87: Approximation scheme
	Slajd 88: Approximation scheme
	Slajd 89: Approximation scheme
	Slajd 90: Approximation scheme
	Slajd 91: Approximation scheme
	Slajd 92: Approximation scheme
	Slajd 93: Approximation scheme
	Slajd 94: Integrality and scaling
	Slajd 95: Integrality and scaling
	Slajd 96: Integrality and scaling
	Slajd 97: Recent breakthroughs (integer)
	Slajd 98: Recent breakthroughs (integer)
	Slajd 99: Recent breakthroughs (integer)
	Slajd 100: Recent breakthroughs (real weights)
	Slajd 101: Recent breakthroughs
	Slajd 102: What about rational data?
	Slajd 103: What about rational data?
	Slajd 104: What about rational data?
	Slajd 105: Rational SSSP
	Slajd 106: Rational SSSP
	Slajd 107: Rational SSSP
	Slajd 108: Rational SSSP
	Slajd 109: Rational SSSP
	Slajd 110: Rational SSSP
	Slajd 111: Rational SSSP
	Slajd 112: Rational SSSP
	Slajd 113: Rational SSSP
	Slajd 114: Rational SSSP
	Slajd 115: Rational SSSP
	Slajd 116: Rational SSSP
	Slajd 117: Our results
	Slajd 118: Our results
	Slajd 119: Our results
	Slajd 120: Our results
	Slajd 121: Our results
	Slajd 122: Our results
	Slajd 123: Conclusion
	Slajd 124: Conclusion
	Slajd 125: Conclusion
	Slajd 126: Conclusion
	Slajd 127: Open problem
	Slajd 128: Open problem

