Shelah's Proof of Diamond

Jakub Andruszkiewicz
Faculty of Mathematics, Informatics and Mechanics, University of Warsaw

May 5, 2021

Definitions

Definition

By \diamond ("diamond principle") we denote the sentence: "there is a sequence $\left(A_{\alpha}\right)_{\alpha<\omega_{1}}$ of subsets of ω_{1} such that for every $\alpha<\omega_{1}$ we have $A_{\alpha} \subseteq \alpha$ and for every subset $X \subseteq \omega_{1}$ the set

$$
\left\{\alpha<\omega_{1}: A_{\alpha}=X \cap \alpha\right\}
$$

is stationary."

Definitions

Definition

By \diamond ("diamond principle") we denote the sentence: "there is a sequence $\left(A_{\alpha}\right)_{\alpha<\omega_{1}}$ of subsets of ω_{1} such that for every $\alpha<\omega_{1}$ we have $A_{\alpha} \subseteq \alpha$ and for every subset $X \subseteq \omega_{1}$ the set

$$
\left\{\alpha<\omega_{1}: A_{\alpha}=X \cap \alpha\right\}
$$

is stationary."

Definition

By ("club principle") we denote the sentence: "there is a sequence $\left(A_{\alpha}\right)_{\alpha \in L_{1}}$ of subsets of ω_{1} such that for each $\alpha \in L_{1}$ we have $\sup \left(A_{\alpha}\right)=\alpha$ and for every uncountable subset $X \subseteq \omega_{1}$ the set

$$
\left\{\alpha \in L_{1}: A_{\alpha} \subseteq X\right\}
$$

is stationary (or just non-empty)."

Some well-known results

Theorem (Jensen) $V=L \Rightarrow \diamond \Rightarrow \neg$ SH.

Some well-known results

Theorem

(Jensen) $V=L \Rightarrow \diamond \Rightarrow \neg$ SH.

Theorem

(Ostaszewski) \& \Rightarrow "there is an Ostaszewski space". $\diamond \Rightarrow$ "there is a countably compact Ostaszewski space".

Some well-known results

Theorem

(Jensen) $V=L \Rightarrow \diamond \Rightarrow \neg$ SH.

Theorem

(Ostaszewski) \& \Rightarrow "there is an Ostaszewski space". $\diamond \Rightarrow$ "there is a countably compact Ostaszewski space".

Theorem

$($ Devlin) $\diamond \Leftrightarrow \boldsymbol{\&}+\mathrm{CH}$

Some well-known results

Theorem

(Jensen) $V=L \Rightarrow \diamond \Rightarrow \neg$ SH.

Theorem

(Ostaszewski) \& \Rightarrow "there is an Ostaszewski space".
$\diamond \Rightarrow$ "there is a countably compact Ostaszewski space".

Theorem

$($ Devlin) $\diamond \Leftrightarrow \boldsymbol{\&}+\mathrm{CH}$

Theorem

```
(Jensen) GCH }=>
```


Some well-known results

Theorem

(Jensen) $V=L \Rightarrow \diamond \Rightarrow \neg$ SH.

Theorem

(Ostaszewski) $\boldsymbol{\AA} \Rightarrow$ "there is an Ostaszewski space".
$\diamond \Rightarrow$ "there is a countably compact Ostaszewski space".

Theorem

(Devlin) $\diamond \Leftrightarrow \boldsymbol{\&}+\mathrm{CH}$

Theorem

(Jensen) $G C H \nRightarrow \diamond$

Theorem

(Shelah) \& $\nRightarrow \diamond$

Definition

For a uncountable regular cardinal κ and stationary set $S \subseteq \kappa$ by $\diamond_{\kappa}(S)$ we denote the sentence: "there is a sequence $\left(A_{\alpha}\right)_{\alpha \in S}$ of subsets of κ such that for every $\alpha \in S$ we have $A_{\alpha} \subseteq \alpha$ and for every subset $X \subseteq \kappa$ the set

$$
\left\{\alpha \in S: A_{\alpha}=X \cap \alpha\right\}
$$

is stationary."

Definition

For a uncountable regular cardinal κ and stationary set $S \subseteq \kappa$ by $\diamond_{\kappa}(S)$ we denote the sentence: "there is a sequence $\left(A_{\alpha}\right)_{\alpha \in S}$ of subsets of κ such that for every $\alpha \in S$ we have $A_{\alpha} \subseteq \alpha$ and for every subset $X \subseteq \kappa$ the set

$$
\left\{\alpha \in S: A_{\alpha}=X \cap \alpha\right\}
$$

is stationary."
Note that for stationary $S_{1} \subseteq S_{2} \subseteq \kappa$ we have $\diamond_{\kappa}\left(S_{1}\right) \Rightarrow \diamond_{\kappa}\left(S_{2}\right)$

Main theorem

Definition

Let κ be an uncountable cardinal. Then we denote $T_{\kappa}=\left\{\alpha<\kappa^{+}: \operatorname{cf}(\alpha)=\operatorname{cf}(\kappa)\right\}$

Main theorem

Definition

Let κ be an uncountable cardinal. Then we denote $T_{\kappa}=\left\{\alpha<\kappa^{+}: \operatorname{cf}(\alpha)=\operatorname{cf}(\kappa)\right\}$

Theorem

(Shelah) Let κ be an uncountable cardinal and let stationary set $S \subset \kappa^{+}$be such that $S \cap T_{\kappa}=\emptyset$. Furthermore, suppose that $2^{\kappa}=\kappa^{+}$. Then $\diamond_{\kappa^{+}}(S)$ holds.

Other results

Theorem

(Shelah) Let κ be a regular uncountable cardinal. Then it is consistent with ZFC that $2^{\kappa}=\kappa^{+}$, but $\diamond_{\kappa^{+}}\left(T_{\kappa}\right)$ fails (no large cardinals required).

Other results

Theorem

(Shelah) Let κ be a regular uncountable cardinal. Then it is consistent with ZFC that $2^{\kappa}=\kappa^{+}$, but $\diamond_{\kappa^{+}}\left(T_{\kappa}\right)$ fails (no large cardinals required).

Theorem

(Zeman) Let κ be a singular cardinal and let stationary set $S \subseteq T_{\kappa}$ be reflecting stationarily often. Furthermore, suppose that $2^{\kappa}=\kappa^{+}$and \square_{κ}^{*} holds. Then $\diamond_{\kappa^{+}}(S)$ holds.

Other results

Theorem

(Komjáth) Let κ be a singular cardinal such that $\operatorname{cf}(\kappa)>\aleph_{0}$ and let $T \subseteq T_{\kappa}$ be stationary. Suppose that $2^{\kappa}=\kappa^{+}$and that $\diamond_{\kappa^{+}}(T)$ fails. Then there is a function

$$
h:\left\{\alpha<\kappa^{+}: \operatorname{cf}(\alpha)<c f(\kappa)\right\} \rightarrow c f(\kappa)
$$

such that for almost every (i.e. for club many) $\delta \in T$ there is a closed unbounded set $C \subseteq \delta$, such that $\left.h\right|_{C}$ is strictly increasing.

The proof

Notation: for $A \subseteq \kappa \times \kappa^{+}$we define $(A)_{\alpha}=\left\{\beta<\kappa^{+}:(\alpha, \beta) \in A\right\}$.

Notation: for $A \subseteq \kappa \times \kappa^{+}$we define $(A)_{\alpha}=\left\{\beta<\kappa^{+}:(\alpha, \beta) \in A\right\}$.
For every $\delta<\kappa^{+}$fix an increasing decomposition $\delta=\bigcup\left\{A_{\alpha}^{\delta}: \alpha<c f(\kappa)\right\}$ with $\left|A_{\alpha}^{\delta}\right|<\kappa$ for every $\alpha<c f(\kappa)$.

Key lemma: $\exists_{\gamma<c f(\kappa)} \exists^{\exists}\left(X_{\alpha}\right)_{\alpha<\kappa}: X_{\alpha \subseteq \kappa \times \kappa^{+}} \forall_{Z \subseteq \kappa \times \kappa^{+}}$there are stationarily many $\delta \in S$ such that $\forall_{\alpha_{0}<\delta} \exists_{\alpha \in\left(\alpha_{0}, \delta\right)} \exists_{\beta<\delta} \alpha, \beta \in A_{\gamma}^{\delta}$ and $Z \cap(\kappa \times \alpha)=X_{\beta}$.
 stationarily many $\delta \in S$ such that $\forall_{\alpha_{0}<\delta} \exists_{\alpha \in\left(\alpha_{0}, \delta\right)} \exists_{\beta<\delta} \alpha, \beta \in A_{\gamma}^{\delta}$ and $Z \cap(\kappa \times \alpha)=X_{\beta}$.
For as $\operatorname{big} \xi<\kappa$ as possible we define be transfinite induction a pair $\left(B_{\xi}, C_{\xi}\right)$ of subsets of κ^{+}, with C_{ξ} being closed unbounded, such that for every $\delta \in C_{\xi} \cap S$ and for

$$
V_{\xi}^{\delta}=\left\{(\alpha, \beta) \in A_{\gamma}^{\delta} \times A_{\gamma}^{\delta}: \forall_{\eta<\xi} B_{\eta} \cap \alpha=\left(X_{\beta}\right)_{\eta}\right\}
$$

either $\sup \left\{\alpha: \exists_{\beta<\kappa}(\alpha, \beta) \in V_{\xi}^{\delta}\right\}<\delta$ or else $V_{\xi}^{\delta} \supsetneq V_{\xi+1}^{\delta}$.

Key lemma: $\exists_{\gamma<c f(\kappa)} \exists_{\left(X_{\alpha}\right)_{\alpha<\kappa^{+}}: X_{\alpha} \subseteq \kappa \times \kappa^{+}} \forall_{Z \subseteq \kappa \times \kappa^{+}}$there are stationarily many $\delta \in S$ such that $\forall_{\alpha_{0}<\delta} \exists_{\alpha \in\left(\alpha_{0}, \delta\right)} \exists_{\beta<\delta} \alpha, \beta \in A_{\gamma}^{\delta}$ and $Z \cap(\kappa \times \alpha)=X_{\beta}$.
For as $\operatorname{big} \xi<\kappa$ as possible we define be transfinite induction a pair $\left(B_{\xi}, C_{\xi}\right)$ of subsets of κ^{+}, with C_{ξ} being closed unbounded, such that for every $\delta \in C_{\xi} \cap S$ and for

$$
V_{\xi}^{\delta}=\left\{(\alpha, \beta) \in A_{\gamma}^{\delta} \times A_{\gamma}^{\delta}: \forall_{\eta<\xi} B_{\eta} \cap \alpha=\left(X_{\beta}\right)_{\eta}\right\}
$$

either $\sup \left\{\alpha: \exists_{\beta<\kappa}(\alpha, \beta) \in V_{\xi}^{\delta}\right\}<\delta$ or else $V_{\xi}^{\delta} \supsetneq V_{\xi+1}^{\delta}$. Observe that this construction must stop below κ. Indeed, because assume that we define (B_{ξ}, C_{ξ}) for every $\xi<\kappa$.

The proof

 stationarily many $\delta \in S$ such that $\forall_{\alpha_{0}<\delta} \exists_{\alpha \in\left(\alpha_{0}, \delta\right)} \exists_{\beta<\delta} \alpha, \beta \in A_{\gamma}^{\delta}$ and $Z \cap(\kappa \times \alpha)=X_{\beta}$.
For as $\operatorname{big} \xi<\kappa$ as possible we define be transfinite induction a pair $\left(B_{\xi}, C_{\xi}\right)$ of subsets of κ^{+}, with C_{ξ} being closed unbounded, such that for every $\delta \in C_{\xi} \cap S$ and for

$$
V_{\xi}^{\delta}=\left\{(\alpha, \beta) \in A_{\gamma}^{\delta} \times A_{\gamma}^{\delta}: \forall_{\eta<\xi} B_{\eta} \cap \alpha=\left(X_{\beta}\right)_{\eta}\right\}
$$

either $\sup \left\{\alpha: \exists \exists_{\beta<\kappa}(\alpha, \beta) \in V_{\xi}^{\delta}\right\}<\delta$ or else $V_{\xi}^{\delta} \supsetneq V_{\xi+1}^{\delta}$.
Observe that this construction must stop below κ. Indeed, because assume that we define $\left(B_{\xi}, C_{\xi}\right)$ for every $\xi<\kappa$. Take $Z=\left\{(\xi, \eta): \eta \in B_{\xi}\right\}$ (so $\left.B_{\xi}=(Z)_{\xi}\right)$, denote $C=\bigcap_{\xi<\kappa} C_{\xi}$ and by key lemma take $\delta \in S \cap C$ working for Z, so there are $\alpha, \beta \in A_{\gamma}^{\delta}$ with α being arbitrarily large (in δ), such that $Z \cap(\kappa \times \alpha)=X_{\beta}$.

The proof

Key lemma: $\exists_{\gamma<c f(\kappa)} \exists^{\left(X_{\alpha}\right)_{\alpha<\kappa^{+}}: X_{\alpha} \subseteq \kappa \times \kappa^{+}} \forall_{Z \subseteq \kappa \times \kappa^{+}}$there are stationarily many $\delta \in S$ such that $\forall_{\alpha_{0}<\delta} \exists_{\alpha \in\left(\alpha_{0}, \delta\right)} \exists_{\beta<\delta} \alpha, \beta \in A_{\gamma}^{\delta}$ and $Z \cap(\kappa \times \alpha)=X_{\beta}$.
For as $\operatorname{big} \xi<\kappa$ as possible we define be transfinite induction a pair $\left(B_{\xi}, C_{\xi}\right)$ of subsets of κ^{+}, with C_{ξ} being closed unbounded, such that for every $\delta \in C_{\xi} \cap S$ and for

$$
V_{\xi}^{\delta}=\left\{(\alpha, \beta) \in A_{\gamma}^{\delta} \times A_{\gamma}^{\delta}: \forall_{\eta<\xi} B_{\eta} \cap \alpha=\left(X_{\beta}\right)_{\eta}\right\}
$$

either $\sup \left\{\alpha: \exists_{\beta<\kappa}(\alpha, \beta) \in V_{\xi}^{\delta}\right\}<\delta$ or else $V_{\xi}^{\delta} \supsetneq V_{\xi+1}^{\delta}$.
Observe that this construction must stop below κ. Indeed, because assume that we define $\left(B_{\xi}, C_{\xi}\right)$ for every $\xi<\kappa$. Take $Z=\left\{(\xi, \eta): \eta \in B_{\xi}\right\}$ (so $\left.B_{\xi}=(Z)_{\xi}\right)$, denote $C=\bigcap_{\xi<\kappa} C_{\xi}$ and by key lemma take $\delta \in S \cap C$ working for Z, so there are $\alpha, \beta \in A_{\gamma}^{\delta}$ with α being arbitrarily large (in δ), such that $Z \cap(\kappa \times \alpha)=X_{\beta}$. So in particular for any $\eta<\kappa$ we see

$$
\left(X_{\beta}\right)_{\eta}=(Z \cap(\kappa \times \alpha))_{\eta}=(Z)_{\eta} \cap \alpha=B_{\eta} \cap \alpha
$$

So $\left(V_{\xi}^{\delta}\right)_{\delta<\kappa}$ is strictly decreasing, which is impossible, since those are subsets of $A_{\gamma}^{\delta} \times A_{\gamma}^{\delta}$, which is of cardinality less than κ.

So $\left(V_{\xi}^{\delta}\right)_{\delta<\kappa}$ is strictly decreasing, which is impossible, since those are subsets of $A_{\gamma}^{\delta} \times A_{\gamma}^{\delta}$, which is of cardinality less than κ. So let $\xi_{0}<\kappa$ be such that we defined $\left(B_{\xi}, C_{\xi}\right)$ for $\xi<\xi_{0}$ and $B_{\xi_{0}}, C_{\xi_{0}}$ could not be defined. Let $C=\bigcap_{\xi<\xi_{0}} C_{\xi}$ We will show that $\left(S_{\delta}\right)_{\delta \in S \cap C}$ defined as

$$
S_{\delta}=\bigcup\left\{\left(X_{\beta}\right)_{\xi_{0}}: \exists_{\alpha<\kappa}(\alpha, \beta) \in V_{\xi_{0}}^{\delta}\right\}
$$

is a $\diamond_{\kappa^{+}}(S \cap C)$-sequence.

The proof

$$
\begin{gathered}
S_{\delta}=\bigcup\left\{\left(X_{\beta}\right)_{\xi_{0}}: \exists_{\alpha<k}(\alpha, \beta) \in V_{\xi_{0}}^{\delta}\right\} \\
V_{\xi}^{\delta}=\left\{(\alpha, \beta) \in A_{\gamma}^{\delta} \times A_{\gamma}^{\delta}: \forall_{\eta<\xi} B_{\eta} \cap \alpha=\left(X_{\beta}\right)_{\eta}\right\}
\end{gathered}
$$

$$
\begin{gathered}
S_{\delta}=\bigcup\left\{\left(X_{\beta}\right)_{\xi_{0}}: \exists_{\alpha<k}(\alpha, \beta) \in V_{\xi_{0}}^{\delta}\right\} \\
v_{\xi}^{\delta}=\left\{(\alpha, \beta) \in A_{\gamma}^{\delta} \times A_{\gamma}^{\delta}: \forall_{\eta<\xi} B_{\eta} \cap \alpha=\left(X_{\beta}\right)_{\eta}\right\}
\end{gathered}
$$

Suppose that for some $B \subseteq \kappa^{+}$the set $A=\left\{\delta \in S \cap C: S_{\delta}=B \cap \delta\right\}$ is not stationary.

$$
\begin{gathered}
S_{\delta}=\bigcup\left\{\left(X_{\beta}\right)_{\xi_{0}}: \exists_{\alpha<k}(\alpha, \beta) \in V_{\xi_{0}}^{\delta}\right\} \\
V_{\xi}^{\delta}=\left\{(\alpha, \beta) \in A_{\gamma}^{\delta} \times A_{\gamma}^{\delta}: \forall_{\eta<\xi} B_{\eta} \cap \alpha=\left(X_{\beta}\right)_{\eta}\right\}
\end{gathered}
$$

Suppose that for some $B \subseteq \kappa^{+}$the set
$A=\left\{\delta \in S \cap C: S_{\delta}=B \cap \delta\right\}$ is not stationary. Let $B_{\xi_{0}}=B$ and
$C_{\xi_{0}} \subseteq C$ be closed unbounded in κ^{+}and disjoint with A.

$$
\begin{gathered}
S_{\delta}=\bigcup\left\{\left(X_{\beta}\right)_{\xi_{0}}: \exists_{\alpha<k}(\alpha, \beta) \in V_{\xi_{0}}^{\delta}\right\} \\
V_{\xi}^{\delta}=\left\{(\alpha, \beta) \in A_{\gamma}^{\delta} \times A_{\gamma}^{\delta}: \forall_{\eta<\xi} B_{\eta} \cap \alpha=\left(X_{\beta}\right)_{\eta}\right\}
\end{gathered}
$$

Suppose that for some $B \subseteq \kappa^{+}$the set
$A=\left\{\delta \in S \cap C: S_{\delta}=B \cap \delta\right\}$ is not stationary. Let $B_{\xi_{0}}=B$ and
$C_{\xi_{0}} \subseteq C$ be closed unbounded in κ^{+}and disjoint with A. By definition of ξ_{0} we can assume that there is a stationary subset $S_{0} \subseteq C_{\xi_{0}} \cap S$ such that for $\delta \in S_{0}$ we have $\sup \left\{\alpha: \exists \exists_{\beta<\kappa}(\alpha, \beta) \in V_{\xi_{0}}^{\delta}\right\}=\delta$ and $V_{\xi_{0}}^{\delta}=V_{\xi_{0}+1}^{\delta}$,

$$
\begin{gathered}
S_{\delta}=\bigcup\left\{\left(X_{\beta}\right)_{\xi_{0}}: \exists_{\alpha<\kappa}(\alpha, \beta) \in V_{\xi_{0}}^{\delta}\right\} \\
V_{\xi}^{\delta}=\left\{(\alpha, \beta) \in A_{\gamma}^{\delta} \times A_{\gamma}^{\delta}: \forall_{\eta<\xi} B_{\eta} \cap \alpha=\left(X_{\beta}\right)_{\eta}\right\}
\end{gathered}
$$

Suppose that for some $B \subseteq \kappa^{+}$the set
$A=\left\{\delta \in S \cap C: S_{\delta}=B \cap \delta\right\}$ is not stationary. Let $B_{\xi_{0}}=B$ and
$C_{\xi_{0}} \subseteq C$ be closed unbounded in κ^{+}and disjoint with A. By definition of ξ_{0} we can assume that there is a stationary subset $S_{0} \subseteq C_{\xi_{0}} \cap S$ such that for $\delta \in S_{0}$ we have $\sup \left\{\alpha: \exists \exists_{\beta<\kappa}(\alpha, \beta) \in V_{\xi_{0}}^{\delta}\right\}=\delta$ and $V_{\xi_{0}}^{\delta}=V_{\xi_{0}+1}^{\delta}$, but then we see that

$$
\begin{gathered}
B_{\xi_{0}} \cap \delta=\bigcup\left\{B_{\xi_{0}} \cap \alpha: \exists_{\beta<\kappa}(\alpha, \beta) \in V_{\xi_{0}}^{\delta}\right\}= \\
\bigcup\left\{\left(X_{\beta}\right)_{\xi_{0}}: \exists_{\alpha<\kappa}(\alpha, \beta) \in V_{\xi_{0}}^{\delta}\right\}=S_{\delta} .
\end{gathered}
$$

