Shelah's Proof of Diamond

Jakub Andruszkiewicz

Faculty of Mathematics, Informatics and Mechanics, University of Warsaw

May 5, 2021

Definition

By \diamond ("diamond principle") we denote the sentence: "there is a sequence $(A_{\alpha})_{\alpha < \omega_1}$ of subsets of ω_1 such that for every $\alpha < \omega_1$ we have $A_{\alpha} \subseteq \alpha$ and for every subset $X \subseteq \omega_1$ the set

$$\{\alpha < \omega_1 : A_\alpha = X \cap \alpha\}$$

is stationary."

Definition

By \diamond ("diamond principle") we denote the sentence: "there is a sequence $(A_{\alpha})_{\alpha < \omega_1}$ of subsets of ω_1 such that for every $\alpha < \omega_1$ we have $A_{\alpha} \subseteq \alpha$ and for every subset $X \subseteq \omega_1$ the set

$$\{\alpha < \omega_1 : A_\alpha = X \cap \alpha\}$$

is stationary."

Definition

By \clubsuit ("club principle") we denote the sentence: "there is a sequence $(A_{\alpha})_{\alpha \in L_1}$ of subsets of ω_1 such that for each $\alpha \in L_1$ we have $\sup(A_{\alpha}) = \alpha$ and for every uncountable subset $X \subseteq \omega_1$ the set

$$\{\alpha \in L_1 : A_\alpha \subseteq X\}$$

is stationary (or just non-empty)."

Theorem

(Jensen)
$$V = L \Rightarrow \diamondsuit \Rightarrow \neg SH$$
.

Jakub Andruszkiewicz Shelah's Proof of Diamond

æ

∃ >

() 《 문 》 《

Theorem

(Jensen)
$$V = L \Rightarrow \diamondsuit \Rightarrow \neg SH.$$

Theorem

(Ostaszewski) $\clubsuit \Rightarrow$ "there is an Ostaszewski space".

 $\diamond \Rightarrow$ "there is a countably compact Ostaszewski space".

Theorem

(Jensen)
$$V = L \Rightarrow \diamondsuit \Rightarrow \neg SH.$$

Theorem

(Ostaszewski) $\clubsuit \Rightarrow$ "there is an Ostaszewski space". $\diamondsuit \Rightarrow$ "there is a countably compact Ostaszewski space".

Theorem

(Devlin) $\diamondsuit \Leftrightarrow \clubsuit + CH$

Theorem

(Jensen)
$$V = L \Rightarrow \diamondsuit \Rightarrow \neg SH.$$

Theorem

(Ostaszewski) $\clubsuit \Rightarrow$ "there is an Ostaszewski space". $\diamondsuit \Rightarrow$ "there is a countably compact Ostaszewski space".

Theorem

(Devlin) $\diamondsuit \Leftrightarrow \clubsuit + CH$

Theorem

(Jensen) $GCH \Rightarrow \diamondsuit$

Theorem

(Jensen)
$$V = L \Rightarrow \diamondsuit \Rightarrow \neg SH.$$

Theorem

(Ostaszewski) $\clubsuit \Rightarrow$ "there is an Ostaszewski space". $\diamondsuit \Rightarrow$ "there is a countably compact Ostaszewski space".

Theorem

(Devlin) $\diamondsuit \Leftrightarrow \clubsuit + CH$

Theorem

(Jensen) $GCH \Rightarrow \diamondsuit$

Theorem

(Shelah) $\clubsuit \Rightarrow \diamondsuit$

For a uncountable regular cardinal κ and stationary set $S \subseteq \kappa$ by $\Diamond_{\kappa}(S)$ we denote the sentence: "there is a sequence $(A_{\alpha})_{\alpha \in S}$ of subsets of κ such that for every $\alpha \in S$ we have $A_{\alpha} \subseteq \alpha$ and for every subset $X \subseteq \kappa$ the set

$$\{\alpha \in S : A_{\alpha} = X \cap \alpha\}$$

is stationary."

For a uncountable regular cardinal κ and stationary set $S \subseteq \kappa$ by $\Diamond_{\kappa}(S)$ we denote the sentence: "there is a sequence $(A_{\alpha})_{\alpha \in S}$ of subsets of κ such that for every $\alpha \in S$ we have $A_{\alpha} \subseteq \alpha$ and for every subset $X \subseteq \kappa$ the set

$$\{\alpha \in S : A_{\alpha} = X \cap \alpha\}$$

is stationary."

Note that for stationary $S_1 \subseteq S_2 \subseteq \kappa$ we have $\diamondsuit_{\kappa}(S_1) \Rightarrow \diamondsuit_{\kappa}(S_2)$

Let κ be an uncountable cardinal. Then we denote $T_{\kappa} = \{ \alpha < \kappa^{+} : cf(\alpha) = cf(\kappa) \}$

→ < ∃ →</p>

э

Let κ be an uncountable cardinal. Then we denote $T_{\kappa} = \{ \alpha < \kappa^{+} : cf(\alpha) = cf(\kappa) \}$

Theorem

(Shelah) Let κ be an uncountable cardinal and let stationary set $S \subset \kappa^+$ be such that $S \cap T_{\kappa} = \emptyset$. Furthermore, suppose that $2^{\kappa} = \kappa^+$. Then $\diamondsuit_{\kappa^+}(S)$ holds.

Theorem

(Shelah) Let κ be a regular uncountable cardinal. Then it is consistent with ZFC that $2^{\kappa} = \kappa^+$, but $\diamondsuit_{\kappa^+}(T_{\kappa})$ fails (no large cardinals required).

Theorem

(Shelah) Let κ be a regular uncountable cardinal. Then it is consistent with ZFC that $2^{\kappa} = \kappa^+$, but $\diamondsuit_{\kappa^+}(T_{\kappa})$ fails (no large cardinals required).

Theorem

(Zeman) Let κ be a singular cardinal and let stationary set $S \subseteq T_{\kappa}$ be reflecting stationarily often. Furthermore, suppose that $2^{\kappa} = \kappa^+$ and \Box_{κ}^* holds. Then $\diamondsuit_{\kappa^+}(S)$ holds.

Theorem

(Komjáth) Let κ be a singular cardinal such that $cf(\kappa) > \aleph_0$ and let $T \subseteq T_{\kappa}$ be stationary. Suppose that $2^{\kappa} = \kappa^+$ and that $\diamondsuit_{\kappa^+}(T)$ fails. Then there is a function

$$h: \{\alpha < \kappa^+ : cf(\alpha) < cf(\kappa)\} \rightarrow cf(\kappa)$$

such that for almost every (i.e. for club many) $\delta \in T$ there is a closed unbounded set $C \subseteq \delta$, such that $h|_C$ is strictly increasing.

Notation: for
$$A \subseteq \kappa \times \kappa^+$$
 we define $(A)_{\alpha} = \{\beta < \kappa^+ : (\alpha, \beta) \in A\}.$

æ

æ

▲ 御 ▶ ▲ 臣

Notation: for
$$A \subseteq \kappa \times \kappa^+$$
 we define
 $(A)_{\alpha} = \{\beta < \kappa^+ : (\alpha, \beta) \in A\}.$
For every $\delta < \kappa^+$ fix an increasing decomposition
 $\delta = \bigcup \{A_{\alpha}^{\delta} : \alpha < cf(\kappa)\}$ with $|A_{\alpha}^{\delta}| < \kappa$ for every $\alpha < cf(\kappa).$

æ

æ

▲ 御 ▶ ▲ 臣

 $\underbrace{ \mathsf{Key \ lemma}}_{\texttt{stationarily many}} \exists_{\gamma < cf(\kappa)} \exists_{(X_{\alpha})_{\alpha < \kappa^{+}} : X_{\alpha} \subseteq \kappa \times \kappa^{+}} \forall_{Z \subseteq \kappa \times \kappa^{+}} \text{ there are stationarily many } \delta \in S \text{ such that } \forall_{\alpha_{0} < \delta} \exists_{\alpha \in (\alpha_{0}, \delta)} \exists_{\beta < \delta} \alpha, \beta \in A_{\gamma}^{\delta} \text{ and } Z \cap (\kappa \times \alpha) = X_{\beta}.$

 $\underbrace{ \mathsf{Key \ lemma}}_{\texttt{stationarily many}} \exists_{\gamma < cf(\kappa)} \exists_{(X_{\alpha})_{\alpha < \kappa^{+}} : X_{\alpha} \subseteq \kappa \times \kappa^{+}} \forall_{Z \subseteq \kappa \times \kappa^{+}} \text{ there are stationarily many } \delta \in S \text{ such that } \forall_{\alpha_{0} < \delta} \exists_{\alpha \in (\alpha_{0}, \delta)} \exists_{\beta < \delta} \alpha, \beta \in A_{\gamma}^{\delta} \text{ and } Z \cap (\kappa \times \alpha) = X_{\beta}.$

For as big $\xi < \kappa$ as possible we define be transfinite induction a pair (B_{ξ}, C_{ξ}) of subsets of κ^+ , with C_{ξ} being closed unbounded, such that for every $\delta \in C_{\xi} \cap S$ and for

$$V^{\delta}_{\xi} = \{ (\alpha, \beta) \in A^{\delta}_{\gamma} \times A^{\delta}_{\gamma} : \forall_{\eta < \xi} B_{\eta} \cap \alpha = (X_{\beta})_{\eta} \}$$

either $\sup\{\alpha: \exists_{\beta < \kappa}(\alpha, \beta) \in V_{\xi}^{\delta}\} < \delta$ or else $V_{\xi}^{\delta} \supseteq V_{\xi+1}^{\delta}$.

 $\underbrace{ \mathsf{Key \ lemma}}_{\texttt{stationarily many}} \exists_{\gamma < cf(\kappa)} \exists_{(X_{\alpha})_{\alpha < \kappa^{+}} : X_{\alpha} \subseteq \kappa \times \kappa^{+}} \forall_{Z \subseteq \kappa \times \kappa^{+}} \text{ there are stationarily many } \delta \in S \text{ such that } \forall_{\alpha_{0} < \delta} \exists_{\alpha \in (\alpha_{0}, \delta)} \exists_{\beta < \delta} \alpha, \beta \in A_{\gamma}^{\delta} \text{ and } Z \cap (\kappa \times \alpha) = X_{\beta}.$

For as big $\xi < \kappa$ as possible we define be transfinite induction a pair (B_{ξ}, C_{ξ}) of subsets of κ^+ , with C_{ξ} being closed unbounded, such that for every $\delta \in C_{\xi} \cap S$ and for

$$V^{\delta}_{\xi} = \{ (\alpha, \beta) \in A^{\delta}_{\gamma} \times A^{\delta}_{\gamma} : \forall_{\eta < \xi} B_{\eta} \cap \alpha = (X_{\beta})_{\eta} \}$$

either $sup\{\alpha : \exists_{\beta < \kappa}(\alpha, \beta) \in V_{\xi}^{\delta}\} < \delta$ or else $V_{\xi}^{\delta} \supseteq V_{\xi+1}^{\delta}$. Observe that this construction must stop below κ . Indeed, because assume that we define (B_{ξ}, C_{ξ}) for every $\xi < \kappa$.

 $\underbrace{ \mathsf{Key \ lemma}}_{\texttt{stationarily many}} \exists_{\gamma < cf(\kappa)} \exists_{(X_{\alpha})_{\alpha < \kappa^{+}} : X_{\alpha} \subseteq \kappa \times \kappa^{+}} \forall_{Z \subseteq \kappa \times \kappa^{+}} \text{ there are stationarily many } \delta \in S \text{ such that } \forall_{\alpha_{0} < \delta} \exists_{\alpha \in (\alpha_{0}, \delta)} \exists_{\beta < \delta} \alpha, \beta \in A_{\gamma}^{\delta} \text{ and } Z \cap (\kappa \times \alpha) = X_{\beta}.$

For as big $\xi < \kappa$ as possible we define be transfinite induction a pair (B_{ξ}, C_{ξ}) of subsets of κ^+ , with C_{ξ} being closed unbounded, such that for every $\delta \in C_{\xi} \cap S$ and for

$$V^{\delta}_{\xi} = \{ (\alpha, \beta) \in A^{\delta}_{\gamma} \times A^{\delta}_{\gamma} : \forall_{\eta < \xi} B_{\eta} \cap \alpha = (X_{\beta})_{\eta} \}$$

either $sup\{\alpha : \exists_{\beta < \kappa}(\alpha, \beta) \in V_{\xi}^{\delta}\} < \delta$ or else $V_{\xi}^{\delta} \supseteq V_{\xi+1}^{\delta}$. Observe that this construction must stop below κ . Indeed, because assume that we define (B_{ξ}, C_{ξ}) for every $\xi < \kappa$. Take $Z = \{(\xi, \eta) : \eta \in B_{\xi}\}$ (so $B_{\xi} = (Z)_{\xi}$), denote $C = \bigcap_{\xi < \kappa} C_{\xi}$ and by key lemma take $\delta \in S \cap C$ working for Z, so there are $\alpha, \beta \in A_{\gamma}^{\delta}$ with α being arbitrarily large (in δ), such that $Z \cap (\kappa \times \alpha) = X_{\beta}$.

伺 ト イヨ ト イヨ ト

 $\underbrace{ \mathsf{Key \ lemma}}_{\texttt{stationarily many}} \exists_{\gamma < cf(\kappa)} \exists_{(X_{\alpha})_{\alpha < \kappa^{+}} : X_{\alpha} \subseteq \kappa \times \kappa^{+}} \forall_{Z \subseteq \kappa \times \kappa^{+}} \text{ there are stationarily many } \delta \in S \text{ such that } \forall_{\alpha_{0} < \delta} \exists_{\alpha \in (\alpha_{0}, \delta)} \exists_{\beta < \delta} \alpha, \beta \in A_{\gamma}^{\delta} \text{ and } Z \cap (\kappa \times \alpha) = X_{\beta}.$

For as big $\xi < \kappa$ as possible we define be transfinite induction a pair (B_{ξ}, C_{ξ}) of subsets of κ^+ , with C_{ξ} being closed unbounded, such that for every $\delta \in C_{\xi} \cap S$ and for

$$V_{\xi}^{\delta} = \{ (\alpha, \beta) \in A_{\gamma}^{\delta} \times A_{\gamma}^{\delta} : \forall_{\eta < \xi} B_{\eta} \cap \alpha = (X_{\beta})_{\eta} \}$$

either $sup\{\alpha : \exists_{\beta < \kappa}(\alpha, \beta) \in V_{\xi}^{\delta}\} < \delta$ or else $V_{\xi}^{\delta} \supseteq V_{\xi+1}^{\delta}$. Observe that this construction must stop below κ . Indeed, because assume that we define (B_{ξ}, C_{ξ}) for every $\xi < \kappa$. Take $Z = \{(\xi, \eta) : \eta \in B_{\xi}\}$ (so $B_{\xi} = (Z)_{\xi}$), denote $C = \bigcap_{\xi < \kappa} C_{\xi}$ and by key lemma take $\delta \in S \cap C$ working for Z, so there are $\alpha, \beta \in A_{\gamma}^{\delta}$ with α being arbitrarily large (in δ), such that $Z \cap (\kappa \times \alpha) = X_{\beta}$. So in particular for any $\eta < \kappa$ we see

$$(X_{\beta})_{\eta} = (Z \cap (\kappa \times \alpha))_{\eta} = (Z)_{\eta} \cap \alpha = B_{\eta} \cap \alpha.$$

So $(V_{\xi}^{\delta})_{\delta < \kappa}$ is strictly decreasing, which is impossible, since those are subsets of $A_{\gamma}^{\delta} \times A_{\gamma}^{\delta}$, which is of cardinality less than κ .

So $(V_{\xi}^{\delta})_{\delta < \kappa}$ is strictly decreasing, which is impossible, since those are subsets of $A_{\gamma}^{\delta} \times A_{\gamma}^{\delta}$, which is of cardinality less than κ . So let $\xi_0 < \kappa$ be such that we defined (B_{ξ}, C_{ξ}) for $\xi < \xi_0$ and B_{ξ_0}, C_{ξ_0} could not be defined. Let $C = \bigcap_{\xi < \xi_0} C_{\xi}$ We will show that $(S_{\delta})_{\delta \in S \cap C}$ defined as

$$\mathcal{S}_{\delta} = igcup \{ (X_{eta})_{\xi_0} : \exists_{lpha < \kappa} (lpha, eta) \in V^{\delta}_{\xi_0} \}$$

is a $\diamondsuit_{\kappa^+}(S \cap C)$ -sequence.

$$S_{\delta} = \bigcup \{ (X_{\beta})_{\xi_{0}} : \exists_{\alpha < \kappa} (\alpha, \beta) \in V_{\xi_{0}}^{\delta} \}$$
$$V_{\xi}^{\delta} = \{ (\alpha, \beta) \in A_{\gamma}^{\delta} \times A_{\gamma}^{\delta} : \forall_{\eta < \xi} B_{\eta} \cap \alpha = (X_{\beta})_{\eta} \}$$

æ

æ

▲ 御 ▶ ▲ 臣

$$S_{\delta} = \bigcup \{ (X_{\beta})_{\xi_0} : \exists_{\alpha < \kappa} (\alpha, \beta) \in V_{\xi_0}^{\delta} \}$$
$$V_{\xi}^{\delta} = \{ (\alpha, \beta) \in A_{\gamma}^{\delta} \times A_{\gamma}^{\delta} : \forall_{\eta < \xi} B_{\eta} \cap \alpha = (X_{\beta})_{\eta} \}$$

Suppose that for some $B \subseteq \kappa^+$ the set $A = \{\delta \in S \cap C : S_{\delta} = B \cap \delta\}$ is not stationary.

→ < ∃ →</p>

$$S_{\delta} = \bigcup \{ (X_{\beta})_{\xi_{0}} : \exists_{\alpha < \kappa} (\alpha, \beta) \in V_{\xi_{0}}^{\delta} \}$$
$$V_{\xi}^{\delta} = \{ (\alpha, \beta) \in A_{\gamma}^{\delta} \times A_{\gamma}^{\delta} : \forall_{\eta < \xi} B_{\eta} \cap \alpha = (X_{\beta})_{\eta} \}$$

Suppose that for some $B \subseteq \kappa^+$ the set $A = \{\delta \in S \cap C : S_{\delta} = B \cap \delta\}$ is not stationary. Let $B_{\xi_0} = B$ and $C_{\xi_0} \subseteq C$ be closed unbounded in κ^+ and disjoint with A.

→ < Ξ → <</p>

 $S_{\delta} = \bigcup \{ (X_{\beta})_{\xi_0} : \exists_{\alpha < \kappa} (\alpha, \beta) \in V_{\xi_0}^{\delta} \}$ $V_{\xi}^{\delta} = \{ (\alpha, \beta) \in A_{\gamma}^{\delta} \times A_{\gamma}^{\delta} : \forall_{\eta < \xi} B_{\eta} \cap \alpha = (X_{\beta})_{\eta} \}$ Suppose that for some $B \subseteq \kappa^+$ the set $A = \{ \delta \in S \cap C : S_{\delta} = B \cap \delta \} \text{ is not stationary. Let } B_{\xi_0} = B \text{ and}$ $C_{\xi_0} \subseteq C \text{ be closed unbounded in } \kappa^+ \text{ and disjoint with } A. \text{ By}$ definition of ξ_0 we can assume that there is a stationary subset $S_0 \subseteq C_{\xi_0} \cap S \text{ such that for } \delta \in S_0 \text{ we have}$ $sup\{\alpha : \exists_{\beta < \kappa} (\alpha, \beta) \in V_{\xi_0}^{\delta}\} = \delta \text{ and } V_{\xi_0}^{\delta} = V_{\xi_0+1}^{\delta},$

• • = • • = •

 \Box

$$S_{\delta} = \bigcup \{ (X_{\beta})_{\xi_{0}} : \exists_{\alpha < \kappa} (\alpha, \beta) \in V_{\xi_{0}}^{\delta} \}$$

$$V_{\xi}^{\delta} = \{ (\alpha, \beta) \in A_{\gamma}^{\delta} \times A_{\gamma}^{\delta} : \forall_{\eta < \xi} B_{\eta} \cap \alpha = (X_{\beta})_{\eta} \}$$
Suppose that for some $B \subseteq \kappa^{+}$ the set
$$A = \{ \delta \in S \cap C : S_{\delta} = B \cap \delta \} \text{ is not stationary. Let } B_{\xi_{0}} = B \text{ and } C_{\xi_{0}} \subseteq C \text{ be closed unbounded in } \kappa^{+} \text{ and disjoint with } A. By definition of ξ_{0} we can assume that there is a stationary subset
$$S_{0} \subseteq C_{\xi_{0}} \cap S \text{ such that for } \delta \in S_{0} \text{ we have } sup\{\alpha : \exists_{\beta < \kappa} (\alpha, \beta) \in V_{\xi_{0}}^{\delta}\} = \delta \text{ and } V_{\xi_{0}}^{\delta} = V_{\xi_{0}+1}^{\delta}, \text{ but then we see that}$$$$

$$egin{aligned} B_{\xi_0} \cap \delta &= igcup \{B_{\xi_0} \cap lpha : \exists_{eta < \kappa}(lpha, eta) \in V_{\xi_0}^{\delta}\} = \ &igcup \{(X_eta)_{\xi_0} : \exists_{lpha < \kappa}(lpha, eta) \in V_{\xi_0}^{\delta}\} = S_\delta. \end{aligned}$$

æ

æ

▲ 御 ▶ ▲ 臣