Self-distributive structures and reflections to set-theoretic solutions of the Yang–Baxter equation

Paola Stefanelli

Seminar Algebra – University of Warsaw

23 January 2025

This talk is essentially based on

A. Albano, M. Mazzotta, P.S.: *Reflections to set-theoretic solutions of the Yang–Baxter equation*, arXiv:2405.19105.

whose study is strongly motivated by findings in

A. Doikou, B. Rybołowicz, P.S.:

Quandles as pre-Lie skew braces, set-theoretic Hopf algebras & universal *R*-matrices, J. Phys. A: Math. Theor. **57**, 405203 (2024).

Outline:

- Overview on set-theoretic solutions of the YBE.
- ▶ Focus on the structure of the *shelf/rack* and *derived solutions* of the YBE.
- Overview on *reflections* (*RE*) for set-theoretic solutions of the YBE.
- Description of some classes of reflections in terms of shelves/racks.

This talk is essentially based on

A. Albano, M. Mazzotta, P.S.: *Reflections to set-theoretic solutions of the Yang–Baxter equation*, arXiv:2405.19105.

whose study is strongly motivated by findings in

A. Doikou, B. Rybołowicz, P.S.: *Quandles as pre-Lie skew braces, set-theoretic Hopf algebras & universal* \mathcal{R} *-matrices, J. Phys. A: Math. Theor.* **57**, 405203 (2024).

Outline:

- Overview on set-theoretic solutions of the YBE.
- ▶ Focus on the structure of the *shelf/rack* and *derived solutions* of the YBE.
- Overview on reflections (RE) for set-theoretic solutions of the YBE.
- Description of some classes of reflections in terms of shelves/racks.

The quantum Yang-Baxter equation

The *quantum Yang–Baxter equation* has roots in statistical mechanics and takes its name after two independent works,

- C.N. Yang: Some exact results for the many-body problem in one dimension with repulsive delta-function interaction, Phys. Rev. Lett. 19 (1967) 1312–1315.
- R.J. Baxter: Partition function of the eight-vertex lattice model, Ann. Physics 70 (1972) 193–228.

where a particular one-dimensional quantum mechanical many body problem was studied. The equation depends on the idea that, in some scattering situations, particles may preserve their momentum while changing their quantum internal states.

Set-theoretic solutions of the Yang-Baxter equation

 G. Drinfel'd: On some unsolved problems in quantum group theory, in: Quantum Groups, Leningrad, 1990, in: Lecture Notes in Math. vol. 1510
 (2) Springer, Berlin, (1992), 1–8.

If X is a set, a map $r: X \times X \to X \times X$ satisfying the braid relation

 $(r \times \mathrm{id}_X)(\mathrm{id}_X \times r)(r \times \mathrm{id}_X) = (\mathrm{id}_X \times r)(r \times \mathrm{id}_X)(\mathrm{id}_X \times r)$

is said to be a *set-theoretic solution*, or briefly *solution*, of the YBE.

If we consider two maps $\lambda_a, \rho_b : X \to X$ and write r as

 $r(a,b) = (\lambda_a(b), \rho_b(a)),$

for all $a, b \in X$, then r is said to be

- ▶ *left non-degenerate* if λ_a is bijective, for every $a \in X$;
- ▶ *right non-degenerate* if ρ_b is bijective, for every $b \in X$;
- non-degenerate if r is both left and right non-degenerate.
- *involutive* if $r^2 = id_{X \times X}$
- *idempotent* if $r^2 = r$.

Set-theoretic solutions of the Yang-Baxter equation

G. Drinfel'd: On some unsolved problems in quantum group theory, in: Quantum Groups, Leningrad, 1990, in: Lecture Notes in Math. vol. **1510** (2) Springer, Berlin, (1992), 1–8.

If X is a set, a map $r: X \times X \to X \times X$ satisfying the braid relation

 $(r \times \mathrm{id}_X)(\mathrm{id}_X \times r)(r \times \mathrm{id}_X) = (\mathrm{id}_X \times r)(r \times \mathrm{id}_X)(\mathrm{id}_X \times r)$

is said to be a *set-theoretic solution*, or briefly *solution*, of the YBE.

If we consider two maps $\lambda_a,
ho_b: X o X$ and write r as

$$r(a,b) = (\lambda_a(b), \rho_b(a)),$$

for all $a, b \in X$, then r is said to be

- ▶ *left non-degenerate* if λ_a is bijective, for every $a \in X$;
- ▶ *right non-degenerate* if ρ_b is bijective, for every $b \in X$;
- non-degenerate if r is both left and right non-degenerate.
- *involutive* if $r^2 = id_{X \times X}$
- *idempotent* if $r^2 = r$.

Set-theoretic solutions of the Yang-Baxter equation

 G. Drinfel'd: On some unsolved problems in quantum group theory, in: Quantum Groups, Leningrad, 1990, in: Lecture Notes in Math. vol. 1510
 (2) Springer, Berlin, (1992), 1–8.

If X is a set, a map $r: X \times X \to X \times X$ satisfying the braid relation

 $(r \times \mathrm{id}_X)(\mathrm{id}_X \times r)(r \times \mathrm{id}_X) = (\mathrm{id}_X \times r)(r \times \mathrm{id}_X)(\mathrm{id}_X \times r)$

is said to be a *set-theoretic solution*, or briefly *solution*, of the YBE.

If we consider two maps $\lambda_a,
ho_b: X o X$ and write r as

$$r(a,b) = (\lambda_a(b), \rho_b(a)),$$

for all $a, b \in X$, then r is said to be

- ▶ *left non-degenerate* if λ_a is bijective, for every $a \in X$;
- ▶ *right non-degenerate* if ρ_b is bijective, for every $b \in X$;
- non-degenerate if r is both left and right non-degenerate.
- *involutive* if $r^2 = id_{X \times X}$.
- *idempotent* if $r^2 = r$.

Lyubashenko solutions

If X is a set, the map $r: X \times X \to X \times X$ given by

r(a,b) = (f(b),g(a))

is a solution, where f, g are maps from X to X such that fg = gf.

In particular,

- r is left (resp. right) non-degenerate if and only if f is bijective (resp. g is bijective);
- ▶ *r* is *involutive* if and only if f, g are bijective and $g = f^{-1}$;
- ▶ If we fix $k \in X$ and consider $f : X \to X$ defined by f(a) = k, for every $a \in X$, and g = f, then r(a, b) = (k, k) is a *degenerate* and *idempotent* solution.

Lyubashenko solutions

If X is a set, the map $r: X \times X \to X \times X$ given by

r(a,b) = (f(b),g(a))

is a solution, where f, g are maps from X to X such that fg = gf.

In particular,

- r is left (resp. right) non-degenerate if and only if f is bijective (resp. g is bijective);
- ▶ *r* is *involutive* if and only if f, g are bijective and $g = f^{-1}$;
- ▶ If we fix $k \in X$ and consider $f : X \to X$ defined by f(a) = k, for every $a \in X$, and g = f, then r(a, b) = (k, k) is a *degenerate* and *idempotent* solution.

[Rump (2007) - Cedó, Jespers, Okniński (2014) - Guarnieri, Vendramin (2017)] A triple $(B, +, \circ)$ is said to be a *skew brace* if (B, +) and (B, \circ) are groups and

$$a \circ (b + c) = a \circ b - a + a \circ c$$

holds, for all $a, b, c \in B$. If (B, +) is abelian then B is a *brace*.

Any Jacobson radical ring is a brace. Indeed, if $(R, +, \cdot)$ is a Jacobson radical ring, then $(R, +, \circ)$ is a brace with \circ is the *adjoint operation*, i.e., $\mathbf{a} \circ \mathbf{b} := \mathbf{a} + \mathbf{b} + \mathbf{a} \cdot \mathbf{b}$, for all $a, b \in R$.

Theorem [Ru07 - GuVe17]

If B is a skew brace, then the map $r_B : B \times B \to B \times B$ defined by

$$r_B(a, b) := (-a + a \circ b, (-a + a \circ b)^- \circ a \circ b)$$

is a non-degenerate bijective solution (with a^- the inverse of a with respect to \circ , for every $a \in B$). In particular,

[Rump (2007) - Cedó, Jespers, Okniński (2014) - Guarnieri, Vendramin (2017)] A triple $(B, +, \circ)$ is said to be a *skew brace* if (B, +) and (B, \circ) are groups and

 $a \circ (b + c) = a \circ b - a + a \circ c$

holds, for all $a, b, c \in B$. If (B, +) is abelian then B is a *brace*.

Any Jacobson radical ring is a brace. Indeed, if $(R, +, \cdot)$ is a Jacobson radical ring, then $(R, +, \circ)$ is a brace with \circ is the *adjoint operation*, i.e., $\mathbf{a} \circ \mathbf{b} := \mathbf{a} + \mathbf{b} + \mathbf{a} \cdot \mathbf{b}$, for all $a, b \in R$.

Theorem [Ru07 - GuVe17]

If B is a skew brace, then the map $r_B : B \times B \to B \times B$ defined by

$$r_B(a, b) := (-a + a \circ b, (-a + a \circ b)^- \circ a \circ b)$$

is a non-degenerate bijective solution (with a^- the inverse of a with respect to \circ , for every $a \in B$). In particular,

[Rump (2007) - Cedó, Jespers, Okniński (2014) - Guarnieri, Vendramin (2017)] A triple $(B, +, \circ)$ is said to be a *skew brace* if (B, +) and (B, \circ) are groups and

$$a \circ (b + c) = a \circ b - a + a \circ c$$

holds, for all $a, b, c \in B$. If (B, +) is abelian then B is a brace.

Any Jacobson radical ring is a brace. Indeed, if $(R, +, \cdot)$ is a Jacobson radical ring, then $(R, +, \circ)$ is a brace with \circ is the *adjoint operation*, i.e., $\mathbf{a} \circ \mathbf{b} := \mathbf{a} + \mathbf{b} + \mathbf{a} \cdot \mathbf{b}$, for all $a, b \in R$.

Theorem [Ru07 - GuVe17]

If B is a skew brace, then the map $r_B : B \times B \to B \times B$ defined by

$$r_B(a, b) := (-a + a \circ b, (-a + a \circ b)^- \circ a \circ b)$$

is a non-degenerate bijective solution (with a^- the inverse of a with respect to \circ , for every $a \in B$). In particular,

[Rump (2007) - Cedó, Jespers, Okniński (2014) - Guarnieri, Vendramin (2017)] A triple $(B, +, \circ)$ is said to be a *skew brace* if (B, +) and (B, \circ) are groups and

 $a \circ (b + c) = a \circ b - a + a \circ c$

holds, for all $a, b, c \in B$. If (B, +) is abelian then B is a brace.

Any Jacobson radical ring is a brace. Indeed, if $(R, +, \cdot)$ is a Jacobson radical ring, then $(R, +, \circ)$ is a brace with \circ is the *adjoint operation*, i.e., $\mathbf{a} \circ \mathbf{b} := \mathbf{a} + \mathbf{b} + \mathbf{a} \cdot \mathbf{b}$, for all $a, b \in R$.

Theorem [Ru07 - GuVe17]

If B is a skew brace, then the map $r_B: B \times B \to B \times B$ defined by

$$r_B(a, b) := (-a + a \circ b, (-a + a \circ b)^- \circ a \circ b)$$

is a non-degenerate bijective solution (with a^- the inverse of a with respect to \circ , for every $a \in B$). In particular,

[Rump (2007) - Cedó, Jespers, Okniński (2014) - Guarnieri, Vendramin (2017)] A triple $(B, +, \circ)$ is said to be a *skew brace* if (B, +) and (B, \circ) are groups and

 $a \circ (b + c) = a \circ b - a + a \circ c$

holds, for all $a, b, c \in B$. If (B, +) is abelian then B is a brace.

Any Jacobson radical ring is a brace. Indeed, if $(R, +, \cdot)$ is a Jacobson radical ring, then $(R, +, \circ)$ is a brace with \circ is the *adjoint operation*, i.e., $\mathbf{a} \circ \mathbf{b} := \mathbf{a} + \mathbf{b} + \mathbf{a} \cdot \mathbf{b}$, for all $a, b \in R$.

Theorem [Ru07 - GuVe17]

If B is a skew brace, then the map $r_B: B \times B \to B \times B$ defined by

$$r_B(a, b) := (-a + a \circ b, (-a + a \circ b)^- \circ a \circ b)$$

is a non-degenerate bijective solution (with a^- the inverse of a with respect to \circ , for every $a \in B$). In particular,

$$r_B$$
 is involutive $\iff (B, +, \circ)$ is a brace.

Definition

Let X be a non-empty set and \triangleright a binary operation on X. Then, (X, \triangleright) is said to be a *left shelf* if \triangleright is *left self-distributive*, i.e., the identity

$$\forall a, b, c \in X \quad a \triangleright (b \triangleright c) = (a \triangleright b) \triangleright (a \triangleright c)$$

holds. Moreover, a left shelf (X, \triangleright) is called

1. a *left spindle* if
$$a \triangleright a = a$$
, for all $a \in X$;

 a left rack if (X, ▷) is a left quasigroup, i.e., the map L_a : X → X defined by

 $L_a(b) := a \triangleright b,$

for all $b \in X$, are bijective, for all $a \in X$;

Definition

Let X be a non-empty set and \triangleright a binary operation on X. Then, (X, \triangleright) is said to be a *left shelf* if \triangleright is *left self-distributive*, i.e., the identity

$$\forall a, b, c \in X \quad a \triangleright (b \triangleright c) = (a \triangleright b) \triangleright (a \triangleright c)$$

holds. Moreover, a left shelf (X, \triangleright) is called

1. a *left spindle* if
$$a \triangleright a = a$$
, for all $a \in X$;

```
    a left rack if (X, ▷) is a left quasigroup, i.e., the map L<sub>a</sub> : X → X
defined by
```

 $L_a(b) := a \triangleright b,$

for all $b \in X$, are bijective, for all $a \in X$;

Definition

Let X be a non-empty set and \triangleright a binary operation on X. Then, (X, \triangleright) is said to be a *left shelf* if \triangleright is *left self-distributive*, i.e., the identity

$$\forall a, b, c \in X \quad a \triangleright (b \triangleright c) = (a \triangleright b) \triangleright (a \triangleright c)$$

holds. Moreover, a left shelf (X, \triangleright) is called

1. a *left spindle* if
$$a \triangleright a = a$$
, for all $a \in X$;

 a left rack if (X, ▷) is a left quasigroup, i.e., the map L_a : X → X defined by

 $L_a(b) := a \triangleright b,$

for all $b \in X$, are bijective, for all $a \in X$;

Definition

Let X be a non-empty set and \triangleright a binary operation on X. Then, (X, \triangleright) is said to be a *left shelf* if \triangleright is *left self-distributive*, i.e., the identity

$$\forall a, b, c \in X \quad a \triangleright (b \triangleright c) = (a \triangleright b) \triangleright (a \triangleright c)$$

holds. Moreover, a left shelf (X, \triangleright) is called

1. a *left spindle* if
$$a \triangleright a = a$$
, for all $a \in X$;

 a left rack if (X, ▷) is a left quasigroup, i.e., the map L_a : X → X defined by

 $L_a(b) := a \triangleright b,$

for all $b \in X$, are bijective, for all $a \in X$;

 If X is a set and f : X → X is an idempotent map, then (X, ▷) is a left shelf where a ▷ b := f (a). The case with f = id_X is called the *trivial spindle*.

2. If X is a set and $f \in Sym_X$, then (X, \triangleright) is a left rack where $a \triangleright b := f(b)$. The case with $f = id_X$ is called the *trivial rack*.

- Conjugation quandle: If (X, +) is a group, then (X, ▷) is a left quandle where a ▷ b := -a + b + a.
- 4. Dihedral quandle: Let $n \in \mathbb{N}_0$ and $X = \mathbb{Z}_n$. Then, the structure (X, \triangleright) where $a \triangleright b := 2a b \pmod{n}$, for all $a, b \in X$, is a left quandle.

- If X is a set and f : X → X is an idempotent map, then (X, ▷) is a left shelf where a ▷ b := f (a). The case with f = id_X is called the *trivial spindle*.
- 2. If X is a set and $f \in Sym_X$, then (X, \triangleright) is a left rack where $a \triangleright b := f(b)$. The case with $f = id_X$ is called the *trivial rack*.
- Conjugation quandle: If (X, +) is a group, then (X, ▷) is a left quandle where a ▷ b := -a + b + a.
- 4. Dihedral quandle: Let $n \in \mathbb{N}_0$ and $X = \mathbb{Z}_n$. Then, the structure (X, \triangleright) where $a \triangleright b := 2a b \pmod{n}$, for all $a, b \in X$, is a left quandle.

- If X is a set and f : X → X is an idempotent map, then (X, ▷) is a left shelf where a ▷ b := f (a). The case with f = id_X is called the *trivial spindle*.
- 2. If X is a set and $f \in Sym_X$, then (X, \triangleright) is a left rack where $a \triangleright b := f(b)$. The case with $f = id_X$ is called the *trivial rack*.
- Conjugation quandle: If (X, +) is a group, then (X, ▷) is a left quandle where a ▷ b := -a + b + a.
- 4. Dihedral quandle: Let $n \in \mathbb{N}_0$ and $X = \mathbb{Z}_n$. Then, the structure (X, \triangleright) where $a \triangleright b := 2a b \pmod{n}$, for all $a, b \in X$, is a left quandle.

- If X is a set and f : X → X is an idempotent map, then (X, ▷) is a left shelf where a ▷ b := f (a). The case with f = id_X is called the *trivial spindle*.
- 2. If X is a set and $f \in Sym_X$, then (X, \triangleright) is a left rack where $a \triangleright b := f(b)$. The case with $f = id_X$ is called the *trivial rack*.
- 3. Conjugation quandle: If (X, +) is a group, then (X, \triangleright) is a left quandle where $a \triangleright b := -a + b + a$.
- 4. Dihedral quandle: Let $n \in \mathbb{N}_0$ and $X = \mathbb{Z}_n$. Then, the structure (X, \triangleright) where $a \triangleright b := 2a b \pmod{n}$, for all $a, b \in X$, is a left quandle.

Proposition

If (X, \triangleright) is a left shelf, then the map $r_{\triangleright} : X \times X \to X \times X$ defined by

 $r_{\triangleright}(a,b) = (b, b \triangleright a)$

is a *left non-degenerate* solution of *derived type*. Conversely, if (X, r) is a left non-degenerate solution, then the structure (X, \triangleright_r) is a left shelf where \triangleright_r is the binary operation on X given by

- ▶ If (X, \triangleright) is a *left shelf*, we call r_{\triangleright} the *solution associated to* (X, \triangleright) .
- If (X, r) is a left non-degenerate solution, we call (X, ▷_r) the left shelf associated to r. Moreover, the solution associated to (X, ▷_r) is called the left derived solution of (X, r).

Proposition

If (X, \triangleright) is a left shelf, then the map $r_{\triangleright} : X \times X \to X \times X$ defined by

 $r_{\triangleright}(a,b) = (b, b \triangleright a)$

is a *left non-degenerate* solution of *derived type*. Conversely, if (X, r) is a left non-degenerate solution, then the structure (X, \triangleright_r) is a left shelf where \triangleright_r is the binary operation on X given by

- ▶ If (X, \triangleright) is a *left shelf*, we call r_{\triangleright} the *solution associated to* (X, \triangleright) .
- If (X, r) is a left non-degenerate solution, we call (X, ▷_r) the left shelf associated to r. Moreover, the solution associated to (X, ▷_r) is called the left derived solution of (X, r).

Proposition

If (X, \triangleright) is a left shelf, then the map $r_{\triangleright} : X \times X \to X \times X$ defined by

 $r_{\triangleright}(a,b) = (b, b \triangleright a)$

is a *left non-degenerate* solution of *derived type*. Conversely, if (X, r) is a left non-degenerate solution, then the structure (X, \triangleright_r) is a left shelf where \triangleright_r is the binary operation on X given by

- ▶ If (X, \triangleright) is a *left shelf*, we call r_{\triangleright} the *solution associated to* (X, \triangleright) .
- If (X, r) is a left non-degenerate solution, we call (X, ▷_r) the left shelf associated to r. Moreover, the solution associated to (X, ▷_r) is called the left derived solution of (X, r).

Proposition

If (X, \triangleright) is a left shelf, then the map $r_{\triangleright} : X \times X \to X \times X$ defined by

 $r_{\triangleright}(a,b) = (b, b \triangleright a)$

is a *left non-degenerate* solution of *derived type*. Conversely, if (X, r) is a left non-degenerate solution, then the structure (X, \triangleright_r) is a left shelf where \triangleright_r is the binary operation on X given by

- ▶ If (X, \triangleright) is a *left shelf*, we call r_{\triangleright} the *solution associated to* (X, \triangleright) .
- If (X, r) is a left non-degenerate solution, we call (X, ▷_r) the left shelf associated to r. Moreover, the solution associated to (X, ▷_r) is called the left derived solution of (X, r).

Proposition

If (X, \triangleright) is a left shelf, then the map $r_{\triangleright} : X \times X \to X \times X$ defined by

 $r_{\triangleright}(a,b) = (b, b \triangleright a)$

is a *left non-degenerate* solution of *derived type*. Conversely, if (X, r) is a left non-degenerate solution, then the structure (X, \triangleright_r) is a left shelf where \triangleright_r is the binary operation on X given by

- ▶ If (X, \triangleright) is a *left shelf*, we call r_{\triangleright} the *solution associated to* (X, \triangleright) .
- If (X, r) is a left non-degenerate solution, we call (X, ▷_r) the left shelf associated to r. Moreover, the solution associated to (X, ▷_r) is called the left derived solution of (X, r).

Drinfel'd homomorphisms

Definition - cf. [Soloviev (2000) - Doikou (2021)]

If (X, r) and (Y, s) are solutions, we say that a map $\Phi : X \times X \to Y \times Y$ is a *Drinfel'd homomorphism* or, in short, *D-homomorphism* if

$$\Phi r = s \Phi.$$

If Φ is a bijection, we call Φ a *D-isomorphism* and we say that (X, r) and (Y, s) are *D-isomorphic* (via Φ), and we denote it by $r \cong_D s$.

Important fact: Let (X, r) be a left non-degenerate solution, then

 $r \cong_D r_{\triangleright}$

via the map $\Phi: X \times X \to X \times X, (a, b) \mapsto (a, \lambda_a(b)).$

Drinfel'd homomorphisms

Definition - cf. [Soloviev (2000) - Doikou (2021)]

If (X, r) and (Y, s) are solutions, we say that a map $\Phi : X \times X \to Y \times Y$ is a *Drinfel'd homomorphism* or, in short, *D-homomorphism* if

$$\Phi r = s \Phi$$
.

If Φ is a bijection, we call Φ a *D-isomorphism* and we say that (X, r) and (Y, s) are *D-isomorphic* (via Φ), and we denote it by $r \cong_D s$.

Important fact: Let (X, r) be a left non-degenerate solution, then

 $r \cong_D r_{\triangleright}$

via the map $\Phi: X \times X \to X \times X, (a, b) \mapsto (a, \lambda_a(b)).$

A description of all left non-degenerate solutions

Let (X, \triangleright) be a left shelf. We say that $\lambda : X \to \operatorname{Aut}(X, \triangleright), a \mapsto \lambda_a$ is a *twist* if

$$\forall a, b \in X \quad \lambda_a \lambda_b = \lambda_{\lambda_a(b)} \lambda_{\lambda_{\lambda_a(b)}^{-1}(\lambda_a(b) \triangleright a)}.$$

Theorem [DRS (2024)]

Let (X, \triangleright) be a left shelf and $\lambda : X \to \operatorname{Sym}_X, a \mapsto \lambda_a$. Then, the map $r_{\lambda} : X \times X \to X \times X$ defined by

$$\forall a, b \in X \quad r_{\lambda}(a, b) = \left(\lambda_{a}(b), \lambda_{\lambda_{a}(b)}^{-1}(\lambda_{a}(b) \triangleright a)\right),$$

is a solution if and only if λ is a twist. Moreover, any left non-degenerate solution can be obtained that way.

- idempotent l.n. solutions $\rightsquigarrow a \triangleright b = a$, for all $a, b \in X$.
- involutive l.n. solutions $\rightsquigarrow a \triangleright b = b$, for all $a, b \in X$.
- ▶ skew braces solutions $\Rightarrow a \triangleright b = -a + b + a$, for all $a, b \in X$, with (X, +) an arbitrary group.

A description of all left non-degenerate solutions

Let (X, \triangleright) be a left shelf. We say that $\lambda : X \to \operatorname{Aut}(X, \triangleright), a \mapsto \lambda_a$ is a *twist* if

$$\forall a, b \in X \quad \lambda_a \lambda_b = \lambda_{\lambda_a(b)} \lambda_{\lambda_{a(b)}^{-1}(\lambda_a(b) \triangleright a)}.$$

Theorem [DRS (2024)]

Let (X, \triangleright) be a left shelf and $\lambda : X \to \operatorname{Sym}_X, a \mapsto \lambda_a$. Then, the map $r_\lambda : X \times X \to X \times X$ defined by

$$\forall a, b \in X \quad r_{\lambda}(a, b) = \left(\lambda_{a}(b), \lambda_{\lambda_{a}(b)}^{-1}(\lambda_{a}(b) \triangleright a)\right),$$

is a solution if and only if λ is a twist. Moreover, any left non-degenerate solution can be obtained that way.

- ▶ idempotent l.n. solutions \rightsquigarrow $a \triangleright b = a$, for all $a, b \in X$.
- involutive l.n. solutions $\rightsquigarrow a \triangleright b = b$, for all $a, b \in X$.
- ▶ skew braces solutions $\Rightarrow a \triangleright b = -a + b + a$, for all $a, b \in X$, with (X, +) an arbitrary group.

A description of all left non-degenerate solutions

Let (X, \triangleright) be a left shelf. We say that $\lambda : X \to \operatorname{Aut}(X, \triangleright), a \mapsto \lambda_a$ is a *twist* if

$$\forall a, b \in X \quad \lambda_a \lambda_b = \lambda_{\lambda_a(b)} \lambda_{\lambda_{a(b)}^{-1}(\lambda_a(b) \triangleright a)}.$$

Theorem [DRS (2024)]

Let (X, \triangleright) be a left shelf and $\lambda : X \to \operatorname{Sym}_X, a \mapsto \lambda_a$. Then, the map $r_\lambda : X \times X \to X \times X$ defined by

$$\forall a, b \in X \quad r_{\lambda}(a, b) = \left(\lambda_{a}(b), \lambda_{\lambda_{a}(b)}^{-1}(\lambda_{a}(b) \triangleright a)\right),$$

is a solution if and only if λ is a twist. Moreover, any left non-degenerate solution can be obtained that way.

- ▶ idempotent l.n. solutions \rightsquigarrow $a \triangleright b = a$, for all $a, b \in X$.
- ▶ involutive l.n. solutions \rightsquigarrow $a \triangleright b = b$, for all $a, b \in X$.

▶ skew braces solutions
$$\rightsquigarrow a \triangleright b = -a + b + a$$
, for all $a, b \in X$,
with $(X, +)$ an arbitrary group.

Some consequences and observations

Corollaries

Let (X, r) be a left non-degenerate solution. Then, the following hold:

- 1. (X, r) is bijective if and only if (X, \triangleright_r) is a rack;
- If X is a finite set, (X, r) is right non-degenerate and bijective if and only if (X, ▷r) is a rack.

Remark: Let (X, \triangleright) and (Y, \blacktriangleright) be shelves and λ, ψ twists of (X, \triangleright) and (Y, \blacktriangleright) , respectively. If $(X, \triangleright) \cong (Y, \blacktriangleright)$ then $(X, r_{\lambda}) \cong_{D} (Y, r_{\psi})$.

Some consequences and observations

Corollaries

Let (X, r) be a left non-degenerate solution. Then, the following hold:

- 1. (X, r) is bijective if and only if (X, \triangleright_r) is a rack;
- If X is a finite set, (X, r) is right non-degenerate and bijective if and only if (X, ▷r) is a rack.

Remark: Let (X, \triangleright) and (Y, \blacktriangleright) be shelves and λ, ψ twists of (X, \triangleright) and (Y, \blacktriangleright) , respectively. If $(X, \triangleright) \cong (Y, \blacktriangleright)$ then $(X, r_{\lambda}) \cong_{D} (Y, r_{\psi})$.

The reflection equation

Similarly to the YBE, the *reflection equation* serves as a significant tool in the theory of quantum groups and integrable systems.

It was first studied to encode the reflection on the boundary of particles in quantum field theory $% \left({{{\mathbf{r}}_{i}}} \right)$

I.V. Cherednik: Factorizing particles on a half line, and root systems, Teoret. Mat. Fiz. 61 (1) (1984) 35–44.

and to prove the integrability of quantum models with boundaries

E.K. Sklyanin: *Boundary conditions for integrable quantum systems*, J. Phys. A **21** (10) (1988) 2375–2389.

Reflections for set-theoretic solutions

The set-theoretic version of this equation was formulated in

V. Caudrelier, Q.C. Zhang: Yang–Baxter and reflection maps from vector solitons with a boundary, Nonlinearity **27** (6) (2014) 1081–1103.

Set-theoretic RE jointly with the YBE ensures the factorization property of the interactions of N-soliton solutions on the half-line. The interplay between solutions to the YBE and RE was deepened in

V. Caudrelier, N. Crampé, Q.C. Zhang: *Set-theoretical reflection equation: classification of reflection maps*, J. Phys. A **46** (9) (2013) 095203, 12.

Definition

Let (X, r) be a solution. A map $\kappa : X \to X$ is a *set-theoretic solution of the reflection equation*, or briefly a *reflection*, for (X, r) if it holds the identity

 $r(\mathrm{id}_X \times \kappa) r(\mathrm{id}_X \times \kappa) = (\mathrm{id}_X \times \kappa) r(\mathrm{id}_X \times \kappa) r.$

Question: Let (X, r) be a solution. What are *all* the reflections for (X, r)?
Reflections for set-theoretic solutions

The set-theoretic version of this equation was formulated in

V. Caudrelier, Q.C. Zhang: Yang-Baxter and reflection maps from vector solitons with a boundary, Nonlinearity 27 (6) (2014) 1081–1103.

Set-theoretic RE jointly with the YBE ensures the factorization property of the interactions of N-soliton solutions on the half-line. The interplay between solutions to the YBE and RE was deepened in

V. Caudrelier, N. Crampé, Q.C. Zhang: Set-theoretical reflection equation: classification of reflection maps, J. Phys. A 46 (9) (2013) 095203, 12.

Definition

Let (X, r) be a solution. A map $\kappa : X \to X$ is a set-theoretic solution of the *reflection equation*, or briefly a *reflection*, for (X, r) if it holds the identity

 $r(\mathrm{id}_X \times \kappa) r(\mathrm{id}_X \times \kappa) = (\mathrm{id}_X \times \kappa) r(\mathrm{id}_X \times \kappa) r.$

Reflections for set-theoretic solutions

The set-theoretic version of this equation was formulated in

V. Caudrelier, Q.C. Zhang: Yang-Baxter and reflection maps from vector solitons with a boundary, Nonlinearity 27 (6) (2014) 1081–1103.

Set-theoretic RE jointly with the YBE ensures the factorization property of the interactions of N-soliton solutions on the half-line. The interplay between solutions to the YBE and RE was deepened in

V. Caudrelier, N. Crampé, Q.C. Zhang: Set-theoretical reflection equation: classification of reflection maps, J. Phys. A 46 (9) (2013) 095203, 12.

Definition

Let (X, r) be a solution. A map $\kappa : X \to X$ is a set-theoretic solution of the *reflection equation*, or briefly a *reflection*, for (X, r) if it holds the identity

 $r(\mathrm{id}_X \times \kappa) r(\mathrm{id}_X \times \kappa) = (\mathrm{id}_X \times \kappa) r(\mathrm{id}_X \times \kappa) r.$

Question: Let (X, r) be a solution. What are all the reflections for (X, r)?

Let (X, r) be a solution and $\mathcal{K}(X, r)$ the set of all reflections for (X, r).

- ▶ If (Y, s) is a solution *equivalent* to (X, r) via a bijection $\alpha : X \to Y$, i.e, $(\alpha \times \alpha)r = s(\alpha \times \alpha)$, and $\kappa \in \mathcal{K}(X, r)$, then $\kappa_{\alpha} := \alpha \kappa \alpha^{-1} \in \mathcal{K}(Y, s)$.
- ▶ If (X, r) is bijective and $\kappa \in \mathcal{K}_{\text{bij}}(X, r)$, then $\kappa^{-1} \in \mathcal{K}_{\text{bij}}(X, r^{-1})$.
- $\kappa, \varphi \in \mathcal{K}(X, r)$, then, in general, $\kappa \varphi \notin \mathcal{K}(X, r)$.

Example

Let X be a set, $f, g \in \text{Sym}_X$ s.t. fg = gf, and consider the Lyubashenko's solution r(x, y) = (f(y), g(x)). Then, if $\kappa : X \to X$ is a map,

$$\kappa \in \mathcal{K}(X, r) \iff \kappa fg = fg\kappa.$$

Let (X, r) be a solution and $\mathcal{K}(X, r)$ the set of all reflections for (X, r).

- ▶ If (Y, s) is a solution *equivalent* to (X, r) via a bijection $\alpha : X \to Y$, i.e, $(\alpha \times \alpha)r = s(\alpha \times \alpha)$, and $\kappa \in \mathcal{K}(X, r)$, then $\kappa_{\alpha} := \alpha \kappa \alpha^{-1} \in \mathcal{K}(Y, s)$.
- ▶ If (X, r) is bijective and $\kappa \in \mathcal{K}_{\text{bij}}(X, r)$, then $\kappa^{-1} \in \mathcal{K}_{\text{bij}}(X, r^{-1})$.
- $\kappa, \varphi \in \mathcal{K}(X, r)$, then, in general, $\kappa \varphi \notin \mathcal{K}(X, r)$.

Example

Let X be a set, $f, g \in \text{Sym}_X$ s.t. fg = gf, and consider the Lyubashenko's solution r(x, y) = (f(y), g(x)). Then, if $\kappa : X \to X$ is a map,

$$\kappa \in \mathcal{K}(X, r) \iff \kappa fg = fg\kappa.$$

Let (X, r) be a solution and $\mathcal{K}(X, r)$ the set of all reflections for (X, r).

- ▶ If (Y, s) is a solution *equivalent* to (X, r) via a bijection $\alpha : X \to Y$, i.e, $(\alpha \times \alpha)r = s(\alpha \times \alpha)$, and $\kappa \in \mathcal{K}(X, r)$, then $\kappa_{\alpha} := \alpha \kappa \alpha^{-1} \in \mathcal{K}(Y, s)$.
- ▶ If (X, r) is bijective and $\kappa \in \mathcal{K}_{bij}(X, r)$, then $\kappa^{-1} \in \mathcal{K}_{bij}(X, r^{-1})$.
- $\kappa, \varphi \in \mathcal{K}(X, r)$, then, in general, $\kappa \varphi \notin \mathcal{K}(X, r)$.

Example

Let X be a set, $f, g \in \text{Sym}_X$ s.t. fg = gf, and consider the Lyubashenko's solution r(x, y) = (f(y), g(x)). Then, if $\kappa : X \to X$ is a map,

$$\kappa \in \mathcal{K}(X, r) \iff \kappa fg = fg\kappa.$$

Let (X, r) be a solution and $\mathcal{K}(X, r)$ the set of all reflections for (X, r).

- ▶ If (Y, s) is a solution *equivalent* to (X, r) via a bijection $\alpha : X \to Y$, i.e, $(\alpha \times \alpha)r = s(\alpha \times \alpha)$, and $\kappa \in \mathcal{K}(X, r)$, then $\kappa_{\alpha} := \alpha \kappa \alpha^{-1} \in \mathcal{K}(Y, s)$.
- ▶ If (X, r) is bijective and $\kappa \in \mathcal{K}_{\text{bij}}(X, r)$, then $\kappa^{-1} \in \mathcal{K}_{\text{bij}}(X, r^{-1})$.
- $\kappa, \varphi \in \mathcal{K}(X, r)$, then, in general, $\kappa \varphi \notin \mathcal{K}(X, r)$.

Example

Let X be a set, $f, g \in \text{Sym}_X$ s.t. fg = gf, and consider the Lyubashenko's solution r(x, y) = (f(y), g(x)). Then, if $\kappa : X \to X$ is a map,

$$\kappa \in \mathcal{K}(X, r) \iff \kappa fg = fg\kappa.$$

Let (X, r) be a solution and $\mathcal{K}(X, r)$ the set of all reflections for (X, r).

- ▶ If (Y, s) is a solution *equivalent* to (X, r) via a bijection $\alpha : X \to Y$, i.e, $(\alpha \times \alpha)r = s(\alpha \times \alpha)$, and $\kappa \in \mathcal{K}(X, r)$, then $\kappa_{\alpha} := \alpha \kappa \alpha^{-1} \in \mathcal{K}(Y, s)$.
- ▶ If (X, r) is bijective and $\kappa \in \mathcal{K}_{\text{bij}}(X, r)$, then $\kappa^{-1} \in \mathcal{K}_{\text{bij}}(X, r^{-1})$.

•
$$\kappa, \varphi \in \mathcal{K}(X, r)$$
, then, in general, $\kappa \varphi \notin \mathcal{K}(X, r)$.

Example

Let X be a set, $f, g \in \text{Sym}_X$ s.t. fg = gf, and consider the Lyubashenko's solution r(x, y) = (f(y), g(x)). Then, if $\kappa : X \to X$ is a map,

$$\kappa \in \mathcal{K}(X, r) \iff \kappa fg = fg\kappa.$$

Let (X, r) be a solution and $\mathcal{K}(X, r)$ the set of all reflections for (X, r).

- ▶ If (Y, s) is a solution *equivalent* to (X, r) via a bijection $\alpha : X \to Y$, i.e, $(\alpha \times \alpha)r = s(\alpha \times \alpha)$, and $\kappa \in \mathcal{K}(X, r)$, then $\kappa_{\alpha} := \alpha \kappa \alpha^{-1} \in \mathcal{K}(Y, s)$.
- ▶ If (X, r) is bijective and $\kappa \in \mathcal{K}_{\text{bij}}(X, r)$, then $\kappa^{-1} \in \mathcal{K}_{\text{bij}}(X, r^{-1})$.

•
$$\kappa, \varphi \in \mathcal{K}(X, r)$$
, then, in general, $\kappa \varphi \notin \mathcal{K}(X, r)$.

Example

Let X be a set, $f, g \in \text{Sym}_X$ s.t. fg = gf, and consider the Lyubashenko's solution r(x, y) = (f(y), g(x)). Then, if $\kappa : X \to X$ is a map,

$$\kappa \in \mathcal{K}(X, r) \iff \kappa fg = fg\kappa.$$

Brief recap

- ▶ [De Commer (2019)] introduced a notion of braided action of a group with braiding and showed that it provides reflections.
- [Katsamaktsis (2019)] investigated solutions to the reflection equation with braces.
- [Smoktunowicz, Vendramin, Weston (2020)] proposed a first more systematic approach that makes use of ring-theoretic methods, and more generally methods coming from brace theory, to produce families of reflections in the involutive case.
- [Doikou, Smoktunowicz (2021)] investigated connections between set-theoretic Yang–Baxter and reflection equations and quantum integrable systems.
- [Lebed, Vendramin (2022)] focused on reflections for involutive non-degenerate solutions.

RE for involutive solutions

[Smoktunowicz, Vendramin, Weston (2020)] and [Lebed, Vendramin (2022)] provided reflections for *involutive solutions* which lie into two specific classes.

Definition

Let (X, r) be a solution. We say that a map $\kappa : X \to X$ is

- λ -centralizing if $\kappa \lambda_a = \lambda_a \kappa$, for every $a \in X$.
- ρ -invariant if $\rho_{\kappa(a)} = \rho_a$, for every $a \in X$.

Proposition

Let (X, r) be an involutive solution. Then,

- 1. [SmVeWe20] If (X, r) is left non-degenerate, any λ -centralizing map is a reflection for (X, r).
- 2. [LeVe22] If (X, r) is right non-degenerate, any ρ -invariant map is a reflection for (X, r).

RE for involutive solutions

[Smoktunowicz, Vendramin, Weston (2020)] and [Lebed, Vendramin (2022)] provided reflections for *involutive solutions* which lie into two specific classes.

Definition

Let (X, r) be a solution. We say that a map $\kappa : X \to X$ is

- λ -centralizing if $\kappa \lambda_a = \lambda_a \kappa$, for every $a \in X$.
- ρ -invariant if $\rho_{\kappa(a)} = \rho_a$, for every $a \in X$.

Proposition

Let (X, r) be an involutive solution. Then,

- 1. [SmVeWe20] If (X, r) is left non-degenerate, any λ -centralizing map is a reflection for (X, r).
- 2. [LeVe22] If (X, r) is right non-degenerate, any ρ -invariant map is a reflection for (X, r).

RE for involutive solutions

[Smoktunowicz, Vendramin, Weston (2020)] and [Lebed, Vendramin (2022)] provided reflections for *involutive solutions* which lie into two specific classes.

Definition

Let (X, r) be a solution. We say that a map $\kappa : X \to X$ is

- λ -centralizing if $\kappa \lambda_a = \lambda_a \kappa$, for every $a \in X$.
- ρ -invariant if $\rho_{\kappa(a)} = \rho_a$, for every $a \in X$.

Proposition

Let (X, r) be an involutive solution. Then,

- 1. [SmVeWe20] If (X, r) is left non-degenerate, any λ -centralizing map is a reflection for (X, r).
- 2. [LeVe22] If (X, r) is right non-degenerate, any ρ -invariant map is a reflection for (X, r).

Bearing in mind that a left non-degenerate solution (X, r) can be written as

$$\forall a, b \in X \quad r(a, b) = \left(\lambda_{a}(b), \lambda_{\lambda_{a}(b)}^{-1} L_{\lambda_{a}(b)}(a)\right),$$

with $\lambda_a \in Aut(X, \triangleright_r)$, for all $a \in X$, and $L_a(b) = a \triangleright_r b$, for all $a, b \in X$, we can extend the previous results directly involving the structure (X, \triangleright_r) .

- This naturally suggests splitting the study of reflections into their behaviour with respect to the maps λ_∂ ∈ Aut (X, ▷_r) and left multiplications L_∂. → In the involutive case, L_∂ = id_X, for every a ∈ X.
- We initially focus on reflections for solutions that are only left or right non-degenerate since they turn out to be different from each other. Indeed, a map κ : X → X is a reflection for (X, r) if and only if

 $\lambda_{\lambda_{a}(b)}\kappa\rho_{b}(a) = \lambda_{\lambda_{a}\kappa(b)}\kappa\rho_{\kappa(b)}(a)$ $\kappa\rho_{\kappa\rho_{b}(a)}\lambda_{a}(b) = \rho_{\kappa\rho_{\kappa(b)}(a)}\lambda_{a}\kappa(b)$

Bearing in mind that a left non-degenerate solution (X, r) can be written as

$$\forall a, b \in X \quad r(a, b) = \left(\lambda_{a}(b), \lambda_{\lambda_{a}(b)}^{-1} L_{\lambda_{a}(b)}(a)\right),$$

with $\lambda_a \in \text{Aut}(X, \triangleright_r)$, for all $a \in X$, and $L_a(b) = a \triangleright_r b$, for all $a, b \in X$, we can extend the previous results directly involving the structure (X, \triangleright_r) .

- This naturally suggests splitting the study of reflections into their behaviour with respect to the maps λ_a ∈ Aut (X, ▷_r) and left multiplications L_a. → In the involutive case, L_a = id_X, for every a ∈ X.
- We initially focus on reflections for solutions that are only left or right non-degenerate since they turn out to be different from each other. Indeed, a map κ : X → X is a reflection for (X, r) if and only if

$$\lambda_{\lambda_{a}(b)}\kappa\rho_{b}(a) = \lambda_{\lambda_{a}\kappa(b)}\kappa\rho_{\kappa(b)}(a)$$
$$\kappa\rho_{\kappa\rho_{b}(a)}\lambda_{a}(b) = \rho_{\kappa\rho_{\kappa(b)}(a)}\lambda_{a}\kappa(b)$$

Bearing in mind that a left non-degenerate solution (X, r) can be written as

$$\forall a, b \in X \quad r(a, b) = \left(\lambda_{a}(b), \lambda_{\lambda_{a}(b)}^{-1} L_{\lambda_{a}(b)}(a)\right),$$

with $\lambda_a \in \text{Aut}(X, \triangleright_r)$, for all $a \in X$, and $L_a(b) = a \triangleright_r b$, for all $a, b \in X$, we can extend the previous results directly involving the structure (X, \triangleright_r) .

- This naturally suggests splitting the study of reflections into their behaviour with respect to the maps λ_a ∈ Aut (X, ▷_r) and left multiplications L_a. → In the involutive case, L_a = id_X, for every a ∈ X.
- We initially focus on reflections for solutions that are only left or right non-degenerate since they turn out to be different from each other. Indeed, a map κ : X → X is a reflection for (X, r) if and only if

$$\lambda_{\lambda_{a}(b)}\kappa\rho_{b}(a) = \lambda_{\lambda_{a}\kappa(b)}\kappa\rho_{\kappa(b)}(a)$$
$$\kappa\rho_{\kappa\rho_{b}(a)}\lambda_{a}(b) = \rho_{\kappa\rho_{\kappa(b)}(a)}\lambda_{a}\kappa(b)$$

Bearing in mind that a left non-degenerate solution (X, r) can be written as

$$\forall a, b \in X \quad r(a, b) = \left(\lambda_{a}(b), \lambda_{\lambda_{a}(b)}^{-1} L_{\lambda_{a}(b)}(a)\right),$$

with $\lambda_a \in \text{Aut}(X, \triangleright_r)$, for all $a \in X$, and $L_a(b) = a \triangleright_r b$, for all $a, b \in X$, we can extend the previous results directly involving the structure (X, \triangleright_r) .

- This naturally suggests splitting the study of reflections into their behaviour with respect to the maps λ_∂ ∈ Aut (X, ▷_r) and left multiplications L_∂. → In the involutive case, L_∂ = id_X, for every a ∈ X.
- We initially focus on reflections for solutions that are only left or right non-degenerate since they turn out to be different from each other. Indeed, a map κ: X → X is a reflection for (X, r) if and only if

 $\lambda_{\lambda_{a}(b)}\kappa\rho_{b}(a) = \lambda_{\lambda_{a}\kappa(b)}\kappa\rho_{\kappa(b)}(a)$ $\kappa\rho_{\kappa\rho_{b}(a)}\lambda_{a}(b) = \rho_{\kappa\rho_{\kappa(b)}(a)}\lambda_{a}\kappa(b)$

Bearing in mind that a left non-degenerate solution (X, r) can be written as

$$\forall a, b \in X \quad r(a, b) = \left(\lambda_{a}(b), \lambda_{\lambda_{a}(b)}^{-1} L_{\lambda_{a}(b)}(a)\right),$$

with $\lambda_a \in Aut(X, \triangleright_r)$, for all $a \in X$, and $L_a(b) = a \triangleright_r b$, for all $a, b \in X$, we can extend the previous results directly involving the structure (X, \triangleright_r) .

- This naturally suggests splitting the study of reflections into their behaviour with respect to the maps λ_∂ ∈ Aut (X, ▷_r) and left multiplications L_∂. → In the involutive case, L_∂ = id_X, for every a ∈ X.
- We initially focus on reflections for solutions that are only left or right non-degenerate since they turn out to be different from each other. Indeed, a map κ : X → X is a reflection for (X, r) if and only if

$$\lambda_{\lambda_{a}(b)}\kappa\rho_{b}(a) = \lambda_{\lambda_{a}\kappa(b)}\kappa\rho_{\kappa(b)}(a)$$
$$\kappa\rho_{\kappa\rho_{b}(a)}\lambda_{a}(b) = \rho_{\kappa\rho_{\kappa(b)}(a)}\lambda_{a}\kappa(b)$$

λ -invariant reflections for l.n.-d. solutions

Theorem

Let (X, r) be a left non-degenerate solution, (X, \triangleright_r) its associated shelf, and $\kappa : X \to X$ a λ -centralizing map. Then, $\kappa \in \mathcal{K}(X, r)$ if and only if, for all $a, b \in X$, the following hold:

1.
$$\kappa L_{L_a(b)}(a) = L_{\kappa L_a(b)}\kappa(a)$$
 ,

2.
$$\kappa L_a = \kappa L_{\kappa(a)}$$
.

Remark

If (X, \triangleright_r) is a rack, by 1. in the previous theorem, any λ -centralizing reflection κ of a left non-degenerate solution (X, r) is an endomorphism of (X, \triangleright_r) . However, in the general case, if $\kappa \in \mathcal{K}(X, r)$, then $\kappa \notin \text{End}(X, \triangleright_r)$.

λ -invariant reflections for l.n.-d. solutions

Theorem

Let (X, r) be a left non-degenerate solution, (X, \triangleright_r) its associated shelf, and $\kappa : X \to X$ a λ -centralizing map. Then, $\kappa \in \mathcal{K}(X, r)$ if and only if, for all $a, b \in X$, the following hold:

1.
$$\kappa L_{L_a(b)}(a) = L_{\kappa L_a(b)}\kappa(a)$$
 ,

2.
$$\kappa L_a = \kappa L_{\kappa(a)}$$
.

Remark

If (X, \triangleright_r) is a rack, by 1. in the previous theorem, any λ -centralizing reflection κ of a left non-degenerate solution (X, r) is an endomorphism of (X, \triangleright_r) . However, in the general case, if $\kappa \in \mathcal{K}(X, r)$, then $\kappa \notin \text{End}(X, \triangleright_r)$.

λ -invariant reflections for l.n.-d. solutions

Theorem

Let (X, r) be a left non-degenerate solution, (X, \triangleright_r) its associated shelf, and $\kappa : X \to X$ a λ -centralizing map. Then, $\kappa \in \mathcal{K}(X, r)$ if and only if, for all $a, b \in X$, the following hold:

1.
$$\kappa L_{L_a(b)}(a) = L_{\kappa L_a(b)}\kappa(a)$$
 ,

2.
$$\kappa L_a = \kappa L_{\kappa(a)}$$
.

Remark

If (X, \triangleright_r) is a rack, by 1. in the previous theorem, any λ -centralizing reflection κ of a left non-degenerate solution (X, r) is an endomorphism of (X, \triangleright_r) . However, in the general case, if $\kappa \in \mathcal{K}(X, r)$, then $\kappa \notin \text{End}(X, \triangleright_r)$.

The left multiplication group of (X, \triangleright) and RE

Let (X, \triangleright) be a left rack. The *left multiplication group* of (X, \triangleright) is the normal subgroup of Aut (X, \triangleright) defined by

$$\operatorname{LMIt}(X, \triangleright) := \langle L_a \mid a \in X \rangle.$$

Theorem [AMS (2024)]

Let (X, r) be a bijective left non-degenerate solution and $\kappa : X \to X$ a λ -centralizing map. Then the following hold:

- 1. If $\kappa \in C_{\operatorname{End}(X, \triangleright_r)}$ (LMIt (X, \triangleright_r)), then $\kappa \in \mathcal{K}(X, r)$;
- 2. If $\kappa \in \mathcal{K}_{inj}(X, r)$, then $\kappa \in C_{End(X, \triangleright_r)}(LMlt(X, \triangleright_r))$;
- 3. In particular, $\kappa \in \mathcal{K}_{\text{bij}}(X, r)$ if and only if $\kappa \in C_{\text{Aut}(X, \triangleright_r)}(\text{LMIt}(X, \triangleright_r))$.

The left multiplication group of (X, \triangleright) and RE

Let (X, \triangleright) be a left rack. The *left multiplication group* of (X, \triangleright) is the normal subgroup of Aut (X, \triangleright) defined by

$$\operatorname{LMIt}(X, \triangleright) := \langle L_a \mid a \in X \rangle$$
.

Theorem [AMS (2024)]

Let (X, r) be a bijective left non-degenerate solution and $\kappa : X \to X$ a λ -centralizing map. Then the following hold:

- 1. If $\kappa \in C_{\operatorname{End}(X, \triangleright_r)}$ (LMIt (X, \triangleright_r)), then $\kappa \in \mathcal{K}(X, r)$;
- 2. If $\kappa \in \mathcal{K}_{inj}(X, r)$, then $\kappa \in C_{End(X, \triangleright_r)}(LMlt(X, \triangleright_r))$;
- 3. In particular, $\kappa \in \mathcal{K}_{\text{bij}}(X, r)$ if and only if $\kappa \in C_{\text{Aut}(X, \triangleright_r)}(\text{LMIt}(X, \triangleright_r))$.

λ -invariant reflections for bijective n.-d. solutions

Theorem [AMS (2024)] If (X, r) is a bijective non-degenerate solution and κ a λ -centralizing map, then

$$\kappa \in \mathcal{K}(X, r) \iff \begin{cases} \kappa \in \operatorname{End}(X, \triangleright_r) \\ \forall a \in X \quad \kappa L_a = \kappa L_{\kappa(a)} \end{cases} \iff \kappa \in \mathcal{K}(X, r_{\triangleright}).$$

ρ -invariant reflections for bijective r.n.-d. solutions

If (X, r) is a right non-degenerate solution, one can consider the right rack (X, \triangleleft_r) where $a \triangleleft_r b := \rho_a \lambda_{\rho_b^{-1}(a)}(b)$, for all $a, b \in X$. Moreover, (X, r_{\triangleleft}) is a solution called the *right derived solution* associated to (X, r).

Considering the *right multiplication group* of (X, \triangleleft)

 $\mathsf{RMlt}(X, \triangleleft) := \langle R_a \mid a \in X \rangle$

we have the following result.

Corollary [AMS (2024)]

Let (X, r) be a bijective right non-degenerate solution, (X, \triangleleft_r) its associated right rack, and $\kappa : X \to X$ a ρ -invariant map. Then, the following hold:

1.
$$\kappa \in \mathcal{K}(X, r) \iff \kappa \in C_{\operatorname{Map}_X} (\operatorname{RMlt} (X, \triangleleft_r)).$$

2. $\kappa \in \mathcal{K}_{\text{bij}}(X, r) \iff \kappa \in \mathcal{C}_{\text{Sym}_X} (\text{RMIt}(X, \triangleleft_r)).$

ρ -invariant reflections for bijective r.n.-d. solutions

If (X, r) is a right non-degenerate solution, one can consider the right rack (X, \triangleleft_r) where $a \triangleleft_r b := \rho_a \lambda_{\rho_b^{-1}(a)}(b)$, for all $a, b \in X$. Moreover, (X, r_{\triangleleft}) is a solution called the *right derived solution* associated to (X, r).

Considering the *right multiplication group* of (X, \triangleleft)

$$\mathsf{RMIt}(X, \triangleleft) := \langle R_a \mid a \in X \rangle$$

we have the following result.

Corollary [AMS (2024)]

Let (X, r) be a bijective right non-degenerate solution, (X, \triangleleft_r) its associated right rack, and $\kappa : X \to X$ a ρ -invariant map. Then, the following hold:

1.
$$\kappa \in \mathcal{K}(X, r) \iff \kappa \in C_{\mathsf{Map}_X}(\mathsf{RMIt}(X, \triangleleft_r)).$$

2. $\kappa \in \mathcal{K}_{\text{bij}}(X, r) \iff \kappa \in C_{\text{Sym}_X} (\text{RMIt}(X, \triangleleft_r)).$

ρ -invariant reflections for bijective n.-d. solutions

Theorem [AMS (2024)]

If (X, r) is a bijective non-degenerate solution and κ a ρ -invariant map, then

$$\kappa \in \mathcal{K}(X, r) \iff \forall a \in X \quad \kappa R_a = R_a \kappa \iff \kappa \in \mathcal{K}(X, r_{\triangleleft}),$$

where $R_a(b) = b \triangleleft_r a$, for all $a, b \in X$.

Remark

If $\kappa, \omega : X \to X$ are ρ -invariant reflections for a right non-degenerate solution (X, r), then $\kappa \omega \in \mathcal{K}(X, r)$ and $\kappa \omega$ is ρ -invariant.

ρ -invariant reflections for bijective n.-d. solutions

Theorem [AMS (2024)]

If (X, r) is a bijective non-degenerate solution and κ a ρ -invariant map, then

$$\kappa \in \mathcal{K}(X, r) \iff \forall a \in X \quad \kappa R_a = R_a \kappa \iff \kappa \in \mathcal{K}(X, r_{\triangleleft}),$$

where $R_a(b) = b \triangleleft_r a$, for all $a, b \in X$.

Remark

If $\kappa, \omega : X \to X$ are ρ -invariant reflections for a right non-degenerate solution (X, r), then $\kappa \omega \in \mathcal{K}(X, r)$ and $\kappa \omega$ is ρ -invariant.

1) The study of shelf/rack endomorphisms

The study of rack automorphisms is addressed by many authors and it can be also helpful in the study of reflections.

For instance, in [Elhamdadi, Macquarrie, Restrepo (2012)], the authors proved that Aut(X) of the dihedral quandle (X, \triangleright) coincides with the group $Aff(\mathbb{Z}_n)$ of affine transformations of \mathbb{Z}_n .

With analogous computations, we have that

$$End(X) = \{f_{b,a} : \mathbb{Z}_n \to \mathbb{Z}_n \mid f_{b,a}(x) = b + ax, x, a, b \in \mathbb{Z}_n\}.$$

and, in light of results obtained,

$$\kappa = f_{b,a} \in \mathcal{K}(X, r_{\triangleright}) \quad \iff \quad \begin{cases} 2ab = 0 \qquad (\text{mod } n), \\ 2a(a-1) = 0 \qquad (\text{mod } n). \end{cases}$$

1) The study of shelf/rack endomorphisms

The study of rack automorphisms is addressed by many authors and it can be also helpful in the study of reflections.

For instance, in [Elhamdadi, Macquarrie, Restrepo (2012)], the authors proved that Aut(X) of the dihedral quandle (X, \triangleright) coincides with the group $Aff(\mathbb{Z}_n)$ of affine transformations of \mathbb{Z}_n .

With analogous computations, we have that

$$End(X) = \{f_{b,a} : \mathbb{Z}_n \to \mathbb{Z}_n \mid f_{b,a}(x) = b + ax, x, a, b \in \mathbb{Z}_n\}.$$

and, in light of results obtained,

$$\kappa = f_{b,a} \in \mathcal{K}(X, r_{\triangleright}) \quad \iff \quad \begin{cases} 2ab = 0 \qquad (\mod n), \\ 2a(a-1) = 0 \qquad (\mod n). \end{cases}$$

1) The study of shelf/rack endomorphisms

The study of rack automorphisms is addressed by many authors and it can be also helpful in the study of reflections.

For instance, in [Elhamdadi, Macquarrie, Restrepo (2012)], the authors proved that Aut(X) of the dihedral quandle (X, \triangleright) coincides with the group $Aff(\mathbb{Z}_n)$ of affine transformations of \mathbb{Z}_n .

With analogous computations, we have that

$$End(X) = \{f_{b,a} : \mathbb{Z}_n \to \mathbb{Z}_n \mid f_{b,a}(x) = b + ax, x, a, b \in \mathbb{Z}_n\}.$$

and, in light of results obtained,

$$\kappa = f_{b,a} \in \mathcal{K}(X, r_{\triangleright}) \quad \iff \quad \begin{cases} 2ab = 0 \qquad (\mod n), \\ 2a(a-1) = 0 \qquad (\mod n). \end{cases}$$

2 Other reflections for bijective n.-d. solutions

Let (X, r) be a bijective non-degenerate solution and let $\kappa : X \to X$ be a ρ -centralizing and ρ -invariant map. Then, the following holds

 $\kappa \in \mathcal{K}(X, r) \iff \kappa \text{ is } \lambda \text{-centralizing }.$

Theorem [AMS (2024)]

Let (X, r) be a solution, $\kappa \in \mathcal{K}(X, r)$, and $\varphi, \psi : X \to X$ maps that are λ, ρ -centralizing and λ, ρ -invariant. Then,

 $\omega := \varphi \kappa \psi \in \mathcal{K} (X, r) \,.$

If (X, r) is an *involutive solution*, then, for the maps φ, ψ , the assumptions of being λ -invariant and ρ -centralizing are redundant. Hence, the result contained in [Lebed, Vendramin (2022)] is a special case of the previous theorem.

2 Other reflections for bijective n.-d. solutions

Let (X, r) be a bijective non-degenerate solution and let $\kappa : X \to X$ be a ρ -centralizing and ρ -invariant map. Then, the following holds

$$\kappa \in \mathcal{K}(X, r) \iff \kappa \text{ is } \lambda \text{-centralizing }.$$

Theorem [AMS (2024)]

Let (X, r) be a solution, $\kappa \in \mathcal{K}(X, r)$, and $\varphi, \psi : X \to X$ maps that are λ, ρ -centralizing and λ, ρ -invariant. Then,

$$\omega := \varphi \kappa \psi \in \mathcal{K}(X, r).$$

If (X, r) is an *involutive solution*, then, for the maps φ, ψ , the assumptions of being λ -invariant and ρ -centralizing are redundant. Hence, the result contained in [Lebed, Vendramin (2022)] is a special case of the previous theorem.

2 Other reflections for bijective n.-d. solutions

Let (X, r) be a bijective non-degenerate solution and let $\kappa : X \to X$ be a ρ -centralizing and ρ -invariant map. Then, the following holds

$$\kappa \in \mathcal{K}(X, r) \iff \kappa \text{ is } \lambda \text{-centralizing }.$$

Theorem [AMS (2024)]

Let (X, r) be a solution, $\kappa \in \mathcal{K}(X, r)$, and $\varphi, \psi : X \to X$ maps that are λ, ρ -centralizing and λ, ρ -invariant. Then,

$$\omega := \varphi \kappa \psi \in \mathcal{K}(X, r).$$

If (X, r) is an *involutive solution*, then, for the maps φ, ψ , the assumptions of being λ -invariant and ρ -centralizing are redundant. Hence, the result contained in [Lebed, Vendramin (2022)] is a special case of the previous theorem.

③ Other reflections for bijective n.-d. solutions: Examples

- 1. There exists a skew brace $(B, +, \circ)$ with $(B, +) \simeq D_8$ and $(B, \circ) \simeq C_8$ such that the associated solution (B, r) has **288** reflections. Among these:
 - **256** are only λ -centralizing;
 - 16 are only ρ-invariant;
 - 16 are of both type.
- 2. There exists a skew brace $(B, +, \circ)$ with $(B, +) \simeq D_8$ and $(B, \circ) \simeq C_8$ such that the associated solution (B, r) has **128** reflections. Among these, we have:
 - $\kappa_1 = 21222211$ is a λ -centralizing reflection which is not ρ -invariant;
 - $\kappa_2 = 11346578$ is ρ -invariant reflection which is not λ -centralizing;
 - $\kappa_3 = 21436578$ is a λ -centralizing and ρ -invariant reflection;
 - $\kappa_4 = 12556611$ is a reflection which is neither λ -centralizing nor ρ -invariant.

In particular, 64 reflections are neither $\lambda\text{-centralizing nor }\rho\text{-invariant.}$

3 Other reflections for bijective n.-d. solutions: Examples

- 1. There exists a skew brace $(B, +, \circ)$ with $(B, +) \simeq D_8$ and $(B, \circ) \simeq C_8$ such that the associated solution (B, r) has **288** reflections. Among these:
 - **256** are only λ -centralizing;
 - 16 are only ρ-invariant;
 - 16 are of both type.
- 2. There exists a skew brace $(B, +, \circ)$ with $(B, +) \simeq D_8$ and $(B, \circ) \simeq C_8$ such that the associated solution (B, r) has **128** reflections. Among these, we have:
 - $\kappa_1 = 21222211$ is a λ -centralizing reflection which is not ρ -invariant;
 - $\kappa_2 = 11346578$ is ρ -invariant reflection which is not λ -centralizing;
 - $\kappa_3 = 21436578$ is a λ -centralizing and ρ -invariant reflection;
 - $\kappa_4 = 12556611$ is a reflection which is neither λ -centralizing nor ρ -invariant.

In particular, **64** reflections are neither λ -centralizing nor ρ -invariant.

④ Other aspects of the study: the parametric case

Let X, Y be non-empty sets, $Y \subseteq X$, and $z_{i,j} \in Y$ with $i, j \in \mathbb{Z}^+$.

A pair $(X, R^{z_{ij}})$ is a solution of the parametric set-theoretic YBE if

 $R_{12}^{z_{12}} R_{13}^{z_{13}} R_{23}^{z_{23}} = R_{23}^{z_{23}} R_{13}^{z_{13}} R_{12}^{z_{12}}$

where, in the notation, z_{ij} denotes the dependence on (z_i, z_j) .

Definition [Doikou (2024)]

A pair $(X, \triangleright_{z_{ij}})$ is a *left parametric p-shelf* if $\triangleright_{z_{ij}}$ satisfies the following identity:

$$\forall \ a,b,c \in X \quad a \triangleright_{z_{ik}} (b \triangleright_{z_{jk}} c) = (a \triangleright_{z_{ij}} b) \triangleright_{z_{jk}} (a \triangleright_{z_{ik}} c).$$

Some results already obtained on reflections allows for starting a systematic study of them for the parametric case.
④ Other aspects of the study: the parametric case

Let X, Y be non-empty sets, $Y \subseteq X$, and $z_{i,j} \in Y$ with $i, j \in \mathbb{Z}^+$.

A pair $(X, R^{z_{ij}})$ is a solution of the parametric set-theoretic YBE if

 $R_{12}^{z_{12}} R_{13}^{z_{13}} R_{23}^{z_{23}} = R_{23}^{z_{23}} R_{13}^{z_{13}} R_{12}^{z_{12}}$

where, in the notation, z_{ij} denotes the dependence on (z_i, z_j) .

Definition [Doikou (2024)] A pair $(X, \triangleright_{z_{ij}})$ is a *left parametric p-shelf* if $\triangleright_{z_{ij}}$ satisfies the following identity: $\forall a, b, c \in X \quad a \triangleright_{z_{ik}} (b \triangleright_{z_{jk}} c) = (a \triangleright_{z_{ij}} b) \triangleright_{z_{jk}} (a \triangleright_{z_{ik}} c)$.

Some results already obtained on reflections allows for starting a systematic study of them for the parametric case.

④ Other aspects of the study: the parametric case

Let X, Y be non-empty sets, $Y \subseteq X$, and $z_{i,j} \in Y$ with $i, j \in \mathbb{Z}^+$.

A pair $(X, R^{z_{ij}})$ is a solution of the parametric set-theoretic YBE if

 $R_{12}^{z_{12}} R_{13}^{z_{13}} R_{23}^{z_{23}} = R_{23}^{z_{23}} R_{13}^{z_{13}} R_{12}^{z_{12}}$

where, in the notation, z_{ij} denotes the dependence on (z_i, z_j) .

Definition [Doikou (2024)] A pair $(X, \triangleright_{z_{ij}})$ is a *left parametric p-shelf* if $\triangleright_{z_{ij}}$ satisfies the following identity: $\forall a, b, c \in X \quad a \triangleright_{z_{ik}} (b \triangleright_{z_{jk}} c) = (a \triangleright_{z_{ij}} b) \triangleright_{z_{jk}} (a \triangleright_{z_{ik}} c)$.

Some results already obtained on reflections allows for starting a systematic study of them for the parametric case.

A. Doikou, M. Mazzotta, P.S.: *Parametric reflection maps: an algebraic approach*, arXiv:2412.15839.

Thank you!

Dziękuję!

Grazie!

Contact information: ☑ paola.stefanelli@unisalento.it

Bibliography

- A. Albano, M. Mazzotta, P. Stefanelli: *Reflections to set-theoretic solutions of the Yang–Baxter equation*, Preprint arXiv:2405.19105.
- R.J. Baxter: Partition function of the eight-vertex lattice model, Ann. Physics 70 (1972) 193–228.
- V. Caudrelier, N. Crampé, Q.C. Zhang: Set-theoretical reflection equation: classification of reflection maps, J. Phys. A 46 (9) (2013) 095203, 12.
 - V. Caudrelier, Q.C. Zhang: Yang–Baxter and reflection maps from vector solitons with a boundary, Nonlinearity 27 (6) (2014) 1081–1103.
 - I.V. Cherednik: *Factorizing particles on a half line, and root systems*, Teoret. Mat. Fiz. **61** (1) (1984) 35–44.
- K. De Commer: Actions of skew braces and set-theoretic solutions of the reflection equation, Proc. Edinb. Math. Soc. (2), **62**, (2019) 1089–1113.
- A. Doikou: Set-theoretic Yang-Baxter equation, braces and Drinfel'd twists, J. Phys. A, 54, (2021) 41.
- A. Doikou: Parametric set-theoretic Yang-Baxter equation: p-racks, solutions & quantum algebras, arXiv:2405.04088.

A. Doikou: Algebraic Structures in Set-Theoretic Yang-Baxter & Reflection equations, Invited contribution in "Encyclopedia of Mathematical Physics, 2nd edition", Academic Press, Oxford (2025) 217-227.

Bibliography

- A. Doikou, M. Mazzotta, P. Stefanelli: Parametric reflection maps: an algebraic approach, arXiv:2412.15839.
- A. Doikou, B. Rybołowicz, P. Stefanelli: *Quandles as pre-Lie skew braces, set-theoretic Hopf algebras & universal R-matrices, J. Phys. A: Math. Theor.* **57**, 405203 (2024).

G. Drinfel'd: On some unsolved problems in quantum group theory, in: Quantum Groups, Leningrad, 1990, in: Lecture Notes in Math. vol.**1510**(2) Springer, Berlin (1992), 1–8.

- K. Katsamaktsis: New Solutions to the Reflection Equation with Braces, arXiv:1905.12711.
- V. Lebed, L. Vendramin: *Reflection equation as a tool for studying solutions to the Yang–Baxter equation*, J. Algebra **607** (part B) (2022) 360–380.

E.K. Sklyanin: Boundary conditions for integrable quantum systems, J. Phys. A 21 (10) (1988) 2375–2389.

A. Smoktunowicz, L. Vendramin, R. Weston: *Combinatorial solutions to the reflection equation*, J. Algebra **549** (2020) 268–290.

C.N. Yang: Some exact results for the many-body problem in one dimension with repulsive delta-function interaction, Phys. Rev. Lett. **19** (1967) 1312–1315.

A. Soloviev: Non-unitary set-theoretical solutions to the quantum Yang–Baxter equation, Math. Res. Lett. **7** (5-6) (2000) 577–596.