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Outline:
» Overview on set-theoretic solutions of the YBE.

» Focus on the structure of the shelf/rack and derived solutions of the YBE.
> Overview on reflections (RE) for set-theoretic solutions of the YBE.

» Description of some classes of reflections in terms of shelves/racks.



The quantum Yang—Baxter equation

The quantum Yang—Baxter equation has roots in statistical mechanics and
takes its name after two independent works,

@ C.N. Yang: Some exact results for the many-body problem in one
dimension with repulsive delta-function interaction, Phys. Rev. Lett. 19
(1967) 1312-1315.

@ R.J. Baxter: Partition function of the eight-vertex lattice model,
Ann. Physics 70 (1972) 193-228.

where a particular one-dimensional quantum mechanical many body problem
was studied. The equation depends on the idea that, in some scattering
situations, particles may preserve their momentum while changing their
quantum internal states.



Set-theoretic solutions of the Yang—Baxter equation

@ G. Drinfel'd: On some unsolved problems in quantum group theory, in:
Quantum Groups, Leningrad, 1990, in: Lecture Notes in Math. vol. 1510
(2) Springer, Berlin, (1992), 1-8.

If X isaset,amapr: X x X — X x X satisfying the braid relation
(r X idx)(idx ><r)(r X idx) = (idx ><r)(r X idx)(idx ><r)

is said to be a set-theoretic solution, or briefly solution, of the YBE.
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@ G. Drinfel'd: On some unsolved problems in quantum group theory, in:
Quantum Groups, Leningrad, 1990, in: Lecture Notes in Math. vol. 1510
(2) Springer, Berlin, (1992), 1-8.

If X isaset,amapr: X x X — X x X satisfying the braid relation
(r xidx)(idx xr)(r x idx) = (idx xr)(r x idx)(idx xr)
is said to be a set-theoretic solution, or briefly solution, of the YBE.

If we consider two maps \., pp : X — X and write r as

r(a,b) = (A (b), s (),
for all a, b € X, then r is said to be
» left non-degenerate if )\, is bijective, for every a € X;
» right non-degenerate if p, is bijective, for every b € X;
» non-degenerate if r is both left and right non-degenerate.
» involutive if r?> = idxxx.

> idempotent if r* = r.
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If X is a set, the map r: X x X — X x X given by
r(a,b) = (f(b),g(a))

is a solution, where f, g are maps from X to X such that fg = gf.



Lyubashenko solutions

If X is a set, the map r: X x X — X x X given by
r(a,b) = (f(b),g(a))
is a solution, where f, g are maps from X to X such that fg = gf.

In particular,
ris left (resp. right) non-degenerate if and only if f is bijective (resp. g is
bijective);
r is involutive if and only if f, g are bijective and g = f~1;
If we fix k € X and consider f : X — X defined by f (a) = k, for every

a€ X, and g =1, then r(a, b) = (k, k) is a degenerate and idempotent
solution.



Skew braces solutions

[Rump (2007) - Cedd, Jespers, Okninski (2014) - Guarnieri, Vendramin (2017)]
A triple (B, +,0) is said to be a skew brace if (B,+) and (B, o) are groups and

ao(b+c)=aob—a+aoc

holds, for all a,b,c € B.
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A triple (B, +, o) is said to be a skew brace if (B, +) and (B, o) are groups and

ao(b+c)=aob—a+aoc

holds, for all a, b, c € B. If (B,+) is abelian then B is a brace.

Any Jacobson radical ring is a brace. Indeed, if (R, +,-) is a Jacobson radical
ring, then (R, +,0) is a brace with o is the adjoint operation, i.e.,
aob:=a+b+a-b, forall a,b € R.

Theorem [Ru07 - GuVel7]
If B is a skew brace, then the map rg : B x B — B x B defined by
rg(a, b) ;== (—a+aob, (—a+aob) ocaob)

is a non-degenerate bijective solution (with a~ the inverse of a with respect
to o, for every a € B). In particular,

rg is involutive <= (B, +,0) is a brace.
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Definition
Let X be a non-empty set and > a binary operation on X. Then, (X, >) is said
to be a left shelf if > is left self-distributive, i.e., the identity

Vab,ceX av(b>c)=(apb)r(arc)
holds. Moreover, a left shelf (X, ) is called
1. a left spindle if a>a = a, for all a € X;

2. a left rack if (X, ») is a left quasigroup, i.e., the map L, : X — X
defined by
L, (b) := av b,

for all b € X, are bijective, for all a € X;

3. a quandle if (X, ») is both a left spindle and a left rack.
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Examples

1. If X isasetand f: X — X is an idempotent map, then (X, ») is a left
shelf where a> b := f (a). The case with f = idx is called the trivial
spindle.

2. If X is a set and f € Symx, then (X, 1) is a left rack where a b := £ (b).
The case with f = idx is called the trivial rack.

3. Conjugation quandle: If (X,4) is a group, then (X, ) is a left quandle
where ab b:= —a+ b+ a.

4. Dihedral quandle: Let n € No and X = Z,. Then, the structure (X, )
where a> b :=2a — b(mod n), for all a, b € X, is a left quandle.
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Left non-degenerate solutions and left shelves

Proposition
If (X, >) is a left shelf, then the map r. : X x X — X x X defined by

rs (a, b) = (b, b a)

is a left non-degenerate solution of derived type.
Conversely, if (X, r) is a left non-degenerate solution, then the structure
(X, ) is a left shelf where >, is the binary operation on X given by

ap, b:= )\ap/\;1(a) (b).

If (X, ) is a left shelf, we call r, the solution associated to (X, »).

If (X, r) is a left non-degenerate solution, we call (X, ;) the left shelf
associated to r. Moreover, the solution associated to (X, b,) is called the
left derived solution of (X, r).
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Definition — cf. [Soloviev (2000) - Doikou (2021)]

If (X,r) and (Y,s) are solutions, we say that amap ® : X x X — ¥ x Yis a
Drinfel'd homomorphism or, in short, D-homomorphism if
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If & is a bijection, we call ® a D-isomorphism and we say that (X, r) and
(Y,s) are D-isomorphic (via ), and we denote it by r =~p s.



Drinfel'd homomorphisms

Definition — cf. [Soloviev (2000) - Doikou (2021)]

If (X,r) and (Y,s) are solutions, we say that amap ® : X x X — ¥ x Yis a
Drinfel'd homomorphism or, in short, D-homomorphism if

Or=s9.

If & is a bijection, we call ® a D-isomorphism and we say that (X, r) and
(Y,s) are D-isomorphic (via ), and we denote it by r =~p s.

Important fact: Let (X, r) be a left non-degenerate solution, then
r=p n

via the map ¢ : X x X — X x X, (a,b) — (a, As (b)).
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A description of all left non-degenerate solutions

Let (X,>>) be a left shelf. We say that A : X — Aut(X,>),a— A, is a twist if

VabeX M A\,= AAa(b))\A;:(b)(Aa(b)ba)'

Theorem [DRS (2024)]

Let (X, ) be a left shelf and A : X — Sym,, a+— X,. Then, the map
o X x X — X x X defined by

VabeX n(ab)= (/\a (B), Axky (s (B) > a)),

is a solution if and only if X is a twist. Moreover, any left non-degenerate
solution can be obtained that way.
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A description of all left non-degenerate solutions

Let (X,>>) be a left shelf. We say that A : X — Aut(X,>),a— A, is a twist if

VabeX M A\,= AAd(b))\ 1

ALk (Ra(B)p a)°

Theorem [DRS (2024)]

Let (X, ) be a left shelf and A : X — Sym,, a+— X,. Then, the map
o X x X — X x X defined by

VabeX n(ab)= (/\a (B), Axky (s (B) > a)),

is a solution if and only if X is a twist. Moreover, any left non-degenerate
solution can be obtained that way.

idempotent I.n. solutions ~» a>b = a, for all a,b € X.
involutive I.n. solutions ~» arb = b, for all a,b € X.

skew braces solutions ~» a> b= —a+ b+ a, forall a,b € X,
with (X, +) an arbitrary group.
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Some consequences and observations

Corollaries
Let (X, r) be a left non-degenerate solution. Then, the following hold:
1. (X, r) is bijective if and only if (X,>,) is a rack;

2. If X is a finite set, (X, r) is right non-degenerate and bijective if and only
if (X,>) is a rack.
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Some consequences and observations

Corollaries
Let (X, r) be a left non-degenerate solution. Then, the following hold:
1. (X, r) is bijective if and only if (X,>,) is a rack;

2. If X is a finite set, (X, r) is right non-degenerate and bijective if and only
if (X,>) is a rack.

Remark: Let (X,>) and (Y, ») be shelves and X, twists of (X,>) and
(Y, »), respectively. If (X,>) 2 (Y,») then (X, ) 2p (Y, ry).
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The reflection equation

Similarly to the YBE, the reflection equation serves as a significant tool in the
theory of quantum groups and integrable systems.

It was first studied to encode the reflection on the boundary of particles in
quantum field theory

@ I.V. Cherednik: Factorizing particles on a half line, and root systems,
Teoret. Mat. Fiz. 61 (1) (1984) 35—44.
and to prove the integrability of quantum models with boundaries

@ E.K. Sklyanin: Boundary conditions for integrable quantum systems,
J. Phys. A 21 (10) (1988) 2375-2389.

12



Reflections for set-theoretic solutions

The set-theoretic version of this equation was formulated in

@ V. Caudrelier, Q.C. Zhang: Yang-Baxter and reflection maps from vector
solitons with a boundary, Nonlinearity 27 (6) (2014) 1081-1103.

Set-theoretic RE jointly with the YBE ensures the factorization property of the
interactions of N-soliton solutions on the half-line. The interplay between
solutions to the YBE and RE was deepened in

@ V. Caudrelier, N. Crampé, Q.C. Zhang: Set-theoretical reflection equation:

classification of reflection maps, J. Phys. A 46 (9) (2013) 095203, 12.
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The set-theoretic version of this equation was formulated in

@ V. Caudrelier, Q.C. Zhang: Yang-Baxter and reflection maps from vector
solitons with a boundary, Nonlinearity 27 (6) (2014) 1081-1103.

Set-theoretic RE jointly with the YBE ensures the factorization property of the
interactions of N-soliton solutions on the half-line. The interplay between
solutions to the YBE and RE was deepened in

@ V. Caudrelier, N. Crampé, Q.C. Zhang: Set-theoretical reflection equation:

classification of reflection maps, J. Phys. A 46 (9) (2013) 095203, 12.

Definition
Let (X, r) be a solution. A map k: X — X is a set-theoretic solution of the
reflection equation, or briefly a reflection, for (X, r) if it holds the identity

r(idx xk) r(idx xk) = (idx X&) r (idx X&) r.

Question: Let (X, r) be a solution. What are all the reflections for (X, r)?
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K, € K(X,r), then, in general, kp ¢ K(X,r).

Example

Let X be a set, f,g € Symy s.t. fg = gf, and consider the Lyubashenko's
solution r(x,y) = (f(y),g(x)). Then, if K : X — X is a map,

k €EK(X,r) < kfg=fgk.

If (X, r) involutive, i.e., g = f~, any map s : X — X is a reflection for (X, r).

14



Brief recap

[De Commer (2019)] introduced a notion of braided action of a group with
braiding and showed that it provides reflections.

[Katsamaktsis (2019)] investigated solutions to the reflection equation
with braces.

[Smoktunowicz, Vendramin, Weston (2020)] proposed a first more
systematic approach that makes use of ring-theoretic methods, and more
generally methods coming from brace theory, to produce families of
reflections in the involutive case.

[Doikou, Smoktunowicz (2021)] investigated connections between
set-theoretic Yang—Baxter and reflection equations and quantum
integrable systems.

[Lebed, Vendramin (2022)] focused on reflections for involutive
non-degenerate solutions.
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RE for involutive solutions

[Smoktunowicz, Vendramin, Weston (2020)] and [Lebed, Vendramin (2022)]

provided reflections for involutive solutions which lie into two specific classes.

Definition
Let (X, r) be a solution. We say that a map x: X — X is
A-centralizing if kX, = A\sk, for every a € X.

p-invariant if p, ) = pa, for every a € X.
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[Smoktunowicz, Vendramin, Weston (2020)] and [Lebed, Vendramin (2022)]
provided reflections for involutive solutions which lie into two specific classes.
Definition
Let (X, r) be a solution. We say that a map k: X — X is

A-centralizing if kX, = A\sk, for every a € X.

p-invariant if p, ) = pa, for every a € X.

Proposition
Let (X, r) be an involutive solution. Then,

1. [SmVeWe20] If (X, r) is left non-degenerate, any A-centralizing map is a
reflection for (X, r).

2. [LeVe22] If (X, r) is right non-degenerate, any p-invariant map is a
reflection for (X, r).
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How to describe RE for bijective non-degenerate solutions?

Bearing in mind that a left non-degenerate solution (X, r) can be written as
-1
VabeX r(ab)=(X(b), Ayl (),

with A, € Aut (X,p>,), for all a € X, and L,(b) = av, b, for all a,b € X, we
can extend the previous results directly involving the structure (X,p,).
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How to describe RE for bijective non-degenerate solutions?

Bearing in mind that a left non-degenerate solution (X, r) can be written as
VabeX r(ab)= <)\a (B), AxioyLasto) (a)>,
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How to describe RE for bijective non-degenerate solutions?

Bearing in mind that a left non-degenerate solution (X, r) can be written as
VabeX r(ab)= </\a (B), AxioyLasto) (a)>,

with A, € Aut (X,p>,), for all a € X, and L,(b) = av, b, for all a,b € X, we
can extend the previous results directly involving the structure (X,p,).

e This naturally suggests splitting the study of reflections into their
behaviour with respect to the maps A, € Aut (X,>,) and left
multiplications L,. ~ In the involutive case, L, = idx, for every a € X.

e We initially focus on reflections for solutions that are only left or right
non-degenerate since they turn out to be different from each other.
Indeed, a map x : X — X is a reflection for (X, r) if and only if

Ao (0)Pb (3) = Ax,k(0)Pr(b) (3)
FpPrpy(a)Aa (b) = p*”vpﬁ-,(b)(a))‘a“'€ (b)

17



M-invariant reflections for |.n.-d. solutions

Theorem

Let (X, r) be a left non-degenerate solution, (X,>,) its associated shelf, and
K : X — X a A-centralizing map. Then, k € K(X,r) if and only if, for all
a, b € X, the following hold:

1. kL, (a) = Ler,myk(a),
2. kly = Kl

.18
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Let (X, r) be a left non-degenerate solution, (X,>,) its associated shelf, and
K : X — X a A-centralizing map. Then, k € K(X,r) if and only if, for all
a,b € X, the following hold:

1. kL, (a) = Ler,myk(a),
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Remark

If (X,>) is a rack, by 1. in the previous theorem, any A-centralizing reflection
k of a left non-degenerate solution (X, r) is an endomorphism of (X,>,).
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M-invariant reflections for |.n.-d. solutions

Theorem

Let (X, r) be a left non-degenerate solution, (X,>,) its associated shelf, and
K : X — X a A-centralizing map. Then, k € K(X,r) if and only if, for all
a,b € X, the following hold:

1. kL, (a) = Ler,myk(a),
2. kly = Kl

Remark

If (X,>) is a rack, by 1. in the previous theorem, any A-centralizing reflection
k of a left non-degenerate solution (X, r) is an endomorphism of (X,>,).
However, in the general case, if Kk € K (X, r), then k ¢ End (X,>/).

.18



The left multiplication group of (X,>) and RE

Let (X,>) be a left rack. The left multiplication group of (X,r) is the normal
subgroup of Aut(X,r>) defined by

LMIt(X, ) := (L. | a € X).

.19



The left multiplication group of (X,>) and RE

Let (X,>) be a left rack. The left multiplication group of (X,>) is the normal
subgroup of Aut(X,r>) defined by

LMIt(X, ) := (L. | a € X).

Theorem [AMS (2024)]

Let (X, r) be a bijective left non-degenerate solution and k: X — X a
A-centralizing map. Then the following hold:

1. If k € Cena(x,p,) (LMIE(X,>/)), then k € K(X, r);
2. If k€ ’Cinj(X, r), then K € CEnd(X,D,) (LMlt (X,Dr));
3. In particular, k € Kpii(X, r) if and only if & € Cau(x,s,) (LMIt (X, >/)).

.19



A-invariant reflections for bijective n.-d. solutions

Theorem [AMS (2024)]

If (X, r) is a bijective non-degenerate solution and x a A-centralizing map, then

K € End (X,>/)

— keK(X,n).
VaeX kly =kl keK X )

kEK(X,r) < {

120



p-invariant reflections for bijective r.n.-d. solutions

If (X, r) is a right non-degenerate solution, one can consider the right rack
(X,<r) where a<, b := PaX,-1(, (b), for all a, b € X. Moreover, (X, rq) is a
b

solution called the right derived solution associated to (X, r).
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p-invariant reflections for bijective r.n.-d. solutions

If (X, r) is a right non-degenerate solution, one can consider the right rack
(X,<r) where a<, b := paX,=1(, (b), for all a, b € X. Moreover, (X, rq) is a
b

solution called the right derived solution associated to (X, r).
Considering the right multiplication group of (X, <)

RMIt(X, <) := (R, | a € X)
we have the following result.

Corollary [AMS (2024)]

Let (X, r) be a bijective right non-degenerate solution, (X, <,) its associated
right rack, and k : X — X a p-invariant map. Then, the following hold:

1. ke K(X,r) <= & € Cuapy (RMIt (X, <,)).
2. Kk € Kpij(X,r) < Kk € Csymy (RMIt(X,<,)).

(21



p-invariant reflections for bijective n.-d. solutions

Theorem [AMS (2024)]

If (X, r) is a bijective non-degenerate solution and « a p-invariant map, then
kEK(X,r) < VaeX kR,=Rkx < keK(X, r),

where R, (b) = b<, a, for all a,b € X.
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p-invariant reflections for bijective n.-d. solutions

Theorem [AMS (2024)]

If (X, r) is a bijective non-degenerate solution and « a p-invariant map, then
kEK(X,r) <= VaeX kRi,=R.x < reK(X,rq),
where R, (b) = b<, a, for all a,b € X.

Remark

If k,w: X — X are p-invariant reflections for a right non-degenerate solution
(X, r), then kw € K (X, r) and kw is p-invariant.

(22



@ The study of shelf/rack endomorphisms

The study of rack automorphisms is addressed by many authors and it can be
also helpful in the study of reflections.
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For instance, in [Elhamdadi, Macquarrie, Restrepo (2012)], the authors proved
that Aut(X) of the dihedral quandle (X, i) coincides with the group Aff(Z,)
of affine transformations of Z,.
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@ The study of shelf/rack endomorphisms

The study of rack automorphisms is addressed by many authors and it can be
also helpful in the study of reflections.

For instance, in [Elhamdadi, Macquarrie, Restrepo (2012)], the authors proved
that Aut(X) of the dihedral quandle (X, i) coincides with the group Aff(Z,)
of affine transformations of Z,.

With analogous computations, we have that
End(X) = {fo,a : Zn — Zn | fp,a(x) = b+ ax, x,a,b € Zn} .
and, in light of results obtained,

2ab=0 (mod n),

= fpa € K(X, <=
e X, ) {Za(a 1)=0 (mod n).
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@ Other reflections for bijective n.-d. solutions

Let (X, r) be a bijective non-degenerate solution and let x : X — X be a
p-centralizing and p-invariant map. Then, the following holds

Kk € K(X,r) < &k is A-centralizing.
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@ Other reflections for bijective n.-d. solutions

Let (X, r) be a bijective non-degenerate solution and let x : X — X be a
p-centralizing and p-invariant map. Then, the following holds

Kk € K(X,r) < &k is A-centralizing.

Theorem [AMS (2024)]

Let (X, r) be a solution, x € K (X, r), and ¢,v : X — X maps that are
A, p-centralizing and A, p-invariant. Then,

w:i=rY € K(X,r).
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@ Other reflections for bijective n.-d. solutions

Let (X, r) be a bijective non-degenerate solution and let x : X — X be a
p-centralizing and p-invariant map. Then, the following holds

Kk € K(X,r) < &k is A-centralizing.

Theorem [AMS (2024)]

Let (X, r) be a solution, x € K (X, r), and ¢,v : X — X maps that are
A, p-centralizing and A, p-invariant. Then,

w:i=rY € K(X,r).

If (X, r) is an involutive solution, then, for the maps , 1, the assumptions of
being A-invariant and p-centralizing are redundant. Hence, the result contained
in [Lebed, Vendramin (2022)] is a special case of the previous theorem.
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®3) Other reflections for bijective n.-d. solutions: Examples

1. There exists a skew brace (B, +,0) with (B,+) ~ Dg and (B,0) ~ Gg
such that the associated solution (B, r) has 288 reflections. Among these:
- 256 are only \-centralizing;
- 16 are only p-invariant;
- 16 are of both type.
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®3) Other reflections for bijective n.-d. solutions: Examples

1. There exists a skew brace (B, +,0) with (B,+) ~ Dg and (B,0) ~ Gg
such that the associated solution (B, r) has 288 reflections. Among these:

- 256 are only \-centralizing;

16 are only p-invariant;

16 are of both type.

2. There exists a skew brace (B, +,0) with (B,+) ~ Dg and (B,0) ~ Gg
such that the associated solution (B, r) has 128 reflections. Among these,
we have:

k1 = 21222211 is a A-centralizing reflection which is not p-invariant;
k2 = 11346578 is p-invariant reflection which is not A-centralizing;
k3 = 21436578 is a A-centralizing and p-invariant reflection;

ka4 = 12556611 is a reflection which is neither A-centralizing nor
p-invariant.

In particular, 64 reflections are neither A-centralizing nor p-invariant.
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@ Other aspects of the study: the parametric case

Let X, Y be non-empty sets, Y C X, and z; € Y with i,j € Z*.
A pair (X, R%) is a solution of the parametric set-theoretic YBE if
R R R = R R RIF

where, in the notation, z; denotes the dependence on (z, z).
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A pair (X, R%) is a solution of the parametric set-theoretic YBE if
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where, in the notation, z; denotes the dependence on (z;, z;).
Definition [Doikou (2024)]
A pair (X,l>z,.j) is a left parametric p-shelf if >, satisfies the following identity:

VabceX ady (bdy c)=(avs b)b>s (abs, c).



@ Other aspects of the study: the parametric case

Let X, Y be non-empty sets, Y C X, and z; € Y with i,j € Z*.
A pair (X, R%) is a solution of the parametric set-theoretic YBE if
RIE R RE = R RIY RIF

where, in the notation, z; denotes the dependence on (z, z).

Definition [Doikou (2024)]

A pair (X,l>z,.j) is a left parametric p-shelf if >, satisfies the following identity:

VabceX ady (bdy c)=(avs b)b>s (abs, c).

Some results already obtained on reflections allows for starting a systematic
study of them for the parametric case.

@ A. Doikou, M. Mazzotta, P.S.: Parametric reflection maps: an algebraic
approach, arXiv:2412.15839.



Thank youl

Dziekuje!

Graziel
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