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This talk is essentially based on

A. Albano, M. Mazzotta, P.S.:
Reflections to set-theoretic solutions of the Yang–Baxter equation,
arXiv:2405.19105.

whose study is strongly motivated by findings in

A. Doikou, B. Rybołowicz, P.S.:
Quandles as pre-Lie skew braces, set-theoretic Hopf algebras &
universal R-matrices, J. Phys. A: Math. Theor. 57, 405203 (2024).

Outline:
I Overview on set-theoretic solutions of the YBE.

I Focus on the structure of the shelf/rack and derived solutions of the YBE.

I Overview on reflections (RE) for set-theoretic solutions of the YBE.

I Description of some classes of reflections in terms of shelves/racks.
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YBE and shelves

The quantum Yang–Baxter equation

The quantum Yang–Baxter equation has roots in statistical mechanics and
takes its name after two independent works,

C.N. Yang: Some exact results for the many-body problem in one
dimension with repulsive delta-function interaction, Phys. Rev. Lett. 19
(1967) 1312–1315.

R.J. Baxter: Partition function of the eight-vertex lattice model,
Ann. Physics 70 (1972) 193–228.

where a particular one-dimensional quantum mechanical many body problem
was studied. The equation depends on the idea that, in some scattering
situations, particles may preserve their momentum while changing their
quantum internal states.
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YBE and shelves

Set-theoretic solutions of the Yang–Baxter equation
G. Drinfel’d: On some unsolved problems in quantum group theory, in:
Quantum Groups, Leningrad, 1990, in: Lecture Notes in Math. vol. 1510
(2) Springer, Berlin, (1992), 1–8.

If X is a set, a map r : X × X → X × X satisfying the braid relation

(r × idX )(idX ×r)(r × idX ) = (idX ×r)(r × idX )(idX ×r)

is said to be a set-theoretic solution, or briefly solution, of the YBE.

If we consider two maps λa, ρb : X → X and write r as

r (a, b) = (λa (b) , ρb (a)) ,

for all a, b ∈ X , then r is said to be
I left non-degenerate if λa is bijective, for every a ∈ X ;
I right non-degenerate if ρb is bijective, for every b ∈ X ;
I non-degenerate if r is both left and right non-degenerate.
I involutive if r2 = idX×X .
I idempotent if r2 = r .
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YBE and shelves

Lyubashenko solutions

If X is a set, the map r : X × X → X × X given by

r (a, b) = (f (b) , g (a))

is a solution, where f , g are maps from X to X such that fg = gf .

In particular,

I r is left (resp. right) non-degenerate if and only if f is bijective (resp. g is
bijective);

I r is involutive if and only if f , g are bijective and g = f −1;

I If we fix k ∈ X and consider f : X → X defined by f (a) = k, for every
a ∈ X , and g = f , then r (a, b) = (k, k) is a degenerate and idempotent
solution.
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YBE and shelves

Skew braces solutions
[Rump (2007) - Cedó, Jespers, Okniński (2014) - Guarnieri, Vendramin (2017)]

A triple (B,+, ◦) is said to be a skew brace if (B,+) and (B, ◦) are groups and

a ◦ (b + c) = a ◦ b − a + a ◦ c

holds, for all a, b, c ∈ B. If (B,+) is abelian then B is a brace.

Any Jacobson radical ring is a brace. Indeed, if (R,+, ·) is a Jacobson radical
ring, then (R,+, ◦) is a brace with ◦ is the adjoint operation, i.e.,
a ◦ b := a + b + a · b, for all a, b ∈ R.

Theorem [Ru07 - GuVe17]

If B is a skew brace, then the map rB : B × B → B × B defined by

rB (a, b) :=
(
−a + a ◦ b, (−a + a ◦ b)− ◦ a ◦ b

)
is a non-degenerate bijective solution (with a− the inverse of a with respect
to ◦, for every a ∈ B). In particular,

rB is involutive ⇐⇒ (B,+, ◦) is a brace.
5
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YBE and shelves

Shelf structures

Definition
Let X be a non-empty set and . a binary operation on X . Then, (X , .) is said
to be a left shelf if . is left self-distributive, i.e., the identity

∀ a, b, c ∈ X a . (b . c) = (a . b) . (a . c)

holds. Moreover, a left shelf (X , .) is called

1. a left spindle if a . a = a, for all a ∈ X ;

2. a left rack if (X , .) is a left quasigroup, i.e., the map La : X → X
defined by

La (b) := a . b,

for all b ∈ X , are bijective, for all a ∈ X ;

3. a quandle if (X , .) is both a left spindle and a left rack.
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YBE and shelves

Examples

1. If X is a set and f : X → X is an idempotent map, then (X , .) is a left
shelf where a . b := f (a). The case with f = idX is called the trivial
spindle.

2. If X is a set and f ∈ SymX , then (X , .) is a left rack where a . b := f (b).
The case with f = idX is called the trivial rack.

3. Conjugation quandle: If (X ,+) is a group, then (X , .) is a left quandle
where a . b := −a + b + a.

4. Dihedral quandle: Let n ∈ N0 and X = Zn. Then, the structure (X , .)
where a . b := 2a− b(mod n), for all a, b ∈ X , is a left quandle.
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YBE and shelves

Left non-degenerate solutions and left shelves

Proposition
If (X , .) is a left shelf, then the map r. : X × X → X × X defined by

r. (a, b) = (b, b . a)

is a left non-degenerate solution of derived type.
Conversely, if (X , r) is a left non-degenerate solution, then the structure
(X , .r ) is a left shelf where .r is the binary operation on X given by

a .r b := λaρλ−1
b

(a)
(b).

I If (X , .) is a left shelf, we call r. the solution associated to (X , .).

I If (X , r) is a left non-degenerate solution, we call (X , .r ) the left shelf
associated to r . Moreover, the solution associated to (X , .r ) is called the
left derived solution of (X , r).
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YBE and shelves

Drinfel’d homomorphisms

Definition – cf. [Soloviev (2000) - Doikou (2021)]

If (X , r) and (Y , s) are solutions, we say that a map Φ : X × X → Y × Y is a
Drinfel’d homomorphism or, in short, D-homomorphism if

Φ r = s Φ.

If Φ is a bijection, we call Φ a D-isomorphism and we say that (X , r) and
(Y , s) are D-isomorphic (via Φ), and we denote it by r ∼=D s.

Important fact: Let (X , r) be a left non-degenerate solution, then

r ∼=D r.

via the map Φ : X × X → X × X , (a, b) 7→ (a, λa (b)).
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YBE and shelves

A description of all left non-degenerate solutions

Let (X , .) be a left shelf. We say that λ : X → Aut(X , .), a 7→ λa is a twist if

∀ a, b ∈ X λaλb = λλa(b)λλ−1
λa(b)

(λa(b) . a)
.

Theorem [DRS (2024)]

Let (X , .) be a left shelf and λ : X → SymX , a 7→ λa. Then, the map
rλ : X × X → X × X defined by

∀ a, b ∈ X rλ (a, b) =
(
λa (b) , λ−1

λa(b)
(λa (b) . a)

)
,

is a solution if and only if λ is a twist. Moreover, any left non-degenerate
solution can be obtained that way.

I idempotent l.n. solutions  a . b = a, for all a, b ∈ X .
I involutive l.n. solutions  a . b = b, for all a, b ∈ X .
I skew braces solutions  a . b = −a + b + a, for all a, b ∈ X ,

with (X ,+) an arbitrary group.
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YBE and shelves

Some consequences and observations

Corollaries
Let (X , r) be a left non-degenerate solution. Then, the following hold:

1. (X , r) is bijective if and only if (X , .r ) is a rack;

2. If X is a finite set, (X , r) is right non-degenerate and bijective if and only
if (X , .r ) is a rack.

Remark: Let (X , .) and (Y ,I) be shelves and λ, ψ twists of (X , .) and
(Y ,I), respectively. If (X , .) ∼= (Y ,I) then (X , rλ) ∼=D (Y , rψ).
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The reflection equation and the YBE

The reflection equation

Similarly to the YBE, the reflection equation serves as a significant tool in the
theory of quantum groups and integrable systems.

It was first studied to encode the reflection on the boundary of particles in
quantum field theory

I.V. Cherednik: Factorizing particles on a half line, and root systems,
Teoret. Mat. Fiz. 61 (1) (1984) 35–44.

and to prove the integrability of quantum models with boundaries

E.K. Sklyanin: Boundary conditions for integrable quantum systems,
J. Phys. A 21 (10) (1988) 2375–2389.
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The reflection equation and the YBE

Reflections for set-theoretic solutions

The set-theoretic version of this equation was formulated in

V. Caudrelier, Q.C. Zhang: Yang–Baxter and reflection maps from vector
solitons with a boundary, Nonlinearity 27 (6) (2014) 1081–1103.

Set-theoretic RE jointly with the YBE ensures the factorization property of the
interactions of N-soliton solutions on the half-line. The interplay between
solutions to the YBE and RE was deepened in

V. Caudrelier, N. Crampé, Q.C. Zhang: Set-theoretical reflection equation:
classification of reflection maps, J. Phys. A 46 (9) (2013) 095203, 12.

Definition
Let (X , r) be a solution. A map κ : X → X is a set-theoretic solution of the
reflection equation, or briefly a reflection, for (X , r) if it holds the identity

r (idX ×κ) r (idX ×κ) = (idX ×κ) r (idX ×κ) r .

Question: Let (X , r) be a solution. What are all the reflections for (X , r) ?
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The reflection equation and the YBE

Some easy but essential properties

Let (X , r) be a solution and K (X , r) the set of all reflections for (X , r).

I If (Y , s) is a solution equivalent to (X , r) via a bijection α : X → Y , i.e,
(α× α)r = s(α× α), and κ ∈ K(X , r), then κα := ακα−1 ∈ K(Y , s).

I If (X , r) is bijective and κ ∈ Kbij(X , r), then κ−1 ∈ Kbij(X , r−1).

I κ, ϕ ∈ K(X , r), then, in general, κϕ /∈ K(X , r).

Example
Let X be a set, f , g ∈ SymX s.t. fg = gf , and consider the Lyubashenko’s
solution r(x , y) = (f (y), g(x)). Then, if κ : X → X is a map,

κ ∈ K(X , r) ⇐⇒ κfg = fgκ.

If (X , r) involutive, i.e., g = f −1, any map κ : X → X is a reflection for (X , r).
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The reflection equation and the YBE

Brief recap

I [De Commer (2019)] introduced a notion of braided action of a group with
braiding and showed that it provides reflections.

I [Katsamaktsis (2019)] investigated solutions to the reflection equation
with braces.

I [Smoktunowicz, Vendramin, Weston (2020)] proposed a first more
systematic approach that makes use of ring-theoretic methods, and more
generally methods coming from brace theory, to produce families of
reflections in the involutive case.

I [Doikou, Smoktunowicz (2021)] investigated connections between
set-theoretic Yang–Baxter and reflection equations and quantum
integrable systems.

I [Lebed, Vendramin (2022)] focused on reflections for involutive
non-degenerate solutions.
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The reflection equation and the YBE

RE for involutive solutions

[Smoktunowicz, Vendramin, Weston (2020)] and [Lebed, Vendramin (2022)]
provided reflections for involutive solutions which lie into two specific classes.

Definition
Let (X , r) be a solution. We say that a map κ : X → X is
I λ-centralizing if κλa = λaκ, for every a ∈ X .
I ρ-invariant if ρκ(a) = ρa, for every a ∈ X .

Proposition
Let (X , r) be an involutive solution. Then,

1. [SmVeWe20] If (X , r) is left non-degenerate, any λ-centralizing map is a
reflection for (X , r).

2. [LeVe22] If (X , r) is right non-degenerate, any ρ-invariant map is a
reflection for (X , r).
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RE and shelves

How to describe RE for bijective non-degenerate solutions?

Bearing in mind that a left non-degenerate solution (X , r) can be written as

∀ a, b ∈ X r (a, b) =
(
λa (b) , λ−1

λa(b)
Lλa(b) (a)

)
,

with λa ∈ Aut (X , .r ), for all a ∈ X , and La (b) = a .r b, for all a, b ∈ X , we
can extend the previous results directly involving the structure (X , .r ).

• This naturally suggests splitting the study of reflections into their
behaviour with respect to the maps λa ∈ Aut (X , .r ) and left
multiplications La.  In the involutive case, La = idX , for every a ∈ X .

• We initially focus on reflections for solutions that are only left or right
non-degenerate since they turn out to be different from each other.
Indeed, a map κ : X → X is a reflection for (X , r) if and only if

λλa(b)κρb (a) = λλaκ(b)κρκ(b) (a)

κρκρb(a)λa (b) = ρκρκ(b)(a)
λaκ (b)
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RE and shelves

λ-invariant reflections for l.n.-d. solutions

Theorem
Let (X , r) be a left non-degenerate solution, (X , .r ) its associated shelf, and
κ : X → X a λ-centralizing map. Then, κ ∈ K(X , r) if and only if, for all
a, b ∈ X , the following hold:

1. κLLa(b)(a) = LκLa(b)κ(a) ,

2. κLa = κLκ(a).

Remark
If (X , .r ) is a rack, by 1. in the previous theorem, any λ-centralizing reflection
κ of a left non-degenerate solution (X , r) is an endomorphism of (X , .r ).
However, in the general case, if κ ∈ K (X , r), then κ /∈ End (X , .r ).
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RE and shelves

The left multiplication group of (X , .) and RE

Let (X , .) be a left rack. The left multiplication group of (X , .) is the normal
subgroup of Aut(X , .) defined by

LMlt(X , .) := 〈La | a ∈ X 〉 .

Theorem [AMS (2024)]

Let (X , r) be a bijective left non-degenerate solution and κ : X → X a
λ-centralizing map. Then the following hold:

1. If κ ∈ CEnd(X ,.r ) (LMlt (X , .r )), then κ ∈ K(X , r);

2. If κ ∈ Kinj(X , r), then κ ∈ CEnd(X ,.r ) (LMlt (X , .r ));

3. In particular, κ ∈ Kbij(X , r) if and only if κ ∈ CAut(X ,.r ) (LMlt (X , .r )).
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RE and shelves

λ-invariant reflections for bijective n.-d. solutions

Theorem [AMS (2024)]

If (X , r) is a bijective non-degenerate solution and κ a λ-centralizing map, then

κ ∈ K (X , r) ⇐⇒

{
κ ∈ End (X , .r )

∀ a ∈ X κLa = κLκ(a)
⇐⇒ κ ∈ K (X , r.) .
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RE and shelves

ρ-invariant reflections for bijective r.n.-d. solutions

If (X , r) is a right non-degenerate solution, one can consider the right rack
(X , /r ) where a /r b := ρaλρ−1

b
(a)

(b), for all a, b ∈ X . Moreover, (X , r/) is a
solution called the right derived solution associated to (X , r).

Considering the right multiplication group of (X , /)

RMlt(X , /) := 〈Ra | a ∈ X 〉

we have the following result.

Corollary [AMS (2024)]

Let (X , r) be a bijective right non-degenerate solution, (X , /r ) its associated
right rack, and κ : X → X a ρ-invariant map. Then, the following hold:

1. κ ∈ K(X , r) ⇐⇒ κ ∈ CMapX (RMlt (X , /r )).

2. κ ∈ Kbij(X , r) ⇐⇒ κ ∈ CSymX
(RMlt (X , /r )).
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RE and shelves

ρ-invariant reflections for bijective n.-d. solutions

Theorem [AMS (2024)]

If (X , r) is a bijective non-degenerate solution and κ a ρ-invariant map, then

κ ∈ K (X , r) ⇐⇒ ∀ a ∈ X κRa = Raκ ⇐⇒ κ ∈ K (X , r/) ,

where Ra (b) = b /r a, for all a, b ∈ X .

Remark
If κ, ω : X → X are ρ-invariant reflections for a right non-degenerate solution
(X , r), then κω ∈ K (X , r) and κω is ρ-invariant.
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(X , r), then κω ∈ K (X , r) and κω is ρ-invariant.
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Final remarks

1 The study of shelf/rack endomorphisms

The study of rack automorphisms is addressed by many authors and it can be
also helpful in the study of reflections.

For instance, in [Elhamdadi, Macquarrie, Restrepo (2012)], the authors proved
that Aut(X ) of the dihedral quandle (X , .) coincides with the group Aff (Zn)
of affine transformations of Zn.

With analogous computations, we have that

End(X ) = {fb,a : Zn → Zn | fb,a(x) = b + ax , x , a, b ∈ Zn} .

and, in light of results obtained,

κ = fb,a ∈ K(X , r.) ⇐⇒

{
2ab = 0 (mod n) ,
2a(a− 1) = 0 (mod n) .
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Final remarks

2 Other reflections for bijective n.-d. solutions

Let (X , r) be a bijective non-degenerate solution and let κ : X → X be a
ρ-centralizing and ρ-invariant map. Then, the following holds

κ ∈ K(X , r) ⇐⇒ κ is λ-centralizing .

Theorem [AMS (2024)]

Let (X , r) be a solution, κ ∈ K (X , r), and ϕ,ψ : X → X maps that are
λ, ρ-centralizing and λ, ρ-invariant. Then,

ω := ϕκψ ∈ K (X , r) .

If (X , r) is an involutive solution, then, for the maps ϕ,ψ, the assumptions of
being λ-invariant and ρ-centralizing are redundant. Hence, the result contained
in [Lebed, Vendramin (2022)] is a special case of the previous theorem.

24



Final remarks

2 Other reflections for bijective n.-d. solutions

Let (X , r) be a bijective non-degenerate solution and let κ : X → X be a
ρ-centralizing and ρ-invariant map. Then, the following holds

κ ∈ K(X , r) ⇐⇒ κ is λ-centralizing .

Theorem [AMS (2024)]

Let (X , r) be a solution, κ ∈ K (X , r), and ϕ,ψ : X → X maps that are
λ, ρ-centralizing and λ, ρ-invariant. Then,

ω := ϕκψ ∈ K (X , r) .

If (X , r) is an involutive solution, then, for the maps ϕ,ψ, the assumptions of
being λ-invariant and ρ-centralizing are redundant. Hence, the result contained
in [Lebed, Vendramin (2022)] is a special case of the previous theorem.

24



Final remarks

2 Other reflections for bijective n.-d. solutions

Let (X , r) be a bijective non-degenerate solution and let κ : X → X be a
ρ-centralizing and ρ-invariant map. Then, the following holds

κ ∈ K(X , r) ⇐⇒ κ is λ-centralizing .

Theorem [AMS (2024)]

Let (X , r) be a solution, κ ∈ K (X , r), and ϕ,ψ : X → X maps that are
λ, ρ-centralizing and λ, ρ-invariant. Then,

ω := ϕκψ ∈ K (X , r) .

If (X , r) is an involutive solution, then, for the maps ϕ,ψ, the assumptions of
being λ-invariant and ρ-centralizing are redundant. Hence, the result contained
in [Lebed, Vendramin (2022)] is a special case of the previous theorem.

24



Final remarks

3 Other reflections for bijective n.-d. solutions: Examples

1. There exists a skew brace (B,+, ◦) with (B,+) ' D8 and (B, ◦) ' C8

such that the associated solution (B, r) has 288 reflections. Among these:
- 256 are only λ-centralizing;

- 16 are only ρ-invariant;

- 16 are of both type.

2. There exists a skew brace (B,+, ◦) with (B,+) ' D8 and (B, ◦) ' C8
such that the associated solution (B, r) has 128 reflections. Among these,
we have:

- κ1 = 21222211 is a λ-centralizing reflection which is not ρ-invariant;

- κ2 = 11346578 is ρ-invariant reflection which is not λ-centralizing;

- κ3 = 21436578 is a λ-centralizing and ρ-invariant reflection;

- κ4 = 12556611 is a reflection which is neither λ-centralizing nor
ρ-invariant.

In particular, 64 reflections are neither λ-centralizing nor ρ-invariant.
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Final remarks

4 Other aspects of the study: the parametric case

Let X ,Y be non-empty sets, Y ⊆ X , and zi,j ∈ Y with i , j ∈ Z+.

A pair (X ,Rzij ) is a solution of the parametric set-theoretic YBE if

Rz12
12 Rz13

13 Rz23
23 = Rz23

23 Rz13
13 Rz12

12

where, in the notation, zij denotes the dependence on (zi , zj).

Definition [Doikou (2024)]

A pair
(
X , .zij

)
is a left parametric p-shelf if .zij satisfies the following identity:

∀ a, b, c ∈ X a .zik
(
b .zjk c

)
=
(
a .zij b

)
.zjk (a .zik c) .

Some results already obtained on reflections allows for starting a systematic
study of them for the parametric case.

A. Doikou, M. Mazzotta, P.S.: Parametric reflection maps: an algebraic
approach, arXiv:2412.15839.
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Thank you!

Dziękuję!

Grazie!

Contact information:
Q paola.stefanelli@unisalento.it
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