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This presentation is based on the paper by Antonio Avilés and Stevo
Todorcevic, Lexicographic products as compact spaces of the first Baire
class, Topology Appl. 267 (2019), 106871.
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Rosenthal Compacta

Definition

A real-valued function f : X −→ R on a metrizable space X is of the first
Baire class if f is a pointwise limit of a sequence of continuous functions
on space X .

Theorem (Baire)

If X is completely metrizable, the following conditions are equivalent for a
function f : X −→ R
(1) f is of the first Baire class,
(2) f −1(U) is an Fσ-set in X for every open U ⊆ R
(3) f �K has a point of continuity for every non-empty closed K ⊆ X
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Rosenthal Compacta

Definition

A compact Hausdorff space K is Rosenthal if it can be represented as a
compact (in pointwise topology) set of functions f : X −→ R of the first
Baire class on a Polish space X.

Fact

All metrizable compacta are Rosenthal compact spaces.

Fact

A compact Hausdorff space can always be represented as a compact set of
functions f : X −→ R on a certain set X in pointwise topology.
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Rosenthal Compacta

Examples

The Helly space of all nondecreasing functions f : [0, 1] −→ [0, 1] (with
topolgy induced from the product [0, 1][0,1]) and split interval
([0, 1]× {0, 1}, <lex) with order topology are Rosenthal compact spaces.

Examples

Tichonoff cube of weight c and βω are not Rosenthal compact spaces.

Theorem (Odell, Rosenthal)

For a separable Banach space X , the unit ball BX∗∗ (in the second dual
space) equipped with the weak* topology is a separable Rosenthal
compactum if and only if X contains no subspace isomorphic to `1
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Rosenthal Compacta

We consider the following two subclasses of the class R of Rosenthal
compacta:

K belongs to the class RK iff K is hoemomorphic to a compact set
of functions f : X → R of the first Baire class on a compact metric
space X

K belongs to the class CD if K is homeomorphic to a compact set of
functions f : X → R with countably many discontinuities on a
compact metric space X

Fact

We have that CD ⊆ RK ⊆ R

Theorem (Pol)

RK ( R
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Rosenthal Compacta

Definition

Space K belongs to class RK0 if K can be represented as a compact set
of functions f : X −→ R of the first Baire class on a compact metric space
X , which is the closure of a (countable) set of contionous functions on X .

Fact

A compact space K embeds in an element of the class RK0 if and only if
it is homeomorphic to weak* compact subset of E ∗∗ for some separable
Banach space space E that does not contain `1
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Mappings onto metric spaces with small fibers

Definition

Given class C of compact spaces, we say that a compact space K is a
C-to-one preimage of a metric space if there exists a continuous function
f : K −→ M onto a metric space M such that f −1(x) ∈ C for every x ∈ M.

Definition

A compact space is Corson if it can be represented as a compact K ⊆ RI ,
such that for every x , y ∈ K the set {i ∈ I : xi 6= yi} is at most countable,
equivalently if it can be represented as a compact K , such that for every
x ∈ K set supp(x) = {i ∈ I : xi 6= 0} is at most countable.
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Mappings onto metric spaces with small fibers

Proposition

If K is a compact set of functions with countably many discontinuities on
a Polish space, then K is a Corson-to-one preimage of a metric space.

Proof.

Let K be a pointwise compact set of functions f : X −→ R, with X a Polish
space. Fix a countable dense set D ⊆ X . The restriction map r : K −→ RD

gives a continuous map into a metric space. If r(f ) = r(g), then f and g
coincide on the points of common continuity of f and g, since they
coincide on D. Thus, all functions in a given fiber F = r−1(r(f )) coincide
with f in all but countably many points. This implies, that each fiber is a
Corson compactum.
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Mappings onto metric spaces with small fibers

Lemma

Let L1 and L2 be two complete linear orders, and L1 × L2 its lexicographic
product, endowed with the order topology. If L1 is uncountable and
f : L1 × L2 −→ M is a continuous function onto a metric space, then there
exists x ∈ M such that f −1(x) contains a copy of L2.

Proof.

Since M is a compact metric space, it has a countable basis of open Fσ
sets. Taking preimages, there is a countable family F of open Fσ sets in
L1 × L2, such that if f (x) 6= f (y), then x and y are separated by elements
of F . Since open intervals (a, b) form a basis for the topolgy of L1 × L2,
there is also a countable family {(an, bn) : n ∈ ω} such that if
f (x) 6= f (y), then x and y are separated by these intervals. Since L1 is
uncountable, there exists t ∈ L1 which is not the first coordinate of any an
or bn, then f (t, s) = f (t, s ′) for all s, s ′ ∈ L2. We have L2 ⊆ f −1(f (t, s))
for any s ∈ L2.
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Mappings onto metric spaces with small fibers

Lemma (V.A.Efimov, G.I. Certanov)

Linearly ordered Corson compactum is metrizable.

Corollary

Let L1 and L2 be two complete linear orders, and L1 × L2 its lexicographic
product, endowed with order topology. If L1 is uncountable and L2 is not
metrizable, then L1×L2 is not a Corson-to-one preimage of a metric space.

Proof.

Assume L1 × L2 is a Corson-to-one preimage of a metric space M for
f : L1 × L2 −→ M. By previous Lemma we would have an x ∈ M, such that
L2 ⊆ f −1(x). Subspace f −1(x) is metrizable while L2 is not.
Contradiction.
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Mappings onto metric spaces with small fibers

Lemma

Split interval [0, 1]× {0, 1} is not metrizable in order topology.

Corollary

Space ([0, 1]2 × {0, 1}, τ≺) is not Corson-to-one preimage of metric
compacta.

Proof.

Take L1 = ([0, 1], <) and L2 = ([0, 1]× {0, 1}, <lex)

Now we will prove, that ([0, 1]2 × {0, 1}, τ≺) ∈ RK
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