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Vector addition systems (VAS)

Reachability problem

Input: finite set of transitions T in Zd

source s, target t in Nd

Question: can one reach t starting in s
by finitely many transitions from T

inside the positive quadrant?
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Why this?

• simple formulation - natural problem

• VAS - fundamental computational model

• reachability - can I reach error?
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Short history

Lipton `76: hardness for exponential space

Mayr `81: decidability

Kosaraju `82, Lambert `92: simplifications

Leroux, Schmitz `15: cubic-Ackermann

Huge complexity gap

Common feeling: possibly in exponential space
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Why simple?

• hope: always a double-exponential path

• this is the case for similar coverability 
problem

• coverability: can I go from s above t?

• conjecture: reachability and coverability 
should behave similarly
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Why complicated?
(0,0,-1)

(0,0,0)

(-1,1,0) (2,-1,0)qp

For every state and loop a new dimension

(0, 0, -1, +1, -1, 0, 0) (0, 0, 0, -1, +1, 0, 0)

(0, 0, 0, -1, 0, +1, 0)
(-1, 1, 0, +1, 0, -1, 0)

(0, 0, 0, 0, -1, 0, +1)
(2, -1, 0, 0, +1, 0, -1)
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(0,0,-1)

(0,0,0)

(-1,1,0) (2,-1,0)qp

p(k,0,n) p(0,k,n) q(0,k,n)  q(2k,0,n)  p(2k,0,n-1) 

p(1,0,n) p(2,0,n-1) p(2n,0,0)...

Each p(x, y, 0) for x+y= 2n is reachable
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p(1, 0, n, 1) p(2n,0,0, 1)

r(2n,0,0, 1)r(0,0,0, 22n)

Size of finite reachability set can 2-exp, 3-exp, ...

Even ackermann size is possible
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New example

VASS (VAS with states) in dimension 4 such that
shortest path from source s to target t

is doubly-exponential

This is not true for coverability!

For every VASS in dimension 4
shortest path from source s above target t

is exponential (or no path)



Fractional equation



Fractional equation

Lemma



Fractional equation

Lemma
For every k there are k fractions ai / bi,

each bigger than 1, such that



Fractional equation

Lemma
For every k there are k fractions ai / bi,

each bigger than 1, such that

(a1 / b1)21 · (a2 / b2)22 ·... · (ak / bk)2k =  a / b



Fractional equation

Lemma
For every k there are k fractions ai / bi,

each bigger than 1, such that

(a1 / b1)21 · (a2 / b2)22 ·... · (ak / bk)2k =  a / b

and all ai, bi, a and b are at most exponential in k.



Fractional equation

Lemma
For every k there are k fractions ai / bi,

each bigger than 1, such that

(a1 / b1)21 · (a2 / b2)22 ·... · (ak / bk)2k =  a / b

and all ai, bi, a and b are at most exponential in k.

(1+2k / 2k)2k ≈ e



Fractional equation

Lemma
For every k there are k fractions ai / bi,

each bigger than 1, such that

(a1 / b1)21 · (a2 / b2)22 ·... · (ak / bk)2k =  a / b

and all ai, bi, a and b are at most exponential in k.
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VASS building blocks

p(0, 0, 0, 0) ⟶ p(Kb, 0, 0, K) (+b,0,0,+1) in p

q(Ka, 0, 0, K) ⟶ q(0, 0, 0, 0) (-a,0,0,-1) in q

(Cbin, 0, n) ⟶ (Caibin-1, 0, n-1) ⟶ ... ⟶ (Cain, 0, 0)

one can multiply by at most n times by at most ai /bi

(0, 0, -1)

(0, 0, 0)

(ai, -bi, 0)(-1, 1, 0)
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VASS implementation

adds to first coordinate Kb

multiplies it at most 21 times by ≤ a1 / b1 
...

multiplies it at most 2k times by ≤ ak / bk 

subtracts from it Ka

K doubly exponential

(a1 / b1)21 · (a2 / b2)22 ·... · (ak / bk)2k =  a / b

q(≤Ka, ≥0, ≥0, K)N

p(Kb, 0, 0, K)



Thank you!


