Reachability in Petri Nets

Wojciech Czerwiński

basic notions and problem

- basic notions and problem
- why consider this?

- basic notions and problem
- why consider this?
- history of the problem

- basic notions and problem
- why consider this?
- history of the problem
- interesting known example

- basic notions and problem
- why consider this?
- history of the problem
- interesting known example
- new example

Can I reach red from blue using violet vectors?

Can I reach red from blue using violet vectors?

$$a(3,5) + b(3,-1) + c(-2,-3) = (4,-1)$$

Can I reach red from blue using violet vectors?

$$a(3,5) + b(3,-1) + c(-2,-3) = (4,-1)$$

Can I reach red from blue using violet vectors?

$$a(3,5) + b(3,-1) + c(-2,-3) = (4,-1)$$

$$a = 8, b = 2, c = 13$$

Can I reach red from blue using violet vectors?

$$a(3,5) + b(3,-1) + c(-2,-3) = (4,-1)$$

$$a = 8, b = 2, c = 13$$

Can I reach red from blue using violet vectors?

$$a(3,5) + b(3,-1) + c(-2,-3) = (4,-1)$$

$$a = 8, b = 2, c = 13$$

Can I reach red from blue using violet vectors?

$$a(3,5) + b(3,-1) + c(-2,-3) = (4,-1)$$

$$a = 8, b = 2, c = 13$$

Can I reach red from blue using violet vectors?

$$a(3,5) + b(3,-1) + c(-2,-3) = (4,-1)$$

$$a = 8, b = 2, c = 13$$

Can I reach red from blue using violet vectors?

$$a(3,5) + b(3,-1) + c(-2,-3) = (4,-1)$$

$$a = 8, b = 2, c = 13$$

Can I reach red from blue using violet vectors?

$$a(3,5) + b(3,-1) + c(-2,-3) = (4,-1)$$

$$a = 8, b = 2, c = 13$$

Can I reach red from blue using violet vectors?

$$a(3,5) + b(3,-1) + c(-2,-3) = (4,-1)$$

$$a = 8, b = 2, c = 13$$

Can I reach red from blue using violet vectors?

$$a(3,5) + b(3,-1) + c(-2,-3) = (4,-1)$$

$$a = 8, b = 2, c = 13$$

Can I reach red from blue using violet vectors?

$$a(3,5) + b(3,-1) + c(-2,-3) = (4,-1)$$

$$a = 8, b = 2, c = 13$$

Can I reach red from blue using violet vectors?

$$a(3,5) + b(3,-1) + c(-2,-3) = (4,-1)$$

$$a = 8, b = 2, c = 13$$

Can I reach red from blue using violet vectors?

$$a(3,5) + b(3,-1) + c(-2,-3) = (4,-1)$$

$$a = 8, b = 2, c = 13$$

Can I reach red from blue using violet vectors?

$$a(3,5) + b(3,-1) + c(-2,-3) = (4,-1)$$

$$a = 8, b = 2, c = 13$$

Can I reach red from blue using violet vectors?

$$a(3,5) + b(3,-1) + c(-2,-3) = (4,-1)$$

$$a = 8, b = 2, c = 13$$

Can I reach red from blue using violet vectors?

$$a(3,5) + b(3,-1) + c(-2,-3) = (4,-1)$$

$$a = 8, b = 2, c = 13$$

Can I reach red from blue using violet vectors?

$$a(3,5) + b(3,-1) + c(-2,-3) = (4,-1)$$

$$a = 8, b = 2, c = 13$$

Can I reach red from blue using violet vectors?

$$a(3,5) + b(3,-1) + c(-2,-3) = (4,-1)$$

$$a = 8, b = 2, c = 13$$

Can I reach red from blue using violet vectors?

$$a(3,5) + b(3,-1) + c(-2,-3) = (4,-1)$$

$$a = 8, b = 2, c = 13$$

Can I reach red from blue using violet vectors?

$$a(3,5) + b(3,-1) + c(-2,-3) = (4,-1)$$

$$a = 8, b = 2, c = 13$$

Can I reach red from blue using violet vectors?

$$a(3,5) + b(3,-1) + c(-2,-3) = (4,-1)$$

$$a = 8, b = 2, c = 13$$

Can I reach red from blue using violet vectors?

$$a(3,5) + b(3,-1) + c(-2,-3) = (4,-1)$$

$$a = 8, b = 2, c = 13$$

Can I reach red from blue using violet vectors?

$$a(3,5) + b(3,-1) + c(-2,-3) = (4,-1)$$

$$a = 8, b = 2, c = 13$$

Can I reach red from blue using violet vectors?

$$a(3,5) + b(3,-1) + c(-2,-3) = (4,-1)$$

$$a = 8, b = 2, c = 13$$

Can I reach red from blue using violet vectors?

$$a(3,5) + b(3,-1) + c(-2,-3) = (4,-1)$$

$$a = 8, b = 2, c = 13$$

Can I reach red from blue using violet vectors inside positive quadrant?

Can I reach red from blue using violet vectors inside positive quadrant?

Complicated!

Reachability problem

Reachability problem

Input: finite set of transitions T in Z^d source s, target t in N^d

Reachability problem

Input: finite set of transitions T in Z^d source s, target t in N^d

Question: can one reach t starting in s by finitely many transitions from T inside the positive quadrant?

• simple formulation - natural problem

- simple formulation natural problem
- VAS fundamental computational model

- simple formulation natural problem
- VAS fundamental computational model
- reachability can I reach error?

Lipton `76: hardness for exponential space

Lipton `76: hardness for exponential space

Mayr `81: decidability

Lipton `76: hardness for exponential space

Mayr `81: decidability

Kosaraju '82, Lambert '92: simplifications

Lipton `76: hardness for exponential space

Mayr `81: decidability

Kosaraju '82, Lambert '92: simplifications

Leroux, Schmitz \ 15: cubic-Ackermann

Lipton `76: hardness for exponential space

Mayr `81: decidability

Kosaraju '82, Lambert '92: simplifications

Leroux, Schmitz \ 15: cubic-Ackermann

Huge complexity gap

Lipton `76: hardness for exponential space

Mayr `81: decidability

Kosaraju '82, Lambert '92: simplifications

Leroux, Schmitz \ 15: cubic-Ackermann

Huge complexity gap

Common feeling: possibly in exponential space

Thm [C., Lasota, Lazic, Leroux, Mazowiecki]

The Reachability Problem for Vector Addition Systems is not elementary.

Thm [C., Lasota, Lazic, Leroux, Mazowiecki]

The Reachability Problem for Vector Addition Systems is not elementary.

Not in time:

Thm [C., Lasota, Lazic, Leroux, Mazowiecki]

The Reachability Problem for Vector Addition Systems is not elementary.

Not in time:

Why simple?

hope: always a double-exponential path

- hope: always a double-exponential path
- this is the case for similar coverability problem

- hope: always a double-exponential path
- this is the case for similar coverability problem
- coverability: can I go from s above t?

- hope: always a double-exponential path
- this is the case for similar coverability problem
- coverability: can I go from s above t?
- conjecture: reachability and coverability should behave similarly

$$(0, 0, -1, +1, -1, 0, 0)$$

$$(0,0,-1,+1,-1,0,0)$$
 $(0,0,0,-1,+1,0,0)$

$$(0, 0, -1, +1, -1, 0, 0)$$
 $(0, 0, 0, -1, +1, 0, 0)$

$$(0,0,0,-1,0,+1,0)$$

 $(-1,1,0,+1,0,-1,0)$

$$(0, 0, -1, +1, -1, 0, 0)$$
 $(0, 0, 0, -1, +1, 0, 0)$

$$(0,0,0,-1,0,+1,0)$$
 $(0,0,0,0,-1,0,+1)$ $(-1,1,0,+1,0,-1,0)$ $(2,-1,0,0,+1,0,-1)$

p(k,0,n)

$$p(k,0,n) \longrightarrow p(0,k,n)$$

$$p(k,0,n) \longrightarrow p(0,k,n) \longrightarrow q(0,k,n)$$

$$p(k,0,n) \longrightarrow p(0,k,n) \longrightarrow q(0,k,n) \longrightarrow q(2k,0,n)$$

$$p(k,0,n) \longrightarrow p(0,k,n) \longrightarrow q(0,k,n) \longrightarrow q(2k,0,n) \longrightarrow p(2k,0,n-1)$$

$$p(k,0,n) \longrightarrow p(0,k,n) \longrightarrow q(0,k,n) \longrightarrow q(2k,0,n) \longrightarrow p(2k,0,n-1)$$

$$p(k,0,n) \longrightarrow p(0,k,n) \longrightarrow q(0,k,n) \longrightarrow q(2k,0,n) \longrightarrow p(2k,0,n-1)$$

$$p(1,0,n) \longrightarrow p(2,0,n-1)$$

$$p(k,0,n) \longrightarrow p(0,k,n) \longrightarrow q(0,k,n) \longrightarrow q(2k,0,n) \longrightarrow p(2k,0,n-1)$$

$$p(1,0,n) \longrightarrow p(2,0,n-1) \longrightarrow$$

$$p(k,0,n) \longrightarrow p(0,k,n) \longrightarrow q(0,k,n) \longrightarrow q(2k,0,n) \longrightarrow p(2k,0,n-1)$$

$$p(1,0,n) \longrightarrow p(2,0,n-1) \longrightarrow ...$$

$$p(k,0,n) \longrightarrow p(0,k,n) \longrightarrow q(0,k,n) \longrightarrow q(2k,0,n) \longrightarrow p(2k,0,n-1)$$

$$p(1,0,n) \longrightarrow p(2,0,n-1) \longrightarrow \dots \longrightarrow$$

$$p(k,0,n) \longrightarrow p(0,k,n) \longrightarrow q(0,k,n) \longrightarrow q(2k,0,n) \longrightarrow p(2k,0,n-1)$$

$$p(1,0,n) \longrightarrow p(2,0,n-1) \longrightarrow \dots \longrightarrow p(2^n,0,0)$$

$$p(k,0,n) \longrightarrow p(0,k,n) \longrightarrow q(0,k,n) \longrightarrow q(2k,0,n) \longrightarrow p(2k,0,n-1)$$

$$p(1,0,n) \longrightarrow p(2,0,n-1) \longrightarrow \dots \longrightarrow p(2^n,0,0)$$

Each p(x, y, 0) for $x+y=2^n$ is reachable

p(1, 0, n, 1)

$$p(1, 0, n, 1) \longrightarrow$$

$$p(1,0,n,1) \longrightarrow p(2^n,0,0,1)$$

$$p(I, 0, n, I) \longrightarrow p(2^n, 0, 0, I)$$

$$p(1, 0, n, 1) \longrightarrow p(2^{n}, 0, 0, 1)$$

$$\downarrow \qquad \qquad r(0, 0, 0, 2^{2^{n}}) \longleftarrow r(2^{n}, 0, 0, 1)$$

$$p(1, 0, n, 1) \longrightarrow p(2^{n}, 0, 0, 1)$$

$$\downarrow \qquad \qquad r(0, 0, 0, 2^{2^{n}}) \longleftarrow r(2^{n}, 0, 0, 1)$$

Size of finite reachability set can 2-exp, 3-exp, ...

$$p(1, 0, n, 1) \longrightarrow p(2^{n}, 0, 0, 1)$$

$$\downarrow \qquad \qquad r(0, 0, 0, 2^{2^{n}}) \longleftarrow r(2^{n}, 0, 0, 1)$$

Size of finite reachability set can 2-exp, 3-exp, ...

Even ackermann size is possible

Long paths?

VASS (VAS with states) in dimension 4 such that shortest path from source s to target t is doubly-exponential

VASS (VAS with states) in dimension 4 such that shortest path from source s to target t is doubly-exponential

This is not true for coverability!

VASS (VAS with states) in dimension 4 such that shortest path from source s to target t is doubly-exponential

This is not true for coverability!

For every VASS in dimension 4 shortest path from source s above target t is exponential (or no path)

Lemma

Lemma

For every k there are k fractions a_i / b_i , each bigger than 1, such that

Lemma

For every k there are k fractions a_i / b_i , each bigger than 1, such that

$$(a_1 / b_1)^2$$
 - $(a_2 / b_2)^2$ - ... - $(a_k / b_k)^2$ = a / b

Lemma

For every k there are k fractions a_i / b_i , each bigger than 1, such that

$$(a_1 / b_1)^2$$
 - $(a_2 / b_2)^2$ - ... - $(a_k / b_k)^2$ = a / b

and all ai, bi, a and b are at most exponential in k.

Lemma

For every k there are k fractions a_i / b_i , each bigger than 1, such that

$$(a_1 / b_1)^2$$
 - $(a_2 / b_2)^2$ - ... - $(a_k / b_k)^2$ = a / b

and all ai, bi, a and b are at most exponential in k.

$$(1+2^{k}/2^{k})^{2^{k}}\approx e$$

Lemma

For every k there are k fractions a_i / b_i , each bigger than 1, such that

$$(a_1 / b_1)^2$$
 - $(a_2 / b_2)^2$ - ... - $(a_k / b_k)^2$ = a / b

and all ai, bi, a and b are at most exponential in k.

 $p(0, 0, 0, 0) \longrightarrow p(Kb, 0, 0, K)$

$$p(0, 0, 0, 0) \longrightarrow p(Kb, 0, 0, K)$$
 (+b,0,0,+1) in p

$$p(0, 0, 0, 0) \longrightarrow p(Kb, 0, 0, K)$$
 (+b,0,0,+1) in p

$$q(Ka, 0, 0, K) \longrightarrow q(0, 0, 0, 0)$$

$$p(0, 0, 0, 0) \longrightarrow p(Kb, 0, 0, K)$$
 (+b,0,0,+1) in p $q(Ka, 0, 0, K) \longrightarrow q(0, 0, 0, 0)$ (-a,0,0,-1) in q

$$p(0, 0, 0, 0) \longrightarrow p(Kb, 0, 0, K)$$

$$(+b,0,0,+1)$$
 in p

$$q(Ka, 0, 0, K) \longrightarrow q(0, 0, 0, 0)$$

(-a,0,0,-1) in q

$$p(0,0,0,0) \longrightarrow p(Kb,0,0,K)$$
 (+b,0,0,+1) in p $q(Ka,0,0,K) \longrightarrow q(0,0,0,0)$ (-a,0,0,-1) in q

$$(Cb_i^n, 0, n) \longrightarrow (Ca_ib_i^{n-1}, 0, n-1) \longrightarrow ... \longrightarrow (Ca_i^n, 0, 0)$$

$$p(0, 0, 0, 0) \longrightarrow p(Kb, 0, 0, K)$$
 (+b,0,0,+1) in p
$$q(Ka, 0, 0, K) \longrightarrow q(0, 0, 0, 0)$$
 (-a,0,0,-1) in q

$$(Cb_i^n, 0, n) \longrightarrow (Ca_ib_i^{n-1}, 0, n-1) \longrightarrow ... \longrightarrow (Ca_i^n, 0, 0)$$

one can multiply by at most n times by at most ai/bi

can I reach q(0,0,0,0) from p(0,0,0,0)?

$$(a_1 / b_1)^2$$
 - $(a_2 / b_2)^2$ - ... - $(a_k / b_k)^2$ = a / b

$$(a_1 / b_1)^2$$
 - $(a_2 / b_2)^2$ - ... - $(a_k / b_k)^2$ = a / b

adds to first coordinate Kb

$$(a_1 / b_1)^2$$
 - $(a_2 / b_2)^2$ - ... - $(a_k / b_k)^2$ = a / b

adds to first coordinate Kb

$$(a_1 / b_1)^2$$
 - $(a_2 / b_2)^2$ - ... - $(a_k / b_k)^2$ = a / b

adds to first coordinate Kb

multiplies it at most 2^{l} times by $\leq a_{l} / b_{l}$

$$(a_1 / b_1)^2$$
 - $(a_2 / b_2)^2$ - ... - $(a_k / b_k)^2$ = a / b

adds to first coordinate Kb

multiplies it at most 2^{l} times by $\leq a_{l} / b_{l}$

• • •

$$(a_1 / b_1)^2$$
 - $(a_2 / b_2)^2$ - ... - $(a_k / b_k)^2$ = a / b

adds to first coordinate Kb

multiplies it at most 2^{l} times by $\leq a_{l} / b_{l}$

• • •

multiplies it at most 2^k times by $\leq a_k / b_k$

$$(a_1 / b_1)^2$$
 - $(a_2 / b_2)^2$ - ... - $(a_k / b_k)^2$ = a / b

adds to first coordinate Kb

multiplies it at most 2^{l} times by $\leq a_{l} / b_{l}$

• • •

multiplies it at most 2^k times by $\leq a_k / b_k$

$$q(\leq K_a, \geq 0, \geq 0, K)$$

$$(a_1 / b_1)^2$$
 - $(a_2 / b_2)^2$ - ... - $(a_k / b_k)^2$ = a / b

adds to first coordinate Kb

multiplies it at most 2^{l} times by $\leq a_{l} / b_{l}$

• • •

multiplies it at most 2^k times by $\leq a_k / b_k$

subtracts from it Ka

$$q(\leq K_a, \geq 0, \geq 0, K)$$

$$(a_1 / b_1)^2$$
 - $(a_2 / b_2)^2$ - ... - $(a_k / b_k)^2$ = a / b

adds to first coordinate Kb

multiplies it at most 2^{l} times by $\leq a_{l} / b_{l}$

• • •

multiplies it at most 2^k times by $\leq a_k / b_k$

subtracts from it Ka

$$q(\leq K_a, \geq 0, \geq 0, K)$$

$$(a_1 / b_1)^2$$
 - $(a_2 / b_2)^2$ - ... - $(a_k / b_k)^2$ = a / b

adds to first coordinate Kb

multiplies it at most 2^{l} times by $\leq a_{l} / b_{l}$

• • •

multiplies it at most 2^k times by $\leq a_k / b_k$

subtracts from it Ka

$$q(\leq K_a, \geq 0, \geq 0, K)$$

N divisible by $b_k^{2^k}$

$$(a_1 / b_1)^2$$
 - $(a_2 / b_2)^2$ - ... - $(a_k / b_k)^2$ = a / b

adds to first coordinate Kb

multiplies it at most 2^{l} times by $\leq a_{l} / b_{l}$

• • •

multiplies it at most 2^k times by $\leq a_k / b_k$

subtracts from it Ka

$$q(\leq K_a, \geq 0, \geq 0, K)$$

$$(a_1 / b_1)^2$$
 - $(a_2 / b_2)^2$ - ... - $(a_k / b_k)^2$ = a / b

adds to first coordinate Kb

multiplies it at most 2^{l} times by $\leq a_{l} / b_{l}$

• • •

multiplies it at most 2^k times by $\leq a_k / b_k$

subtracts from it Ka

$$q(\leq K_a, \geq 0, \geq 0, K)$$

K doubly exponential

Thank you!