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What is ... property A?



Property A

Property A was introduced in 2000 and turns out to be of great
importance in many areas of mathematics [1]. Perhaps the most
striking example is the following implication that follows from
results in [4].

If group G has Property A then the Novikov conjecture is true
for all closed manifolds with fundamental group G.

The Novikov conjecture asserts homotopy invariance of higher
signatures of smooth manifolds. Is is one of most important
unsolved problems in topology.

[1] P. Nowak, G. Yu, ”What is ... property A?”, Notices AMS (2008)
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Graph as a metric space

Path-length metric on a graph.
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• Graphs are oriented (E ⊂ V× V).
• We allow infinite distance.
• If ij ∈ E is used to denote an edge, then i is the source and j is
the target vertex of ij.
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Minimal variation of probability measures at scale S

Optimization Problem I. Let G = (V, E) be a graph and let S ≥ 0. Find
minimal ε = εS,G (variation) and a family {ξi : V → R}i∈V of
functionals (probability measures) such that

1. Each ξi is a probability measure, i.e.

∥ξi∥1 = 1 and ξi ≥ 0 for each i ∈ V;

2. Variation on edge ij does not exceed ε, i.e.

∥ξi − ξj∥1 ≤ ε for each ij ∈ E;

3. Each ξi is supported by B(i, S), i.e.

supp ξi = {j ∈ V : ξi(j) > 0} ⊂ B(i, S) for each i ∈ V,

where B(i, S) is ball of radius S centered at i.
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Minimal example: square graph at scale 1

Optimization Problem I. Find minimal εS,G > 0 with functionals ξi on G satisfying

1. ∥ξi∥1 = 1 and ξi ≥ 0 for each i ∈ V;

2. ∥ξi − ξj∥1 ≤ ε for each ij ∈ E;

3. supp ξi = {j ∈ V : ξi(j) > 0} ⊂ B(i, S) for each i ∈ V.

This is optimal solution with objective ε = 2
3 .

Optimality of the solution is not trivial to show.
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Property A

Optimization Problem I. Find minimal εS,G > 0 with functionals ξi on G satisfying

1. ∥ξi∥1 = 1 and ξi ≥ 0 for each i ∈ V;

2. ∥ξi − ξj∥1 ≤ ε for each ij ∈ E;

3. supp ξi = {j ∈ V : ξi(j) > 0} ⊂ B(i, S) for each i ∈ V.

Property A

Let G be a graph and for each S ≥ 0 let εS,G be the minimal variation
of probability measures on G at scale S, i.e. the solution of
Optimization Problem I at scale S. We say that G has property A iff

lim
S→∞

εS,G = 0.
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Property A

Property A

Let G be a graph and for each S ≥ 0 let εS,G be the minimal variation of
probability measures on G at scale S, i.e. the solution of Optimization
Problem I at scale S. We say that G has property A iff

lim
S→∞

εS,G = 0.

• To prove property A for G it is enough to find upper bounds
εS,G ≤ ε̂S,G such that

lim
S→∞

ε̂S,G = 0.

• To prove that G does not have property A we have to show that

lim sup
S→∞

εS,G > 0.

so we have to consider optimal solutions εG,S.
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Reduction to finite graphs

• If S ≥ diamG, then εS,G = 0, so property A is trivial for finite
graphs.

Theorem
Let G be a graph and assume that G =

∪
n∈N Gn, with

G1 ⊂ G2 ⊂ G3 ⊂ · · · an ascending sequence of convex subgraphs of G.
Let εS,Gn be the minimal variation of probability measures at scale S
for graph Gn. Graph G has property A iff

lim
S→∞

lim
n→∞

εS,Gn = 0.

Important case: disjoint sum of finite subgraphs.
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Graphs without property A

Graph G has property A iff
lim

S→∞
lim

n→∞
εS,Gn = 0.

To check that
lim
S→∞

lim
n→∞

εS,Gn ̸= 0

we need a lower bound on εS,Gn .
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Property A as a linear problem
and the dual problem



Linear programming formulation of minimal variance problem

Optimization Problem I. Find minimal εS,G > 0 with functionals ξi on G satisfying

1. ∥ξi∥1 = 1 and ξi ≥ 0 for each i ∈ V;
2. ∥ξi − ξj∥1 ≤ ε for each ij ∈ E;
3. supp ξi = {j ∈ V : ξi(j) > 0} ⊂ B(i, S) for each i ∈ V.

Primal problem.

minimize e

subject to
∑
j∈V

xi,j = 1 for each i ∈ V,

xi,j = 0 for each i ∈ V, j ∈ V \ B(i, S),
xj,k − xi,k ≤ eij,k for each ij ∈ E, k ∈ V,
xi,k − xj,k ≤ eij,k for each ij ∈ E, k ∈ V,∑

k∈V

eij,k ≤ e for each ij ∈ E,

xi,j, eij,k, e ≥ 0
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The dual problem

Dual problem.

maximize
∑
i∈V

ηi

subject to ∑
ij∈E

κij ≤ 1 ,

φk,ij ≤ κij for each ij ∈ E, k ∈ V,
−φk,ij ≤ κij for each ij ∈ E, k ∈ V,∑

mi∈E,m∈V

φk,mi −
∑

im∈E,m∈V

φk,im ≥ ηi for each k ∈ V, i ∈ B(k, S),

ηi, φk,ij ∈ R, κij ≥ 0
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Primal vs dual

Primal

min e

s.t.
∑
j∈V

xi,j = 1,

xi,j = 0,
xj,k − xi,k ≤ eij,k,
xi,k − xj,k ≤ eij,k,∑
k∈V

eij,k ≤ e,

xi,j, eij,k, e ≥ 0

Dual

max
∑
i∈V

ηi

s.t. ∑
ij∈E

κij ≤ 1,

φk,ij ≤ κij,

−φk,ij ≤ κij,∑
mi∈E,m∈V

φk,mi −
∑

im∈E,m∈V

φk,im ≥ ηi,

ηi, φk,ij ∈ R, κij ≥ 0
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Examples: primal and dual
solutions



Square graph

0

1

3

2

A. Nagórko Property A and duality in linear programming 13 / 37



Square graph - proof of optimality

∥ξ1−ξ0∥1 = |ξ1(0)−ξ0(0)|+|ξ1(1)−ξ0(1)|+|ξ1(2)−ξ0(2)|+|ξ1(3)−ξ0(3)| ≤ ε

⇓

− 1
12 (ξ1(0)−ξ0(0))+

1
12 (ξ1(1)−ξ0(1))+

1
4 (ξ1(2)−0)− 1

4 (0−ξ0(3)) ≤
1
4ε
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Duality

Theorem
Dual problem at scale S is dual to Primal problem at scale S. In
particular, for each admissible solution of each problem, we have∑

i∈V

ηi ≤ e

and the optimal solutions are equal.
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Square graph - solution by hand
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Cube graph, S = 2, primal solution
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Cube graph, S = 2, dual solution
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Primal relaxation: Cheeger
constant



Capacity and supply is implicit if we know flows

Note that the capacity κ and supply η is implicit in the solution of
the dual problem as the optimal values for chosen pseudo-flows φi
can be easily computed.

Dual Problem

maximize
∑
i∈V

ηi

subject to ∑
ij∈E

κij ≤ 1 ,

φk,ij ≤ κij for each ij ∈ E, k ∈ V,
−φk,ij ≤ κij for each ij ∈ E, k ∈ V,∑

mi∈E,m∈V

φk,mi −
∑

im∈E,m∈V

φk,im ≥ ηi for each k ∈ V, i ∈ B(k, S),

ηi, φk,ij ∈ R, κij ≥ 0
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Averaged solutions

Theorem

Let G be a graph. Let Γ be a group that acts on G by automorphisms.

If Γ acts transitively both on edges and on vertices of G, then there
exists an optimal solution of the dual problem such that ηi = ηj for
each i, j ∈ V and εij = 1

|E| for each ij ∈ E.

This is not always the case.
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Forced equal capacities and supplies

σk,i =
∑

mi∈E,m∈V

φk,mi −
∑

im∈E,m∈V

φk,im
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The dual problem with extra constraints

Uniform flows.

maximize |V| · η

subject to

εij,k ≤
1
|E| for each ij ∈ E, k ∈ V,

−εij,k ≤
1
|E| for each ij ∈ E, k ∈ V,∑

j∈V,ji∈E

εji,k −
∑

j∈V,ij∈E

εij,k ≥ η for each k ∈ V, i ∈ B(k, S),

η, εij,k ∈ R
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3× 3 grid, Uniform Flows problem at scale S = 1
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Minimum isoperimetric number

Let S ⊂ V. The edge boundary of S is ∂S = E[S, V \ S]. For S ̸= ∅ we let

φ(S) = |∂S|
|S|

be the isoperimetric number of S.

Let S ≥ 0 be a scale on a graph G. We let

γ(G,S) = min
T⊂B(i,S),i∈V,T̸=∅

φ(T)

be the Cheeger constant of G at scale S.
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Uniform Flows and Cheeger constant

Theorem

The optimal solution of Uniform Flow problem at scale S is equal to

|V|
|E|γ(G, S),

the Cheeger constant of G at scale S multiplied by |V|
|E| .
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Minimal isoperimetric number over B(k, S)

Minimal isoperimetric number

maximize η

subject to
εij ≤ 1 for each ij ∈ E,

−εij ≤ 1 for each ij ∈ E,∑
j∈V,ji∈E

εji −
∑

j∈V,ij∈E

εij ≥ η for each i ∈ B(k, S),

η, εij ∈ R
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Minimal isoperimetric number over B(k, S)

Minimal isoperimetric number - the dual

minimize
∑
ij∈E

|ai − aj|

subject to∑
i∈S

ai = 1,

ai = 0 for each i ∈ V \ B(k, S),
ai ≥ 0 for each i ∈ B(k, S)

Theorem
There exists an optimal solution of the above problem with all
non-zero values equal.
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Minimal isoperimetric number over B(k, S)

Minimal isoperimetric number - the dual

minimize
∑
ij∈E

|ai − aj|

subject to∑
i∈S

ai = 1,

ai = 0 for each i ∈ V \ B(k, S),
ai ≥ 0 for each i ∈ B(k, S)

For such solution, if we take T = {i : ai > 0}, then the value of the
objective function is |∂T|

|T| = η(T). But this is the isoperimetric number
of T - and it is the minimal one.
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Minimal isoperimetric number over B(k, S)

Therefore the minimal isoperimetric number dual is equivalent to:

Minimal isoperimetric number - the dual reinterpreted

Maximize η such that for each T ⊂ B(k, S) we have

η ≤ |∂T|
|T| .

This is the Cheeger constant. Remember that we rescaled the
original problem by |E|

|V| .
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The dual problem to Uniform flows

Uniform flows - Cheeger constant times |V|
|E| .

maximize |V| · η

subject to

εij,k ≤
1
|E| for each ij ∈ E, k ∈ V,

−εij,k ≤
1
|E| for each ij ∈ E, k ∈ V,∑

j∈V,ji∈E

εji,k −
∑

j∈V,ij∈E

εij,k ≥ η for each k ∈ V, i ∈ B(k, S),

η, εij,k ∈ R
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Mean property A - the dual problem to Uniform Flows

For each S > 0 find εS,G and a family of functionals {ψi} on G
satisfying

1. {ψi} has norm 1 on average, i.e.

1
|V| ∥

∑
i∈V

ψi∥1 = 1,

and ψi ≥ 0 for each i ∈ V.
2. {ψi} has ε-variation on average, i.e.

1
|E|

∑
ij∈E

∑
k∈V

|ψi(k)− ψj(k)| =
1
|E|

∑
ij∈E

∥ψi − ψj∥1 ≤ ε.

3. suppψi ⊂ B(i, S) for each i ∈ V.

If limS→∞ εS,G = 0, then G has mean property A.
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Applications: hypercubes and
graphs with large girth



Hypercubes

Theorem

Let Qn be the n-dimensional hypercube graph. The minimal variation
of probability measures for Qn at scale S is

εS,Qn =
2
(n−1

S
)∑S

k=0
(n
k
) .
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Cube graph, S = 2

Theorem
Let Qn be the n-dimensional hypercube graph. The minimal variation of probability measures for
Qn at scale S is

εS,Qn =
2
(n−1

S
)∑S

k=0
(n
k
) .

For n = 3, S = 2 we have

ε =
2 ·

(2
2
)(3

0
)
+
(3
1
)
+

(3
2
) =

2
7 .

(We found this number before.)
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Hypercubes

Corollary (P. Nowak, [2])
The disjoint union ⨿

n∈N

{0, 1}n

with ℓ1 metric does not have property A.

Proof.
The proof follows from the observation that for each S ≥ 0 we have

lim
n→∞

2
(n−1

S
)∑S

k=0
(n
k
) = 2.
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Some experimental results and a quiz

A. Nagórko Property A and duality in linear programming 35 / 37



Some experimental results and a quiz
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Large girth

Theorem
Let G(d, c) be a d-regular graph with girth c. Let 2S+ 1 < c. The
minimal variation of probability measures for G(d, c) at scale S is

2(d− 1)S(2− d)
2− d(d− 1)S .

Corollary (R. Willett, [3])
Suppose di is a bounded sequence of integers with di ≥ 3 and
suppose ci is a sequence of integers going to infinity. Then, the
disjoint union of the graphs G(di, ci) fails to have property A.

Proof.
The proof follows from the observation that

lim
S→∞

2(d− 1)S(2− d)
2− d(d− 1)S = 2− 4

d .
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